VOLUME 63, NUMBER 24

PHYSICAL REVIEW LETTERS

11 DECEMBER 1989

Microphase Separation in Block Copolymers

Amitabha Chakrabarti, Raul Toral, ® and James D. Gunton

Department of Physics and Center for Polymer Science and Engineering,
Lehigh University, Bethlehem, Pennsylvania 18015
(Received 11 September 1989)

We introduce a microscopic model for the phase separation in block copolymers and carry out Monte
Carlo simulations in two dimensions. We find that the equilibrium structure function satisfies a scaling
relation with D.q, the thickness of the microdomains. We also find that Daq—vNo, where N is the chain
length and 8= 7 in the weak-segregation limit, in agreement with calculations in a cell-dynamics model.
This suggests that the microscopic and the continuum models of block copolymers are in the same

universality class.

PACS numbers: 64.60.Cn, 61.41.+e, 64.60.My, 64.75.+g

A block-copolymer melt is composed of long chain
molecules consisting of two covalently bonded subchains
of constituent monomers 4 and B, respectively.! This
particular microscopic structure is reflected in several
macroscopic properties that make block copolymers of
great technological value.? One of the most interesting
effects occurs when the two species 4 and B are mutually
incompatible. In that case, a phase separation occurs at
low enough temperatures. However, due to the covalent
bond between the 4 and B chains, phase separation can-
not proceed to a macroscopic scale; instead, micro-
domains rich in each of the two components are formed.3
This so-called mesophase formation produces periodic
spatial patterns. In experiments one finds that the sys-
tem can form periodic lamellar, spherical, or cylindrical
structures depending on the relative chain length of the
two cobonded polymers and on the amount of solvent
present in the mixture.*> It has also been found experi-
mentally? that the thickness, Deq, of these microdomains
scales as a power law of the molecular weight N of the
copolymers, i.e., D~N°® where 6=% in the strong-
segregation case and 6= 3 in the weak-segregation case.

In this Letter, we report the results of a numerical
simulation of phase separation in block-copolymer sys-
tems, using a Monte Carlo-type dynamics for a lattice
model consisting of long self-avoiding chains.®’ Our nu-
merical calculations, carried out in the weak-segregation
limit, confirm that 8= % in this limit. We also compare
our results with those found in a recent coarse-grained
model introduced by Oono and co-workers.®® The com-
parison strongly suggests that the microscopic kinetic
and coarse-grained models belong to the same universali-
ty class for block-copolymer melts.

Theoretical studies of phase separation in block co-
polymers have been carried out by several authors.'-!?
Helfand and Wasserman'® use an analogy between the
conformation of a polymer chain and the trajectory of a
Brownian particle to write down the free energy for the
ordered state of a block-copolymer system under strong
segregation. When this free energy is minimized with
respect to D¢q, they find that 6=0.636, which compares

extremely well to the value of @ found in experiments.
On the other hand, a different approach based on a local
order-parameter formulation has been taken by Lei-
bler.!! His analysis is restricted to the weak-segregation
limit and predicts Deq~N 2. Ohta and Kawasaki'? use
a method similar to Leibler but incorporate long-range
interactions, arising from the connectivity of different
monomer sequences in a copolymer chain, and recover
6=1% for the strong-segregation limit in a mean-field-
type calculation.

Recently, Oono and co-workers®® have proposed phe-
nomenological models for the phase separation dynamics
of the block-copolymer system. They start from a
coarse- grained description of the ordering process in a
similar fashion to the Cahn-Hilliard-Cook (CHC) mod-
el'? used to study phase separation in binary alloys. The
fact that the equilibrium configurations in a block-
copolymer system are made out of microdomains is in-
corporated by these authors by writing an equation for
the coarse-grained order-parameter field ¢(r,z) in the
form

g%:—’t—)=MV2(—b¢+u¢3—KVZ¢)—B¢, a
where b, u, K, M, and B are phenomenological parame-
ters. This equation is the deterministic version of the
CHC model except for the presence of the — B¢ term.
The last term, — B¢, makes the ¢ =0 state more stable
than that with ¢>£0 in the absence of spatial gradients.
Thus, the domain size saturates at an equilibrium value
after an initial increment with time. Oono and Bahiana®
studied the cell-dynamics version'* of Eq. (1) in the
weak-segregation limit. They empirically conclude that
B is proportional to N ~2 and on the basis of that find

=1 in the above limit. The partial differential equa-
tion describing phase separation in a block-copolymer
melt has also been used!> to numerically construct the
periodic solution which minimizes the free energy. All
these numerical studies take Eq. (1) as the equation
governing the dynamics of phase separation of block-
copolymer melts, which is a phenomenological approach
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to the real dynamics. Thus, it is particularly worthwhile
to study phase separation in block copolymers starting
from a microscopic model, since such a study can, in
principle, test the applicability of these phenomenologi-
cal models to the study of microdomain formation in
block-copolymer systems. In the case of binary alloys,
numerical studies of the microscopic kinetic Ising mod-
el,'®!7 the CHC model,'® and the cell-dynamics model '’
have suggested that these models actually belong to the
same universality class? in the sense that the growth-law
exponent of the characteristic domain size and the
dynamical scaling functions calculated from the pair
correlation function and the structure function are the
same, within the numerical accuracy of the studies.
However, no such correspondence between the coarse-
grained and microscopic models of phase separation in
block copolymers exists in the literature.

We model a block-copolymer molecule with /N mono-
mer units as a self-avoiding walk of length ¥—1 on a
square lattice. The first N/2 consecutive monomers are
considered as A type and are assigned a spin variable
S;=+1. The other monomers are considered to be of B
type (S;=—1). We assign an interaction of strength
—J when two monomers of the same species (44 or BB)
are nearest neighbors, whereas the interactions between
A-B pairs are taken as zero. In order to study the
molecular-weight dependence of measured quantities, we
keep the monomer concentration constant (and equal to
0.6) and, consequently, vary the total number of chains
placed on the lattice. The empty lattice sites are treated
as solvent molecules and assigned spin variables .S; =0.
The lattice under consideration is of size L2=128%
chains with ¥ =10, 20, 30, and 40 are studied in the
simulations. We place the chains randomly in the lattice
as self-avoiding random walks (which corresponds to a
very-high-temperature configuration) and then quench
the system to a temperature 7 =0.5J/kp. All the chains
in the simulation are constructed to obey the excluded-
volume criterion; i.e., any lattice site is not allowed to be
occupied by more than one monomer at any given instant
of time. The dynamics of the chains is mimicked by rep-
tation and by kink-jump moves. The details of the dy-
namics used here can be found elsewhere.?’ A trial
move is rejected immediately if the excluded-volume cri-
terion is not satisfied. Otherwise, the new state is accept-
ed according to the usual Metropolis Monte Carlo sam-
pling technique. After the system reaches equilibrium
(monitored by the time dependence of the domain size),
we compute, among other quantities, the spherically
averaged static structure factor S(k) and the real-space
pair correlation function G(r). The equilibrium domain
size is calculated in the following way: Since the mono-
mer concentration is fixed, the domain-size morphology
in this system produces a damped oscillatory behavior in
G (r), for all values of N. This allows us to give a quan-
titative measure of the equilibrium domain size D¢q as
the location of the first zero of the correlation function.
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FIG. 1.

A typical equilibrium morphology of the block-
copolymer system for chain length N=10. For each chain, the
two different blocks are denoted by connected lines and con-
nected symbols, respectively. Even though we use periodic
boundary conditions, the part of the chain outside the inner
frame is drawn as it is in order to preserve the connectivity of
the chains in the figure.

In the present lattice model of block copolymers, the
segregation is weak even at final equilibrium stages; i.e.,
the interface thickness and the size of the microdomains
are of the same order of magnitude. This seems clear
from inspection of typical equilibrium morphologies of
the domains (shown in Fig. 1 for chain length N=10).
Although we cannot probe the experimentally more in-
teresting strong-segregation limit (which would corre-
spond to much larger chain lengths than considered
here) due to the practical limitation on available com-
puter time, we note that the cell-dynamics calculations®”®
are carried out in the weak-segregation case as well, and
thus a test of possible universality in these two models is
still within our reach.

In numerical studies of cell-dynamics models® it was
found that the equilibrium domain size scales as N /2 in
the weak-segregation case. Since we want to test the
possible universality between the cell-dynamics model
and our microscopic model, we plot in Fig. 2 D¢q vs N 12,
We find that the data are well represented by this power
law, at least over the range of N values studied in this
simulation, and thus 6= % in the microscopic model.
Since universality of different models is usually charac-
terized by the power-law exponent of some relevant
measurable quantities, we conclude that these two mod-
els for block copolymers belong to the same universality
class. This study also provides strong support towards
the validity and applicability of the cell-dynamics models
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FIG. 2. The equilibrium domain size D.q (see text) plotted
against V'/? for various chain lengths. The straight line is the
best fit to the data.

of block-copolymer melts.

In analogy with studies of spinodal decomposition in
small molecular systems,'* we study the scaling behavior
of the structure factor. Whereas in the case of spinodal
decomposition, one studies a dynamical scaling, we
prescribe a similar scaling Ansatz for the static N-
dependent structure factor as

S(k,N)=DZ(N)F(kDq(N)) @)

in two dimensions, where F(y) is independent of the
chain length. This scaling Ansatz is supported by the
correspondence between the scaling properties of the
equilibrium domain size of block-copolymer systems with
that of the time-dependent domain size in the case of spi-
nodal decomposition.® We test the scaling Ansatz by
plotting S(k,N)/DZ(N) vs y=kDeq(N) and checking
whether the resulting functions are independent of the
chain length. In Fig. 3 we show such a scaling plot. It
seems from this figure that the scaling Ansatz of Eq. (2)
works well for the chain lengths considered in this study.
However, the scaling seems to improve with larger values
of N and we expect that the quality of the scaling plot
will improve considerably for asymptotically large chain
lengths. It would be interesting to check whether the
scaling functions for the continuum models agree with
the ones calculated in the lattice model here, which
would even strengthen the claimed universal behavior of
the two models.

In summary, we have studied the scaling properties of
a model of quenched block copolymers using Monte Car-
lo simulations. The simulations are carried out in two
dimensions in the weak-segregation limit and the results
are compared with those of a cell-dynamics-type contin-
uum model also studied in two dimensions and for the
same limit. Our results suggest that the present lattice
model and the continuum model belong to the same
universality class. However, we note that simulations of
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FIG. 3. The scaling Ansatz Eq. (2) (see text) is tested here
by plotting S(k,N)/D%(N) vs kDeq(N). The filled and open
circles represent N =10 and /N =20, respectively, and the filled
and the open squares represent N =30 and N =40, respectively.
Scaling seems to improve for larger NV values.

the three-dimensional version of the present model are
necessary to compare with real experimental situations,
since one expects that the scaling function is different in
three dimensions.

This work was supported by NSF Grant No. DMR-
8612609. R.T. acknowledges financial support from
Direccion General de Investigacion Cientifica y Tecnica,
Project No. PB-86-0534 (Spain).

@Permanent address: Departament de Fisica, Universitat
de les Illes Balears, 07071-Palma de Mallorca, Spain.

IFor a review, see, for example, Developments in Block
Copolymers, edited by 1. Goodman (Applied Science, London,
1982), Vol. 1.

2Block Copolymers, edited by S. Aggarwal (Plenum, New
York, 1970); Block and Graft Copolymers, edited by J. J.
Burke and V. Weiss (Syracuse Univ. Press, Syracuse, NY,
1973).

3T. Hashimoto, K. Kowsaka, M. Shibayama, and H. Kawai,
Macromolecules 19, 754 (1986), and references therein.

4A. Douy and B. R. Gallot, Mol. Cryst. Liq. Cryst. 14, 191
(1971).

’G. Kamph, M. Hoffman, and H. Kromer, Ber. Bunsenges.
Phys. Chem. 74, 851 (1970).

SA. Baumgartner and D. Heerman, Polymer 27, 1777
(1986).

7A. Sariban and K. Binder, Polym. Commun. 30, 205
(1989).

8Y. Oono and Y. Shiwa, Mod. Phys. Lett. 1, 49 (1987).

9Y. Oono and M. Bahiana, Phys. Rev. Lett. 61, 1109 (1988).

10E, Helfand, Macromolecules 8, 552 (1975); E. Helfand and
Z. R. Wasserman, Macromolecules 9, 879 (1976); 13, 994
(1980).

1, Leibler, Macromolecules 13, 1602 (1980).

2663



VOLUME 63, NUMBER 24

PHYSICAL REVIEW LETTERS

11 DECEMBER 1989

12T Ohta and K. Kawasaki, Macromolecules 19, 2621
(1986).

13See, for example, J. D. Gunton, M. San Miguel, and P. S.
Sahni, in Phase Transitions and Critical Phenomena, edited by
C. Domb and J. L. Lebowitz (Academic, New York, 1983),
Vol. 8.

14y, Oono and S. Puri, Phys. Rev. Lett. 58, 836 (1987).

ISF. Liu and N. Goldenfeld, Phys. Rev. A 39, 4805 (1989).

16J. G. Amar, F. E. Sullivan, and R. D. Mountain, Phys. Rev.
B 37, 196 (1988).

175, D. Gunton, E. T. Gawlinski, and K. Kaski, in Dynamics
of Ordering Processes in Condensed Matter, edited by S.

2664

Komura and H. Furukawa (Plenum, New York, 1988).

I8E. T. Gawlinski, J. Vinals, and J. D. Gunton, Phys. Rev. B
39, 7266 (1989); T. M. Rogers, K. R. Elder, and R. C. Desai,
Phys. Rev. B 37, 9638 (1988).

19A. Chakrabarti and J. D. Gunton, Phys. Rev. B 37, 3798
(1988).

20, D. Gunton, E. T. Gawlinski, A. Chakrabarti, and K.
Kaski, J. Appl. Crystallogr. 21, 811 (1988).

21For a review, see K. Kremer and K. Binder, Comput. Phys.
Rep. 7, 259 (1988); A. Baumgartner, in Applications of the
Monte Carlo Method in Statistical Physics, edited by K.
Binder (Springer-Verlag, Berlin, 1984).



