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We construct a model of an excitable medium with elastic rather than the usual diffusive coup
We explore the dynamics of elastic excitable media, which we find to be dominated by low dimensi
structures, including global oscillations, period-doubled pacemakers, and propagating fronts.
suggest that examples of elastic excitable media are to be found in such diverse physical sy
as Burridge-Knopoff models of frictional sliding, electronic transmission lines, and active opti
waveguides. [S0031-9007(97)03610-7]
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The response to a perturbation is the defining charact
istic of an excitable element. Above a certain threshold
amplitude, a perturbation will excite a quiescent eleme
that then decays back to quiescence after a characte
tic time insensitive to the magnitude of the perturbatio
during which it is unresponsive to further perturbation
Excitable elements, when coupled to their neighbors in
an assembly, become an excitable medium. Models
excitable media with diffusive coupling, such as those
van der Pol, FitzHugh, and Nagumo [1] have succes
fully described pattern formation phenomena in biolog
and chemistry, and have also captured the attention
many working in the area of nonlinear science becau
of their complex spatiotemporal dynamics [2]. On th
other hand, the properties of excitable media with ela
tic rather than diffusive coupling have not to date bee
investigated. We present here some physical system
frictional sliding, electronic transmission lines, and activ
optical waveguides—as diverse examples of such el
tic excitable media, and analyze their dynamics, whic
we find to be dominated by low dimensional structure
including global oscillations, period-doubled pacemake
and propagating fronts. We investigate the stability of th
oscillations and estimate the velocity of the fronts.

While touching on electronic and optical applications o
elastic excitable media, we shall concentrate on friction
sliding. The Burridge-Knopoff model [3] was origi-
nally introduced as a representation of earthquake fa
dynamics. It describes the interaction of two tecton
plates in a geological fault as a chain of blocks elastica
coupled together and to one of the plates, and subjec
a friction force by the surface of the other plate, suc
that they perform stick-slip motion. In this Letter, we
show that a Burridge-Knopoff model in which the usua
Carlson-Langer velocity weakening dry-friction law [4
is replaced by the original Burridge-Knopoff lubricate
creep-slip version showing viscous properties at bo
the low and high velocity limits, is an elastic excitabl
medium.
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The reintroduction of this friction law in the Burridge-
Knopoff model is motivated by experiments showing tha
it represents friction in a range of materials, including pa
per on paper [5], metal on metal [6], and rock on rock [7
and by theoretical arguments [8]. The model well rep
resents the qualitative characteristics of laboratory stic
slip experiments with elastic gels [9]. Further interes
derives from studies of peeling adhesive tape [10], o
Saffman-Taylor fracture in viscous fingering [11], and o
the Portevin-Le Châtelier effect of discontinuous yieldin
[12], showing that stick-slip phenomena in those system
are induced by this same form of friction law.

Burridge and Knopoff introduced a class of simple mod
els that describe the contact region between two tecton
plates as a chain ofN blocks of equal massm, mutually
coupled by springs of Hooke constantkc and equilibrium
lengtha. The blocks are pulled by the bulk of one plate
moving at velocityV through constant elastic shearkp

against the frictionFf between the two plates, as shown in
Fig. 1(a). In the stationary frame, the equation of motio
for the ith block is

mẌi ­ kcsXi11 2 2Xi 1 Xi21d

2 kpsXi 2 Vtd 2 Ffs ÙXid , (1)
whereXi is the departure of blocki from its equilibrium
position. Usually, following Carlson and Langer [4], the
friction is taken to be asymptotically velocity weakening

FIG. 1. (a) The Burridge-Knopoff model. (b) The velocity
weakening stick-slip friction law of Carlson and Lange
[Ffsyd ­ F0 sgnsydys1 1 jyjd, where y is the velocity of
the block] (solid line) and the Burridge-Knopoff type creep
slip friction law we use (dashed line), showing the threshol
(vertical line) where the block starts to slip.
© 1997 The American Physical Society 527
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so that the blocks perform stick-slip motion: Any individ
ual block sticks to the surface until the pulling force ex
ceeds the static friction threshold. Once the block sta
slipping, the dynamic friction diminishes monotonicall
with its velocity, as Fig. 1(b) illustrates. While this mul
tivalued form of the friction law is perfectly admissible in
the discrete model of Eq. (1), it clearly poses a problem
we attempt to take the continuum limit [13].

To overcome this difficulty, one may replace the stat
friction discontinuity by a small region of high viscosity
Physically, one can see this cutoff as representing lub
cation effects that produce stable creep at low velociti
making our model creep-slip rather than stick-slip. Sin
we wish to model the frictional characteristics displaye
by a range of materials [5–7], we also have the frictio
become viscous (velocity strengthening) at high velo
ties, rather than decay to zero as in the Carlson-Lan
version. Our friction model [Fig. 1(b)], which is simi-
lar to that originally introduced by Burridge and Knopoff
thus comprises three regions: first, velocity strengthenin
then velocity weakening; and finally velocity strengthe
ing again. We shall refer to this model asasymptotically
velocity strengthening,to be contrasted with theasymp-
totically velocity weakeningfriction usually considered.
With this in mind, the continuum limit of Eq. (1) in di-
mensionless variables (see, e.g., [13]) is

ẍ ­ c2x 00 2 sx 2 ntd 2 g fs Ùxd . (2)

xsx, td represents the time-dependent local longitudin
deformation of the surface of the upper plate in the sta
reference frame of the lower plate; dots and primes a
temporal and spatial derivatives, respectively. In this co
tinuum limit, the number of blocksN becomes the system
size S. fs Ùxd is our normalized asymptotically velocity
strengthening friction. There are three dimensionless
rameters: g measures the magnitude of the friction,c
is the longitudinal speed of sound, andn represents the
pulling velocity or slip rate. From Eq. (2), we obtain a
expression for the local velocityc ­ Ùx of the interface
that, written as a couple of differential equations of fir
order in time, gives us our continuum Burridge-Knopo
model

Ùc ­ gfh 2 fscdg , (3a)

Ùh ­ 2g21sc 2 n 2 c2c 00d . (3b)

With the proper choice of the functionfscd, and if
we may disregard for a moment the positioning of th
spatial derivatives term, Eqs. (3) constitute a version [1
of the van der Pol-FitzHugh-Nagumo model that is th
prototypical description of an excitable medium.

While this type of medium was first studied in th
physiology of cardiac and nervous tissues, the sa
properties are also seen in chemical and physical syste
An electrical caricature of an element of an excitab
biological membrane is given by the circuit shown i
Fig. 2(a). The membrane represented by the capac
C is charged by ion pumps characterized by the curre
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FIG. 2. An electronic excitable medium. (a) An element o
the medium: the circuit and (b) they-i characteristic ofnl ;
(c) resistive (diffusive) spatial coupling; (d) capacitive (elastic
spatial coupling—an active transmission line.

generatori0 and drained through a nonlinear resistancenl

across the membrane. This nonlinear element should h
the y-i characteristicf shown in Fig. 2(b), and could
be implemented by a tunnel diode, a neon lamp, or a
electronic device with a range of negative resistance. T
inductanceL models the finite switching time of the ion
channels in the membrane. The circuit equations are th
formally equivalent to Eqs. (3) above, wherec andh are
proportional to the current and potential difference acro
the nonlinear device, respectively, and the currenti0 is
proportional ton. Such circuit elements have been use
in electronic experiments with Burridge-Knopoff model
[15]. In the models of excitable media of FitzHugh an
Nagumo,f is generally taken to be as in Fig. 2(b): I
thus has exactly the same form as used in our Burridg
Knopoff model [cf. Fig. 1(b)].

The spatial derivatives in Eqs. (3) are unusual in th
realm of excitable media. In a biological excitable mem
brane, the excitation propagates in space by diffusio
With the electrical model described above one can bu
a spatially extended diffusive medium by coupling resi
tively several excitable elements, as indicated in Fig. 2(
Such a coupling would give rise to current diffusion
The term involvingc 00 would appear in Eq. (3a) instead
of in Eq. (3b). As they are written, however, Eqs. (3
represent the network of capacitively coupled excitab
elements illustrated in Fig. 2(d). This is a discrete re
resentation of an active transmission line, whereL andC
are the distributed inductance and capacitance, andnl is
the distributed gain achieved by a nonlinear negative
sistance along the line. The distributed serial capacitan
Cc represents the effects of dispersion in the line. T
continuum limit of this network is a caricature of an activ
optical waveguide such as a fiber amplifier or laser.

Further motivation for the study of Eqs. (3) is provide
by laboratory experiments [9] in which an elastic ge
was placed in a Taylor-Couette type apparatus. Stick-s
events occurred at the contact surface of the gel with t
rotating inner cylinder. In a large part of the parame
ter space, low dimensional structures—continuous sl
global oscillations, and propagating fronts—were foun
rather than complex spatiotemporal patterns that mig
have been expected to dominate. With this experime
in mind we focus on periodic boundary conditions. Sinc
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we are interested in qualitative aspects of the dynami
we concentrate on the case wheref is taken to be a
cubic polynomial. By shifting the origin of the variables
c and h and the parametern we can reducef to the
form fscd ­ c3y3 2 c . This makes our model a set
of elastically coupled van der Pol oscillators. For thi
election off, the slip threshold, defined as the crossov
as we increasen from velocity strengthening creep to
velocity weakening slip, lies atn ­ 21.

The continuous slip solution, where one surface mov
uniformly with respect to the other, was examined b
Carlson and Langer [13]. They showed that the grow
rate of perturbations of any wavelength at a particular s
rate is minus the slope of the friction function at that sli
rate. This implies that with asymptotically velocity weak
ening friction the continuous slip solution is always un
stable, while in our case this solution is stable for hig
and low slip rates where the slope is positive. Global o
cillations, where one surface moves periodically in tim
with respect to the other, are also stable at some slip ra
in our model. Figure 3(a) shows the spatiotemporal pa
tern generated from an arbitrary initial condition with th
system relatively far above the slip threshold. Here a
points of space oscillate in phase with an instantaneo
velocity that follows the dynamics of the van der Pol os
cillator. To confirm the stability of these oscillations, we
have calculated their Floquet multipliers. Global oscilla
tions are solutions of Eqs. (3) with the spatial derivativ
set to zero, which correspond to the period-T limit cycle
of the van der Pol oscillator$Cpst 1 T d ­ $Cpstd, where
$Cpstd ­ ssscpstd, hpstdddd, which is stable against spatially

homogeneous perturbations for21 , n , 1 (i.e., above
the slip threshold). We consider small spatial pertu
bations of the form $Cpstd 1 $́ std expsiqxd. Dropping
quadratic and higher powers of$́ std in Eqs. (3), the
resulting linear equations for$́ std have time-periodic
coefficients, and by the Floquet theorem their general s
lution is $́ std ­ $́ 0Pstd expsLqtd, wherePstd is a period-
T matrix andLq a time-independent matrix. Once the
limit cycle has been numerically determined, the matr
expsLqT d may be computed by numerically integrating
the linearized equations over the periodT . Its two eigen-

FIG. 3. Spatiotemporal plots ofcsx, td where time is vertical,
space is horizontal. (a) A plot of the solution with stable un
form global oscillations forn ­ 20.92; (b) stable propagating
fronts atn ­ 20.96. In both cases, the other parameter value
areg ­ 2 andc ­ 0.3. The system sizeS ­ 20, and the time
elapsed50.
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values, the Floquet multiplierssms1d
q , m

s2d
q d, which may be

either real, or complex conjugates, determine the stabili
of global oscillations under perturbations of wave numbe
q. The growth rate per period of such a perturbation i
the maximal Floquet exponentlq ­ maxihRflnsmsid

q dgj.
The dispersion relationlq as a function ofq relatively
far above the slip threshold is never positive, implying
stability under perturbations of all scales. This contras
with the same calculations performed for asymptoticall
velocity weakening friction, when there is always a rang
of long wavelengths for which perturbations grow expo
nentially, so that global oscillations are always unstabl
when this wavelength is within the system size. This i
a significant difference between our model and Burridge
Knopoff models with asymptotically velocity weakening
friction. Such global oscillations have been noted in labo
ratory friction experiments with elastic gels [9].

For slip rates not far above the slip threshold, globa
oscillations become unstable. The dispersion relation
Fig. 4(a) shows that the destabilization occurs at a sing
finite wave numberqc. Furthermore, the Floquet multi-
plier mqc associated with the maximal Floquet exponen
crosses the complex unit circle through21 at this point,
indicating a period-doubling bifurcation. Figure 4(b) is
a spatiotemporal plot showing the nature of the struc
ture arising near this instability. Small perturbations from
the global uniformly oscillating regime grow to become
structures with a well-defined wave numberqc. For sys-
tem sizeS, such structures evolve into a configuration
of qcSy2p synchronized pacemakers emitting fronts in
both directions. These fronts annihilate each other
the correspondingqcSy2p points, that then in turn be-
come pacemakers. The resulting spatiotemporal structu
is such that at an arbitrary point in space the periodicit
in time is twice that of the original oscillations. These

FIG. 4. (a) A family of dispersion relations for the Floquet
exponent showing the destabilization close to the slip thresho
of global oscillations against perturbations of a single wav
numberqc . 3. Shown are dispersion relations for (from the
lower to the upper curve)n ­ 20.90, 20.92, and20.94. (b)
Spatiotemporal plot ofcsx, td for n ­ 20.94 showing the
development of period-doubled structures resulting from thi
destabilization. Time elapsed is125. Other settings are as in
Fig. 3. The spatial periodicity is determined byqc.
529
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period-doubled structures are not well known in patte
formation, so their presence here is an interesting theor
ical prediction.

At slip rates right above the slip threshold, the fron
solutions cease to annihilate each other and evolve in
fronts that propagate right around the system [Fig. 3(b
One can get an analytical handle on these propagat
fronts by positing solutions of the typecsx, td ­ fsz̃d,
where z̃ ­ xyy 1 t, and y is the front velocity. This
ansatz with the further rescalingz ­ z̃y

p
1 2 c2yy2

leads to

d2f
dz2 1 ms f2 2 1d

df
dz

1 f ­ n , (4)

which is again the van der Pol equation, but with the no
linearity rescaled bym ­ gy

p
1 2 c2yy2. The propa-

gating fronts are then periodic solutions of the va
der Pol equation. The parameterm is undefined un-
til the value of the front velocityy is chosen. How-
ever, we know that the period of the solution is
function T ­ T smd of m: In the limit of large m, T
behaves asT ­ km 1 Osm21d, where k ­ 3 1 sn2 2

1d lnfs4 2 n2dys1 2 n2dg [14]. Since this period should
be commensurate with the system sizeS, we have the
conditionnT sssmsydddd ­ Sysy

p
1 2 c2yy2d, wheren is an

integer, to select the allowed front velocities, whic
in the largem limit gives us the quantizing condition
y ­ Sysnkgd. Because Eq. (4) has bounded solution
only if y2 . c2, the propagating fronts are supersonic
Such supersonic propagating fronts have also been no
in Burridge-Knopoff models with asymptotically velocity
weakening friction [16,17].

The original Burridge-Knopoff model was introduced
as a means to reproduce the gross features of the statis
of real earthquakes [3]. The Gutenberg-Richter powe
law distributions [18] in the statistics of slip events in
the model have been considered as an example of s
organized criticality [4], and have been related to th
presence of infinitely many degrees of freedom in th
system [19]. However, recent numerical experimen
[16,20] indicate that power-law distributions of slip event
may be due to discretization, finite size, and transie
effects, and are not present at long times in the continuu
limit. This has lead to a questioning of the relevanc
of the model to earthquakes in the real world. Ou
aim here, however, has been to investigate a Burridg
Knopoff model with a physically interesting friction law
relevant to laboratory friction experiments: Ours ar
simply laboratory earthquakes.

We have returned to the asymptotically velocit
strengthening type of friction law originally introduced
by Burridge and Knopoff, which was abandoned b
Carlson and Langer and later investigators, and wi
it have been successful in explaining some results
laboratory friction experiments. Our model constitute
a form of excitable medium, not previously considered
with elastic instead of diffusive coupling between spatia
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elements. We have studied the spatiotemporal dynamic
of elastic excitable media and find novel dynamics. We
believe that this type of elastic excitable medium may
have applications beyond laboratory friction experiment
to electronic transmission lines and active optical wave
guides.
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