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The interplay between the polarization state of light and transverse effects in lasers is analyzed

through an amplitude equation description of an atomic transition between spin sublevels.

Linearly

polarized traveling waves are found, whose stability is restricted by a phase instability associated with
the direction of polarization. The instability persists for polarization stabilized lasers. Novel states of
laser light such as standing waves with a spatially periodic linear polarization or coexisting traveling
waves with different wave numbers and circular polarizations are also found.

PACS numbers: 42.60.Mi, 42.65.-k, 47.20.Ky

The vector complex Ginzburg-Landau equation (VC-
GLE) [1,2] gives a generic description of spatiotempo-
ral phenomena in systems described by a complex vec-
tor field. Lasers give very appealing opportunities for the
study of such phenomena due to the vector nature of the
complex amplitude of the electric field. The vector de-
grees of freedom are associated with the polarization of
laser light. Polarization instabilities are currently studied
in a variety of lasers [fiber, microchip Nd:YAG, and verti-
cal cavity surface emitting lasers (VCSELs)] [3]. In par-
ticular, the lack of stability of transverse and polarization
modes in VCSELSs is known to produce a rich spatiotem-
poral phenomenology. In spite of the peculiarities of dif-
ferent lasers, a classification and understanding of possible
states close to threshold is provided by a VCGLE. In this
Letter I use such a framework to discuss pattern forming
instabilities in wide aperture lasers [4,5]. The combination
of spatial transverse dependence and polarization state is
shown to lead to states of laser light so far unexplored. It
is also shown that the stability of these states is determined
by polarization phase instabilities.

The study of phase instabilities is linked to the con-
cept of spontaneous symmetry breaking. Generally speak-
ing, a neutral (zero energy) mode is associated with a
state that breaks a continuous symmetry of the system.
In equilibrium, thermal fluctuations excite nearby low
energy modes and destroy long range order in low di-
mensional systems. On the other hand, the stability of
nonequilibrium states is often restricted by phase insta-
bilities in which the zero energy mode becomes unstable
with respect to long-wavelength fluctuations. For exam-
ple, in pattern forming systems such as Rayleigh-Bénard,
the range of stable spatially periodic states is limited by
an Eckhaus phase instability [6]. The consequences of ro-
tational invariance for a vectorial order parameter are also
well understood in equilibrium; for example, spin waves
can destroy ferromagnetic order. However, phase insta-
bilities associated with rotational symmetry have not yet
been considered at length in nonequilibrium systems such
as the laser. The complex vector field describing laser
light has two neutral modes: a global phase 6 and a rota-
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tional phase . Spontaneous emission noise causes fluc-
tuations of @ destroying frequency coherence and giving
a finite linewidth. This is the relevant laser phase when
the vector direction is fixed by external symmetry break-
ing such as Brewster windows (scalar case). Otherwise,
the additional phase ¢, associated with the state of po-
larization of laser light, needs to be considered. For an
isotropic laser cavity emitting linearly polarized light, ¢
determines the orientation of the linearly polarized emis-
sion on the transverse plane. The selection of ¢ breaks
the rotational symmetry.

Laser transverse pattern formation has been associated
with an instability of the global phase 6 [7]: For a
detuning 2 < O between atomic and cavity frequencies,
the amplitude equation description of the scalar laser
instability features a CGLE [8,9]. The stability range
of traveling wave solutions of the CGLE around the
spatially homogeneous state is limited by a € instability
of the Eckhaus type. For > 0 [5,9] an amplitude
equation description requires two coupled CGLE’s and
the spatially homogeneous lasing solution is 6 unstable
[10]. When the polarizarion degree of freedom is not
frozen, ¢ instabilities associated with polarization patterns
occur. Polarization phase instabilities restrict the stability
range of the laser states allowed in the scalar case.

A VCGLE can be written on symmetry grounds, but the
determination of the parameters in the equation requires
a specific physical model. The intrinsic polarization
of laser light is of quantum nature, and it originates
in the spin sublevels of the atomic lasing transition
[11]. Purely temporal polarization instabilities have been
studied using an homogeneously broadened J = 1 —
J = 0 atomic transition as a prototype situation [12]. I
will consider here transverse effects in this same transition
[13]. Specifically, I consider a wide aperture single
longitudinal mode laser with transverse flat end reflectors.
The upper J = 1 level is triply degenerate but, neglecting
small longitudinal components of the electric field, dipole
transitions are only allowed from the states J, = *1
to the lower J = 0 level. The complex slowly varying
amplitude E = (E,, E,) of the vector electric field can
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be decomposed into its right and left circularly polarized
components,

1

Er=—(E, £iE)). 1

= \/i( X y) ( )

The components E- originate in the transitions from

the states J, = *1, respectively. The Maxwell-Bloch
equations for the system can be written as

02

9 E+r = i2 ZE+ — (k + iv)Ex — ig"P~, (2)
14
0P = = (y1 + iwo)Ps + i (D1 = Do) Ex
+ lgClLEj 5 (3)
3Dy = — y(Dy — 20)

+ 3i(g"EL P+ — gE_P* — c.c)), 4)
a,D2 = —‘)/JDZ + l(g*Ej_P+ + gE_Pi - C.C.), (5)
81C+ = _"ch+ + l(g*EtP+ - C.C.), (6)

where P. are the complex dipole polarizations for each
allowed transition, D; is the sum of the population differ-
ences between the upper J, = *1 levels and the lower
J = 0 level, D, is the population difference between
the two upper levels, C+ is the density matrix coher-
ence between the two J, = *1 levels, and C_- = C3.
The v parameter is the cavity frequency, the detuning
) = wo — v, g is the coupling parameter, o the pump
parameter, and &,y |, Y|, ¥J, Y. are relaxation constants.
Possible different relaxation mechanisms lead in general
to different states of polarization [14]. While in general
Yi,Ye > |, only the case vy = y; was considered in
Ref. [12]. The introduction of y, [14,15] allows for cir-
cularly or linearly polarized light depending on the ratio
7.//7c~

Close to threshold, the set of equations (2)—(6) can be
reduced, for {3 < 0 [16], to two coupled equations for the
amplitudes A+ of the dominant k& = O Fourier mode of
E .. In appropriate rescaled units one obtains

3A: = pAs + (1 + ia)d’As
-1+ iB)A:]? + ylAzPHAL (D

These equations are equivalent to the following VCGLE
for the vectorial amplitude A:

A = uA + (1 +ia)d’A — (1 + iB)
X (A - ADA + [(y — 1)/2](A - A)A™}.(8)

The parameters u, @, 8 have exactly the same expression
in terms of the original physical parameters as for a scalar
two level model [9]: u measures the distance to threshold,
a originates in the diffraction, and B is associated with
detuning. The coupling parameter 7y between right and
left circularly polarized components can be obtained by
direct adiabatic elimination of material variables in the
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absence of transverse effects,

2y (71 )
—1=—0|LL -1} 9)
4 3yr + v\ ve

The novel features associated with a vectorial description
of the laser instability originate in the last term in (8),
which has no counterpart in a scalar description. The
fact that y is a real number, together with 1 + a8 > 0
[9], are the two main peculiarities of the version of the
VCGLE appropriate to describe laser systems.

A family of solutions of Eq. (7) is

A+ = Qrexpl—ik+x + iw=t + i(0y = Yo)], (10)

where the real amplitudes Q2 = [u(l — y) +
yki — k21/(1 — y?), the frequencies w+ =
—ak *2 —B(Q% + yQ2%), and 6y and i, are arbi-
trary phases. Solutions with either Q4 = 0 or Q- = 0
correspond to circularly polarized light. They are only
stable for v > 1 and will not be considered further in
this paper where I will focus on the case v < 1. The
simplest particular case of (10) occurs for k= = 0. It
corresponds to linearly polarized light with A+ having the
same amplitude and frequency. The global phase 6 is
the usual arbitrary field phase found in the scalar case and
Yo defines the arbitrary direction of linear polarization:
Ay o« cosifg, A, = singpg. For k+ # 0 and because of
the pure intensity coupling in (7), in general A~ do not
have a common frequency and there is no well defined
polarization (depolarized solutions). However, for wave
numbers k- = *k;, A+ have the same amplitudes
QO+ = O and frequencies w+ = w, so that a linearly
polarized state can be defined as explained in cases (a)
and (b) below. A special case occurs in the limit y = 1.
For such marginal coupling, solutions of the family (10)
only exist for k- = *k,. They correspond to elliptically
polarized light with a common frequency for A+ and a
third arbitrary phase 2 = tan(Q+/Q_) associated with
the ellipticity.

The linear stability analysis of the family of solutions
(10) identifies two vanishing eigenvalues at zero wave
number of the perturbation (¢ = 0). They are associated
with the arbitrary phases 6y and . The stability with
respect to long-wavelength fluctuations is characterized
by phase equations for slowly varying 6(x, ¢) and ¢ (x, ).
Long-wavelength instabilities are characterized in the
following for the different solutions mentioned above:

(a) Linearly polarized traveling waves (TW).—These
solutions occur for k+ = K. They are linearly polarized
with an arbitrary direction 9. They are the natural gener-
alization of the traveling waves previously considered in
the scalar case [5,9]. The phase equations turn out to be
decoupled:

9,0 = 2K(a — B) 3,0 + Dgd%0, (11

iy = 2K(a — B)drp + Dy, (12)
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Dy(K) = 1 + ap — ZLEBIE g3
n— K
oK) = 1+ ap - ZENAEEIRE

(1= (u—-K?
The equation for the global phase 6 is the same as the
one obtained for the scalar case: The K = 0 solution is
phase stable, and TW solutions are 6 stable for wave
numbers K < K,, where K, is independent of y and
determined by the Eckhaus instability: Dg(K,) = 0. A
new phase instability associated with the direction of
polarization appears for K > K, where K, is determined
by Dy (K,) = 0. Given that K, < K, the stability range
of TW solutions is determined by a polarization instability
which shrinks the range of stable wave numbers obtained
for the scalar case in the (u, K) plane (“Busse balloon™).
In the limit y — 0, K, — K,, but (9) restricts y to
take values y > 1/2. The smallest value of vy sets
the limit of strongest possible linear polarization and
broadest stability range. In the opposite limit y — 1,
K, — 0, the phase polarization instability merges with an
amplitude instability to circularly polarized light and all
TW solutions of finite wave number K are unstable, with
the K = 0 solution being marginally stable.

(b) Polarized standing waves (SW).—These solutions
occur for k. = —k_ = K. They correspond to coun-
terpropagating traveling waves of opposite circular po-
larization with a common amplitude, wave number, and
frequency. Alternatively, they can be visualized as linearly
polarized solutions in which the direction of polarization
is periodic in space, with each Cartesian component of the
field being a standing wave for the intensity of the electric
field:

A, o« cos(Kx + i), Ay « sin(Kx + ). (15)

For these solutions coupled phase equations are obtained,
3,0 = 2K(a — B)a,y + D020, (16)
dp = 2K (e = B) 950 + Doy, (17

where D, and Dy have now exchanged their role. These
equations have a single complex eigenvalue,

A, = *2i(a — B)Kq — Dyg® + 0(¢%),  (18)

where D; = (Dg + Dy)/2. A single phase instability of
the standing waves occurs when D (K;) = 0,
K2 = u(l —y) (1 + apB) ' (19)
(I =90+ ap)+201+ B2
It is interesting to note that no stable SW are found
when neglecting the polarization degree of freedom, and
that the polarized SW have a broader range of stable
wave numbers than the polarized TW waves. Indeed, the
characteristic wave number K is such that K, < K; <
K,. In the unattainable limit v — 0, Ky — K,, while
in the opposite limit y — 1, K; — 0, and the range of
stable SW also shrinks to zero. It is also important to

realize that the stability properties of the SW solutions
depend critically on the nonvariational character of (7).
The calculation of (18) is based on a long-wavelength
limit which requires having a finite value of @ — B.
This cannot be fulfilled in the variational limit [2] o =
B = 0. In such a limit the phase equations decouple,
the eigenvalues become real, and the role of 6 and ¢
are just interchanged with respect to the case of polarized
TW. Note also that the phase equation description breaks
down for ¥y — 1~ since the eigenvalue associated with
the amplitude difference between A, and A_ becomes
positive at finite g, while it is negative at g = 0.

(¢) Depolarized solutions.—The solution (10) for ar-
bitrary k4 # k_ corresponds to spatiotemporal states of
the laser field without a simple polarization descrip-
tion. These solutions can be parametrized by K = (k4 +
k-)/2and d = k+ — k—. The range of (K, d) values for
which they are stable is limited by coupled phase equa-
tions which in general have two independent complex
eigenvalues. A broad range of stable solutions exist in
general. A very small value of d stabilizes a range of K
values which are ¢ unstable for d = 0 (Fig. 1). A TW or
SW solution could naturally evolve, after becoming un-
stable, into a depolarized solution. More interesting is
that when the laser is switched on a variety of these solu-
tions can locally grow from spontaneous emission noise.
By analogy with the spatiotemporal intermittency regime
found in the Benjamin-Feir stable region of the CGLE
[17] one can envisage rich disordered states of the laser
VCGLE. In such states these local and linearly stable de-
polarized solutions are connected by localized objects.

Phase anisotropies.—It is interesting to consider the
effect of small anisotropies of the laser cavity usually
recognized by a detuning splitting. Such anisotropies can
be modeled replacing w in (8) by a general matrix I'. The
Hermitian part of I' is associated with amplitude losses

e T ' K
0.1 0.2 0.3 0.4
K, K

FIG. 1. Stability diagram for the family of solutions (10).
Linearly polarized TW’s are along the x axis. They are
stable for K < K,. Polarized SW are along the y axis.
They are stable for d < 2K;. Depolarized solutions exist
below the continuous line. They are stable below the dotted
line. u =02, =26,8=02,vy =05 (K, =0291,K, =
0.198, K, = 0.231).
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and the anti-Hermitian part with phase anisotropies. [
consider here the case of a linear phase anisotropy, which
amounts to add a term iy, A= to the right-hand side of (7).
The parameter vy, is arbitrarily taken such that 8y, > 0.
Solutions of the modified laser VCGLE with the form
(10) only exist now for k,+ = k_ = K. The phase ¢ is
no longer arbitrary but fixed by sin{2¢y = 0}, giving rise
to states linearly polarized either in the x or y direction.
These states have a common amplitude independent of
Yp, Q% = (u — K?)/(1 + ), and different frequencies
wyy = —aK? — B(1 + y)0? * y,. The global phase
0 is independent of y, and obeys the phase equation (11).
The long-wavelength ¢ stability of the x- and y-polarized
solutions is described by a damped phase equation of the
general form,

b =1l + v + Dyoty. (20)

Simple particular cases of (20) illustrate well the effect
of y, on the phase dynamics: When considering the
stability of the K = 0 solutions, one finds v = 0 and
lg"v is such that the x-polarized solution is always stable
at g = 0, while the y-polarized solution is unstable for
¥y < v5 = BQ*(1 — y). In addition, Dy is such that
the x-polarized solution is further stabilized for ay, > 0
by the phase anisotropy at finite ¢g. From the point of
view of polarization discrimination it is then convenient to
take a value of y, < vy, for which only a stable solution
exists at ¢ = 0. In this limit the diffusion coefficient for
the x-polarized solution of arbitrary K becomes

6K’
Q% (1 — )

_ 2(B% + 1) (a B

D, =Dy + Vo o) ) 1)

For finite K and g the damped phase equation describes
a competition between the stabilizing effect of the phase
anisotropy and the remanent of the i instability: Di in
(21) vanishes at a modified K,(y,) > K,(y, = 0), so
that for K > K, an amplitude-type instability associated
with i appears at finite g. The wave number K,(y),)
sets a lower bound for K.. A similar mechanism of
stabilization of a modulational instability by external
forcing has been invoked to explain pattern formation in
passive optical systems [18]. In summary, small phase
anisotropies fix a polarization direction of the spatially
homogenous lasing solution, but the range of stability of
polarized TW is still limited by a polarization instability
at finite wave number q.
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