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Burridge-Knopoff Models as Elastic Excitable Media
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We construct a model of an excitable medium with elastic rather than the usual diffusive coupling.
We explore the dynamics of elastic excitable media, which we find to be dominated by low dimensional
structures, including global oscillations, period-doubled pacemakers, and propagating fronts. We
suggest that examples of elastic excitable media are to be found in such diverse physical systems
as Burridge-Knopoff models of frictional sliding, electronic transmission lines, and active optical
waveguides. [S0031-9007(97)03610-7]

PACS numbers: 91.30.—f, 83.50.By, 84.40.Az, 87.22.As

The response to a perturbation is the defining character- The reintroduction of this friction law in the Burridge-
istic of an excitable element. Above a certain threshold irkKnopoff model is motivated by experiments showing that
amplitude, a perturbation will excite a quiescent elementt represents friction in a range of materials, including pa-
that then decays back to quiescence after a characteriger on paper [5], metal on metal [6], and rock on rock [7],
tic time insensitive to the magnitude of the perturbation,and by theoretical arguments [8]. The model well rep-
during which it is unresponsive to further perturbations.resents the qualitative characteristics of laboratory stick-
Excitable elements, when coupled to their neighbors intslip experiments with elastic gels [9]. Further interest
an assembly, become an excitable medium. Models dlerives from studies of peeling adhesive tape [10], of
excitable media with diffusive coupling, such as those ofSaffman-Taylor fracture in viscous fingering [11], and of
van der Pol, FitzHugh, and Nagumo [1] have successthe Portevin-Le Chatelier effect of discontinuous yielding
fully described pattern formation phenomena in biology[12], showing that stick-slip phenomena in those systems
and chemistry, and have also captured the attention adre induced by this same form of friction law.
many working in the area of nonlinear science because Burridge and Knopoff introduced a class of simple mod-
of their complex spatiotemporal dynamics [2]. On theels that describe the contact region between two tectonic
other hand, the properties of excitable media with elasplates as a chain of blocks of equal mass:, mutually
tic rather than diffusive coupling have not to date beercoupled by springs of Hooke constantand equilibrium
investigated. We present here some physical systems-engtha. The blocks are pulled by the bulk of one plate
frictional sliding, electronic transmission lines, and activemoving at velocityV through constant elastic sheky
optical waveguides—as diverse examples of such elasgainst the frictior’; between the two plates, as shown in
tic excitable media, and analyze their dynamics, whichFig. 1(a). In the stationary frame, the equation of motion
we find to be dominated by low dimensional structuresfor theith block is

including global oscillations, period-doubled pacemakers, mX; = k.(X;4+1 — 2X; + Xi_1)
and propagating fronts. We investigate the stability of the .
oscillations and estimate the velocity of the fronts. = kp(Xi = Vi) = Fp(Xi), 1)

While touching on electronic and optical applications ofwhereX; is the departure of block from its equilibrium
elastic excitable media, we shall concentrate on frictionaposition. Usually, following Carlson and Langer [4], the
sliding. The Burridge-Knopoff model [3] was origi- friction is taken to be asymptotically velocity weakening,
nally introduced as a representation of earthquake fault
dynamics. It describes the interaction of two tectonic k (@  k v B
plates in a geological fault as a chain of blocks elastically
coupled together and to one of the plates, and subject to
a friction force by the surface of the other plate, such
that they perform stick-slip motion. In this Letter, we
show that a Burridge-Knopoff model in which the usual
Carlson-Langer velocity weakening dry-friction law [4] FIG. 1. (a) The Burridge-Knopoff model. (b) The velocity
is replaced by the original Burridge-Knopoff lubricated weakening stick-slip friction law of Carlson and Langer

; . . . . F¢(v) = Fo sgr(v)/(1 + |vl), where v is the velocity of
creep-slip version showing viscous properties at bot he block] (solid line) and the Burridge-Knopoff type creep-

the low and high velocity limits, is an elastic excitable sjip friction law we use (dashed line), showing the threshold
medium. (vertical line) where the block starts to slip.
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so that the blocks perform stick-slip motion: Any individ-

(@) L A
ual block sticks to the surface until the pulling force ex- O T o
ceeds the static friction threshold. Once the block starts ® B © T T o1

slipping, the dynamic friction diminishes monotonically

with its velocity, as Fig. 1(b) illustrates. While this mul- ' ® ——o—'mm—nTo—/mm—uI--
tivalued form of the friction law is perfectly admissible in @ T m L CcIC

the discrete model of Eq. (1), it clearly poses a problem if
we attempt to take the continuum limit [13].
To overcome this difficulty, one may replace the staticF!G. 2. An electronic excitable medium. (a) An element of
friction discontinuity by a small region of high viscosity. (e medium: the circuit and (b) the-i characteristic ofn;;
. . . (c) resistive (diffusive) spatial coupling; (d) capacitive (elastic)
Physmally, one can see this cutoff as representing |,U.b”§patia| coupling—an active transmission line.
cation effects that produce stable creep at low velocities,
making our model creep-slip rather than stick-slip. Since
we wish to model the frictional characteristics displayedgeneratori, and drained through a nonlinear resistange
by a range of materials [5—7], we also have the frictionacross the membrane. This nonlinear element should have
become viscous (velocity strengthening) at high velocithe v-i characteristic¢ shown in Fig. 2(b), and could
ties, rather than decay to zero as in the Carlson-Langdse implemented by a tunnel diode, a neon lamp, or any
version. Our friction model [Fig. 1(b)], which is simi- electronic device with a range of negative resistance. The
lar to that originally introduced by Burridge and Knopoff, inductanceL models the finite switching time of the ion
thus comprises three regions: first, velocity strengtheningzhannels in the membrane. The circuit equations are then
then velocity weakening; and finally velocity strengthen-formally equivalent to Egs. (3) above, whepeandn are
ing again. We shall refer to this model asymptotically proportional to the current and potential difference across
velocity strengtheningto be contrasted with thasymp- the nonlinear device, respectively, and the currgnis
totically velocity weakenindriction usually considered. proportional tor. Such circuit elements have been used
With this in mind, the continuum limit of Eqg. (1) in di- in electronic experiments with Burridge-Knopoff models
mensionless variables (see, e.g., [13]) is [15]. In the models of excitable media of FitzHugh and
2.1 ) Nagumo, ¢ is generally taken to be as in Fig. 2(b): It

v = —(x —vt) — ) -
X—ex (f\/ vi) =y $) __ thus has exactly the same form as used in our Burridge-
x(x,1) represents the time-dependent local Iongltudmaknopoﬁr model [cf. Fig. 1(b)].

deformation of the surface of the upper plate in t_he static The spatial derivatives in Egs. (3) are unusual in the
reference frame of the lower plate; dots and primes argeaim of excitable media. In a biological excitable mem-
tgmpora_l a_nd spatial derivatives, respectively. In this conprane. the excitation propagates in space by diffusion.
tinuum limit, the number of block&/ becomes the system \yith the electrical model described above one can build
size S. ¢(x) is our normalized asymptotically velocity 3 spatially extended diffusive medium by coupling resis-
strengthening friction. There are three dimensionless pajyely several excitable elements, as indicated in Fig. 2(c).
rameters: y measures the magnitude of the frictian, such a coupling would give rise to current diffusion:
is the longitudinal speed of sound, amdrepresents the The term involvingy” would appear in Eq. (3a) instead
pulling \{elocity or slip rate. From Eq. (2), we obtain an of in Eq. (3b). As they are written, however, Egs. (3)
expression for the local velocity = y of the interface represent the network of capacitively coupled excitable
that, written as a couple of differential equations of firste|ements illustrated in Fig. 2(d). This is a discrete rep-
order in time, gives us our continuum Burridge-Knopoff resentation of an active transmission line, wherand C

model are the distributed inductance and capacitance,arid
v = v[n — ¢, (3a) the distributed gain achieved by a nonlinear negative re-
. ~1 2 sistance along the line. The distributed serial capacitance
n=-y W -v-cy). (8D) ¢, represents the effects of dispersion in the line. The

With the proper choice of the functiog (), and if  continuum limit of this network is a caricature of an active
we may disregard for a moment the positioning of theoptical waveguide such as a fiber amplifier or laser.
spatial derivatives term, Eqgs. (3) constitute a version [14] Further motivation for the study of Eqgs. (3) is provided
of the van der Pol-FitzHugh-Nagumo model that is theby laboratory experiments [9] in which an elastic gel
prototypical description of an excitable medium. was placed in a Taylor-Couette type apparatus. Stick-slip

While this type of medium was first studied in the events occurred at the contact surface of the gel with the
physiology of cardiac and nervous tissues, the sameotating inner cylinder. In a large part of the parame-
properties are also seen in chemical and physical systemer space, low dimensional structures—continuous slip,
An electrical caricature of an element of an excitableglobal oscillations, and propagating fronts—were found
biological membrane is given by the circuit shown inrather than complex spatiotemporal patterns that might
Fig. 2(a). The membrane represented by the capacitdrave been expected to dominate. With this experiment
C is charged by ion pumps characterized by the currenin mind we focus on periodic boundary conditions. Since
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we are interested in qualitative aspects of the dynamicssalues, the Floquet multipliergn,’, m), which may be

we concentrate on the case whepeis taken to be a ejther real, or complex conjugates, determine the stability
cubic polynomial. By shifting the origin of the variables of global oscillations under perturbations of wave number
¢ and n and the parameter we can reducep to the 4 The growth rate per period of such a perturbation is

form ¢(y) = ¢*/3 — ¢. This makes our model a set y,o mayimal Floquet exponent, = max{R[in(m)J}.
of elastically coupled van der Pol oscillators. For thistpq dispersion relation, as a function ofg relatively
election. of¢, the slip thresho_ld, defined as_the CrOSSOVek,r ahove the slip thres?hold is never positive, implying
as we increaser from velocity strengthening creep 10 gapility under perturbations of all scales. This contrasts
velocity weakening slip, lies at = —1. with the same calculations performed for asymptotically
The continuous slip solution, where one surface MOVESe|ocity weakening friction, when there is always a range
uniformly with respect to the other, was examined by |ong wavelengths for which perturbations grow expo-
Carlson and Langer [13]. They showed that the growthyanially, so that global oscillations are always unstable
rate of perturbations of any wavelength at a particular sligynen this wavelength is within the system size. This is
rate is minus the slope of the friction function at that slip 4 significant difference between our model and Burridge-
rate. This implies that with asymptotically velocity weak- Knopoff models with asymptotically velocity weakening

ening friction the continuous slip solution is always un-giction. Such global oscillations have been noted in labo-
stable, while in our case this solution is stable for h'ghratory friction experiments with elastic gels [9].

a_nd l.OW slip rates where the slope is posi'tivg. qubal' OS- For slip rates not far above the slip threshold, global
cillations, where one surface moves periodically in timeqgjjations become unstable. The dispersion relation in
with respect to the other, are also stable at some slip ratg§g 4(a) shows that the destabilization occurs at a single
in our model. Figure 3(a) shows the spatiotemporal patjinite wave numbeg,. Furthermore, the Floguet multi-

tern generated from an arbitrary initial condition with the . m,, associated with the maximal Floquet exponent

system relatively far above the slip threshold. Here a"'zmsses the complex unit circle throughl at this point,
points of space oscillate in phase with an instantaneous,jicating a period-doubling bifurcation. Figure 4(b) is
velocity that follows the dynamics of the van der Pol 0S-5 gpatigtemporal plot showing the nature of the struc-
cillator. To confirm the stability of these oscillations, we ;e arising near this instability. Small perturbations from

have calculateq their Floquet mu_ItipIiers. G!obal o_scil_la—the global uniformly oscillating regime grow to become
tions are solutions of Egs. (3) with the spatial derivativeg,ctures with a well-defined wave numbgr For sys-

set to zero, which correspond to the peribdimit cycle  om gize s, such structures evolve into a configuration

of the van der Pol oscillatoW”(s + T) = W*(r), where  of 4 §/27 synchronized pacemakers emitting fronts in
V(1) = (*(t), »* (1)), which is stable against spatially both directions. These fronts annihilate each other at
homogeneous perturbations ferl < » < 1 (i.e., above the corresponding.S/27 points, that then in turn be-
the slip threshold). We consider small spatial perturcome pacemakers. The resulting spatiotemporal structure
bations of the formW*(r) + &(¢) expligx). Dropping is such that at an arbitrary point in space the periodicity
quadratic and higher powers () in Egs. (3), the in time is twice that of the original oscillations. These
resulting linear equations foE(z) have time-periodic
coefficients, and by the Floguet theorem their general so-
lution is &(r) = &oP(r) exp(A,t), whereP(z) is a period- 1
T matrix andA, a time-independent matrix. Once the A, o
limit cycle has been numerically determined, the matrix
exp(A,T) may be computed by numerically integrating

the linearized equations over the peribd Its two eigen- —RE

-6 ) ) I
(b)\ FIG. 4. (a) A family of dispersion relations for the Floquet
k “§ exponent showing the destabilization close to the slip threshold

of global oscillations against perturbations of a single wave
FIG. 3. Spatiotemporal plots @f(x, ) where time is vertical, numberg. = 3. Shown are dispersion relations for (from the
space is horizontal. (a) A plot of the solution with stable uni- lower to the upper curvey = —0.90, —0.92, and —0.94. (b)
form global oscillations forr = —0.92; (b) stable propagating Spatiotemporal plot ofys(x,t) for » = —0.94 showing the
fronts aty = —0.96. In both cases, the other parameter valuesdevelopment of period-doubled structures resulting from this
arey = 2 andc = 0.3. The system siz§ = 20, and the time  destabilization. Time elapsed i25. Other settings are as in
elapsed0. Fig. 3. The spatial periodicity is determined by.
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period-doubled structures are not well known in patterrelements. We have studied the spatiotemporal dynamics
formation, so their presence here is an interesting theoretf elastic excitable media and find novel dynamics. We
ical prediction. believe that this type of elastic excitable medium may
At slip rates right above the slip threshold, the fronthave applications beyond laboratory friction experiments

solutions cease to annihilate each other and evolve intto electronic transmission lines and active optical wave-
fronts that propagate right around the system [Fig. 3(b)]guides.
One can get an analytical handle on these propagating We should like to thank Miguel Angel Rubio and
fronts by positing solutions of the typ#(x,7) = (), Ed Spiegel for useful discussions. We acknowledge the
where? = x/v + ¢, and v is the front velocity. This financial support of the Spanish Direccién General de
ansatz with the further rescaling = 7/4/1 — ¢2/v?  Investigacion Cienfica y Técnica, Contracts No. PB94-
leads to 1167 and No. PB94-1172.
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