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Analysis and Characterization of the Hyperchaos
Generated by a Semiconductor Laser Subject
to a Delayed Feedback Loop

Radl Vicente, José Daudén, Pere Colet, and Raul Toral

Abstract—We characterize the chaotic dynamics of semicon-
ductor lasers subject to either optical or electrooptical feedback
modeled by Lang—Kobayashi and Ikeda equations, respectively.
This characterization is relevant for secure optical communica-
tions based on chaos encryption. In particular, for each system we
compute as a function of tunable parameters the Lyapunov spec-
trum, Kaplan-Yorke dimension and Kolmogorov-Sinai entropy.

Index Terms—Chaotic communications, chaotic lasers, delay,
feedback.

I. INTRODUCTION

N THE LAST decade, optical chaos encryption [1], [2] has

arisen as a promising technique to improve and complement
software or quantum cryptography. In this field, the masking of
the message to be encoded is performed at the physical layer by
the “mixing” of the signal with a chaotic carrier generated by
some nonlinear optical element. The recovery of the message
is based on the synchronization phenomenon [3], [4] by which
a receiver, quite similar to the transmitter, is able to reproduce
the chaotic part of the transmitted signal. After synchronization
occurs, the decoding of the message is straightforward by com-
paring the input and output at the receiver.

A crucial issue in all encryption techniques is their security
and how this is related to controllable parameters. The security
of data encryption using the before-mentioned chaos methods
relies upon two important points: the unpredictability of the
carrier signal, and the sensitivity exhibited by the dynamics of
chaotic systems under parameter mismatch. Due to the second
point, only a system very similar to the chaotic transmitter can
be used to decode the message in an efficient way [5]-[7]. From
a practical point of view an exhaustive study of the first point
is required to guarantee the security of the tranmission, since
it is known that low-dimensional chaos would make easy the
interception of the message [8]. This work addresses specifi-
cally this issue. Here we analyze the statistical properties of the
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chaotic signal and their dependence on tunable system param-
eters and type of feedback used to generate it. In particular, we
compute the Lyapunov exponents ()\;), the Kaplan—Yorke di-
mension (dkvy ), and the Kolmogorov—Sinai entropy (hks) from
appropriate models to describe the dynamics of semiconductor
lasers with optical or electrooptical feedback.

For the computation of the Lyapunov exponents (which ba-
sically measure the rate at which two originally nearby trajec-
tories diverge in time) we have applied the ideas of Farmer
[9] to our cases, integrating the corresponding delay differen-
tial equations with an Adams—Bashforth—-Moulton fourth-order
predictor-corrector method. A delay differential equation is an
infinite-dimensional system, and it should present an infinite
number of Lyapunov exponents, from which only a finite por-
tion of them can be determined by numerical analysis. Fortu-
nately, the quantities we are interested in are fully characterized
by the largest Lyapunov exponents and those are precisely the
ones we compute here.

From the Lyapunov spectrum, it can be characterized both the
geometrical and dynamical aspects of a strange attractor [10].
The first can be accomplished by computing the Kaplan—Yorke
dimension which is an estimate for the information dimension.
This is a measure of the degree of disorder of the points on
the attractor or, more precisely, specifies how the amount of in-
formation needed to locate the system in the phase space with
an accuracy e scales with that resolution. However, the com-
putational effort to compute the information dimension from
the very definition or using the correlation integral technique
is still nowadays non attainable for very high-dimensional sys-
tems [10]. For this reason we use the Kaplan—Yorke conjecture
that stands for the equality of the information dimension and the
following quantity known as the Kaplan—Yorke dimension

J
> A
. =1
diy =7+ 1% )]
| Ajal
where the integer j, which represents the number of degrees of
freedom, meets the conditions > 7_; A; > 0 and Ef;l A <
0, where the Lyapunov exponents have been ordered such that
Ai 2> Xig1.

On the other hand, the degree of chaos of a system can be
measured from a generalization of the concept of entropy for
state space dynamics. The Kolmogorov—Sinai entropy measures
the average loss of information rate, or equivalently is inversely
proportional to the time interval over which the future evolu-
tion can be predicted. Its range of values goes from zero for
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regular dynamics, it is positive for chaotic systems and infi-
nite for a perfectly stochastic process. The important point here
is that the larger the entropy, the larger the unpredictability of
the system, which is a highly desired property to ensure secu-
rity in a chaos encryption scheme. The computation of the Kol-
mogorov—Sinai entropy is again performed from the Lyapunov
exponents through the so-called Pesin identity [11], [10], which
states that

>N 2)

i.e., the Kolmogorov—Sinai entropy is equal to the sum of all
the positive Lyapunov exponents. To be precise, the sum of
the positive Lyapunov exponents is an upper bound to the
Kolmogorov—Sinai entropy but (2) seems to hold in very gen-
eral situations and it is usually the only way to obtain a good
estimation of hks.

This work is organized as follows. Sections II and III are
devoted to the characterization of high-dimensional chaos in
single-mode laser diodes with electrooptical and all-optical
feedback, respectively. Some concluding remarks and future
work are given in Section IV.

II. HIGH-DIMENSIONAL CHAOS IN SEMICONDUCTOR LLASERS
WITH ELECTROOPTICAL FEEDBACK

The system considered in this section consists of an electri-
cally tunable DBR multielectrode laser diode with a feedback
loop formed by a delay line and an optical device, whose pe-
culiarity is to exhibit a nonlinearity in wavelength. This system
was proposed by Goedgebuer and coworkers as the generator of
the chaotic signal for an appropriate chaos encryption scheme
[12]. The wavelength of the chaotic carrier is described by the
following dynamical equation:

dA(t)

T——2 = _\(t) + By sin? <Q)\

where ) is the wavelength deviation from the center wavelength
Ao, D is the optical path difference of the birefringent plate that
constitutes the nonlinearity, @ is the feedback phase, 1" is the
delay time, 7 is the time response in the feedback loop, and 3y is
the feedback strength. Since the only nonlinearity in the model
comes through the feedback term, the role of the parameter [
is twofold: it determines the strength of the feedback as well as
the strength of the nonlinearity. Equation (3) is in fact an Ikeda
equation and once normalized it takes the form

dx(t)
dt

= —xz(t) + fsin® (x(t — T) — D) 4)
where the time has been scaled with 7, z = 7wDM/AZ, and
B = wDpx/A3. In this dimensionless form, the model has
clearly only three independent parameters, 3, 1, and ®q, which
influence on the dynamics of the system is studied below. It is
also worth noting that (4) follows a period doubling route to
chaos when increasing the parameter 3 [13], [14]. A typical
chaotic waveform generated by simulating (4) is presented in
Fig. 1.
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Fig. 1. Temporal trace of the normalized wavelength deviation in the
electrooptical scheme described by (4). The feedback strength and delay are
setto 3 = 5 and T' = 5, respectively.
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Fig. 2. The 30 largest Lyapunov exponents as a function of the feedback
strength. (a) T = 5. (b) T = 10.(c) T = 20.(d) T = 50.(e) T = 100.
H T = 250.

A. Lyapunov Exponents

We first analyze the Lyapunov exponents of the model de-
scribed by (4) as a function of the feedback strength and the
delay time. Fig. 2 shows the 30 largest Lyapunov exponents as
a function of 3 for delay times 7' = 5, 10, 20, 50, 100, and 250.
For the first three values of the delay time, we have explored
feedback strengths up to § = 30 while for the last three only up
to 3 = 6. This is due to the fact that long delay times require a
huge computational time to perform all the calculations needed
to obtain the corresponding Lyapunov spectrum. In all cases the
feedback phase have been fixed to @y = 7 /4.

As it can be observed from the figure, the system has at
least one positive Lyapunov exponent and, therefore, displays
chaotic behavior, for # > 2.1. This threshold value, which
corresponds to the accumulation point in the period doubling
cascade [14], [13], is practically the same for all time delays
but it depends on the feedback phase as we will show below.
For small values of the feedback strength 3 < 3, the values of
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Fig. 3. (a) Scaling of the largest Lyapunov exponent with the delay time for
T = 5 (dashed), T' = 10 (dotted), and T" = 20 (solid). (b) The same is plotted
for the second largest Lyapunov exponent.

the Lyapunov exponents are strongly dependent on 3, changing
with it in an irregular way. This behavior becomes smoother as
(3 is increased until to grow in a linear way in the large feedback
limit. Comparing the panels corresponding to different delay
times, it is clear that for a given value of the feedback strength
[, the number of positive Lyapunov exponents increases with
the delay. This growth is also linear with 7" as it happens for the
Mackey—Glass equation described by Farmer [9]. For example,
for 8 = 20 one finds 20 positive Lyapunov exponents if 7" is
fixed to 5, while for the same situation with 7" = 20 one finds
78 of them. However, we notice that the value of the positive
Lyapunov exponents decreases as the delay is increased. For
instance, for § = 20 and 7" = 5 the largest Lyapunov exponent
has a value A\; = 0.2078, while for 7" = 20 it amounts to
A1 = 0.0566, which is about four times smaller. Therefore,
although increasing the delay time produces a linear increment
in the number of positive Lyapunov exponents, their value also
decrease linearly. This fact will have important consequences
on the Kolmogorov—Sinai entropy behavior as a function of the
delay in our feedback loop.

The Lyapunov spectra plotted in Fig. 2 for different delay
times display some degree of self-similarity. In fact, it is possible
to rescale the axis corresponding to the Lyapunov exponents by
multiplying their value by the delay time, in such a way that the
different panels in Fig. 2 nearly overlap. Fig. 3 shows the first
and second Lyapunov exponents as a function of the feedback
strength for different delay times scaled in this form. The scaling
is quite good even for short delay times (1" = 5) and improves
as the delay time is increased. Therefore, we can conclude that
asymptotically (large T" and (3) the Lyapunov exponents scale
as A\ o< B/T.

We now address the role of the feedback phase ®( on the
chaotic behavior of the laser system. We consider a fixed delay
time T' = 20, and plot in Fig. 4 the largest Lyapunov exponents
as a function of the nonlinearity strength [ for feedback phases
by =0,7/6,7/3,7/2,27/3, and 57 /6. Note that we only ex-
plore this range of values because of the invariance of (4) under
the transformation ®g — &g + .

For small values of 3, all the Lyapunov exponents are neg-
ative indicating that the system evolves toward a stable fixed
point. Depending on the precise value of the feedback phase the
fixed point becomes unstable at different values of 3. In the case
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Fig. 4. Lyapunov spectra as a function of the feedback strength for different
feedback phases. (a) o = 0. (b) o = 7/6. (c) Py = 7/3.(d) Dy = 7/2.
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of T' = 20, for ®; = 0 the fixed point is stable up to a feed-
back strength § ~ 2, while for &y = /3 or /2 we have nu-
merically checked it becomes unstable to a limit cycle through
a Hopf bifurcation for  just above 1. The positiveness of at
least one Lyapunov exponent, which signals the transition to
chaos, is also clearly a phase sensitive phenomenom. Depending
on the value of the phase some periodic windows may appear
within the chaotic regions, which are indicated by the largest
Lyapunov exponent becoming zero again. These periodic win-
dows are quite narrow and are located at specific values of 3. As
the feedback strength is increased the influence of the feedback
phase becomes less important and for § > 5 the value of the
Lyapunov exponents are practically independent of ®.

B. Information Dimension

In the following, we focus on the dimension of the chaotic at-
tractors computed through the Kaplan—Yorke conjecture stated
in the Introduction section. Fig. 5(a) shows dky scaled with the
delay time as a function of the feedback strength for 7' = 5, 10,
20, 50, 100, and 250.

As itis shown in the figure, for large values of the 3 parameter
the dimension grows linearly with the feedback intensity. It also
grows linearly with the feedback delay time, in accordance to
what was observed in the Mackey—Glass model. Therefore, for
values of [ large enough, the Kaplan—Yorke dimension must
follow an equation of the form

dxy = CTp3 (&)

where C is a constant. Dimensions as large as 250 are achieved
for # = 30 and T = 20, or for a weaker feedback strength with
a longer delay, such as 3 = 4 and 7' = 250.
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Fig. 5. (a) Kaplan—-Yorke dimension as a function of the feedback

strength for T = 5, 10, 20, 50, 100, and 250 scaled with the delay time.
(b) Kolmogorov—Sinai entropy as a function of the feedback strength for 7= 5,
10, 20, 50, 100, and 250. In both panels, the curves corresponding to different
delay times overlap indicating the almost perfect scaling of the dimension and
the saturation of the entropy.

C. Kolmogorov-Sinai Entropy

In this section we study the Kolmogorov-Sinai entropy hgs,
which measures the degree of unpredictability of the system, by
using the Pesin identity (2) [11]. Fig. 5(b) shows hksg as a func-
tion of the feedback strength for six different delay times. In
that figure all the curves (each one corresponding to a different
delay time) overlap, which indicates that the entropy saturates
with the delay time in the feedback loop. This effect is already
achieved for a delay time as short as 7" = 5. The reason for this
behavior is that the growth of the number of positive Lyapunov
exponents when the delay time is increased is compensated by
the fact that their magnitude decreases in an inverse way, re-
sulting in a basically constant value for hkgs. Fig. 5(b) also indi-
cates that the Kolmogorov—Sinai entropy grows with the feed-
back strength and that for large values of the 3 parameter the
entropy obeys the relation

his = C'f (6)

where C’ is a constant independent of T'.

To summarize, in this section we have investigated the depen-
dence of some chaotic indicators with several operating parame-
ters for an electrooptical feedback laser system. We have found
a linear growth of the Kaplan—Yorke dimension with both the
delay and strength of the feedback loop. The entropy, however,
has only shown a linear growth with the feedback or nonlinearity
strength but it turned to be independent of the value of the delay
time. In the next section we perform similar computations for
the case of a coherent optical feedback scheme, which has also
been widely used as a chaos generator setup.

III. HIGH DIMENSIONAL CHAOS IN SEMICONDUCTOR LASERS
WITH COHERENT OPTICAL FEEDBACK

A prototypical model to describe single-mode semiconductor
lasers subject to coherent optical feedback is the one described
by the Lang—Kobayashi equations [15] for the complex slowly
varying amplitude of the electric field E(¢) and carrier number
inside the cavity N (¢)

E(t) = (+ie) [G - L] E+kE(t—71)e” ™ (7)
2 Tph

: I N

N(t) == - — - GIE] (8)
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Fig. 6. Temporal evolution of the intracavity photon number for the
Lang—Kobayashi model at the coherence collapse regime. I = 1.5,
k=20ns"',and 7 = 1 ns.

where G = g(N — N,)/ (1 + s|E|?) is the optical gain, 2 is
the frequency of the free-running laser, « is the feedback coeffi-
cient, and 7 is the external cavity roundtrip. We consider the fol-
lowing values for the internal parameters: a = 5 is the linewidth
enhancement factor, g = 1.5 x 1078 ps~! is the differential
gain parameter, s = 5 x 1077 is the gain saturation coefficient,
Tph = 2 ps is the photon lifetime, 7, = 2 ns is the carrier life-
time, and Ny = 1.5 x 10% is the carrier number at transparency.
Unless an explicit statement is specified, the pump current is
fixed to I = 1.5y, where the laser is operating in the chaotic
coherent collapse regime when moderate feedback values are
considered. The relaxation oscillation frequency (ROF) at these
conditions amounts to 4.1 GHz. Another important character-
istic resonance of the system is the one defined by the external
cavity frequency (ECF), which is determined by the external
round-trip time as 1/7.

The Lang—Kobayashi model only includes the feedback
effect after one roundtrip in the external cavity and, therefore,
it may not be valid in regimes of strong optical feedback where
multiple reflections in the external cavity should be accounted
for. In this section we consider feedback coefficients up to
30 ns~1, corresponding to reflectivities of the external mirror
less than 3%. Such low feedback levels are fully consistent and
justify the Lang—Kobayashi approach used here. Some studies
of the Lyapunov exponents for this system in the low frequency
fluctuations regime have been reported [16], [17]. Here, we
focus in the coherence collapse regime. A typical temporal
trace obtained by direct simulation of (7)—(8) at the coherence
collapse regime is presented in Fig. 6. We also should notice
that at difference with the model given by (3), in (7)—(8) the
feedback term is linear while the nonlinearities come from the
laser itself.

In the following subsections we analyze the dependence of
the chaos characteristics on the feedback parameters, namely,
the feedback strength «, delay time 7, and feedback phase ® =
Q7 mod(2). The feedback phase can cover the range from 0
to 27 by changing the round-trip cavity length within one op-
tical wavelength, which practically implies a negligible change
in 7. Therefore, in practice the feedback phase and the cavity
length can be separately adjusted and be considered indepen-
dent parameters. The nonlinear gain or gain saturation param-
eter is known to strongly modify the spectral and dynamic char-
acteristics in semiconductor lasers [18], [19]. In this work, we
also show that its inclusion in the model has a significant im-
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pact on the results for the Lyapunov exponents and other chaotic
indicators.

A. Lyapunov Exponents

We first analyze the value of the Lyapunov exponents as a
function of the feedback strength and delay time. In Fig. 7 they
are represented the Lyapunov spectra as a function of k for 7 =
100, 200, 300, and 1000 ps, corresponding to external cavity
lengths of 1.5, 3, 4.5, and 15 cm, respectively. It is worth noting
that with these values of delay times we are exploring both the
short and long external cavity regimes determined by the con-
ditions ECF > ROF and ECF < ROF, respectively [20].
Note also that in all cases there is one Lyapunov exponent with
zero value associated to the continuous symmetry of the system
(7)—(8) under a shift of the optical phase.

For very short external cavities (7 = 100 ps) the behavior of
the Lyapunov exponents as a function of the feedback strength
is quite irregular and at most only one positive exponent is ob-
tained. In this regime there is also a strong dependence on the
phase of the feedback term as we will show later in this sub-
section. For longer cavities the behavior becomes more regular
and more positive Lyapunov exponents arise. However, there is
a significant difference with respect to the electrooptical feed-
back case described in Section II. As the feedback strength is in-
creased the value of the largest Lyapunov exponent goes through
a maximum (at around & ~ 20 ns~!) and then it begins to de-
crease slowly. Therefore, in the case considered here, increasing
the feedback strength beyond a certain limit does not imply
larger values for the Lyapunov exponents. This will have signif-
icant consequences in the Kolmogorov—Sinai entropy as it will
be discussed later.

In Fig. 8 we plot the dependence of the Lyapunov exponents
when increasing the delay time for a fixed feedback strength
(k = 10 ns™!). Now, the number of positive Lyapunov expo-
nents increases with the delay although the magnitude of the
new positive exponents decreases with it, similarly to what was
found in the case of electrooptical feedback. Also, as in the pre-
vious case, for the long external cavity regime the number of
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Fig. 9. The largest Lyapunov exponents as a function of the feedback phase
for different delay times (a) 7 = 100 ps. (b) 7 = 200 ps. (¢c) 7 = 300 ps.
(d) 7 = 1000 ps. The feedback rate is set to x = 10 ns~*.

positive Lyapunov exponents and their magnitude depend al-
most linearly with the external round-trip time.

‘We now address the role of the phase of the delay loop on the
properties of the chaotic attractors of the system. To this end,
we plot in Fig. 9 the 20 largest Lyapunov exponents as a func-
tion of the feedback phase for delay times 7 = 100, 200, 300,
and 1000 ps. We observe how, in the short cavity regime, there
is a strong dependence of the largest Lyapunov exponents on
the precise feedback phase value, while for larger delay times
we notice that the value of the Lyapunov exponents is practi-
cally independent of the phase. Even from the inspection of the
Lyapunov spectra for these short delays, it can be observed how
a transition between steady, periodic or chaotic dynamics can
be induced just by changing the value of the feedback phase.
Similarly to what we obtained for the Ikeda equation, for longer
external cavities there is practically no dependence on the phase.

The gain saturation coefficient is an important parameter
in semiconductor laser dynamics, which summarizes a set of
physical effects that eventually bound the material gain as the
number of intracavity photons is increased. At this point we
could also ask ourselves about the role of the gain saturation
on the chaotic indicators we are investigating. In fact, in the
low frequency fluctuations regime it was noticed that many
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Fig. 10. The 50 largest Lyapunov exponents as a function of the injection
current for (a) s = 5 x 1077 and (b) without the saturation effect s = 0.
The external round-trip time is 7 = 1000 ps.

positive Lyapunov exponents appear when the gain saturation
is neglected [17]. In order to explore its effect, we evaluate
the magnitude of the Lyapunov exponents as a function of
the injection current for two different values of the saturation
coefficient. The results are collected in Fig. 10. For the case
in which the gain saturation is included (panel a)), we ob-
serve how, for the parameters that we have chosen, the value
of the largest Lyapunov exponent goes through a maximum
for an injection current around ~ 1.5I;, and then begins
to monotonically decrease. The second Lyapunov exponent
also goes through a maximum but this is located at a slightly
larger current. Successive positive Lyapunov exponents also
experience a maximum of its magnitude, although these be-
come more and more flattened and happen to occur for larger
values of the pump. However, in panel b), where saturation is
not taken into account, the largest Lyapunov exponent is still
growing with the pump current at the maximum injection that
we have considered here (Jnax = 3Iin). Consequently, the
first conclusion we can arrive is that although gain saturation
is a commonly neglected parameter due to its smallness, it is
of fundamental importance in obtaining accurate results not
only for the amount of power that a laser is able to emit, but
for the chaos degree indicators such as Lyapunov exponents,
information dimensions and entropies. Secondly, based on the
Lyapunov spectra we can advance that there exists an optimal
pump current value for which the degree of chaos of the system
is maximum as it will be discussed below.

B. Information Dimension

In the same way as we did for the electrooptical feedback
case, we can now estimate the geometric dimension of the
attractors by using together the Lyapunov spectra computa-
tions, which we have already collected, and the Kaplan—Yorke
conjecture. Fig. 11(a) summarizes the effect of the feedback
strength on the Kaplan—Yorke dimension for several external
cavity lengths. Except for the very short cavity, where the dkv
shows an irregular behavior, we can observe how the dimension
grows almost linearly with the feedback strength as soon as
this reaches large values (£ > 10 ns™1). It can be also noticed
the linear scaling of the dimension with the delay time, in
accordance to what it was obtained for the electrooptical and
Mackey-Glass models [9].

The dependence of the dimension on the pump current is
shown in Fig. 11(b) for two different values of the gain satu-
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Fig. 11. (a) Kaplan—Yorke dimension as a function of the feedback strength
for 7 = 100 ps (solid), 7 = 200 ps (crosses), 7 = 300 ps (asterisks), and
7 = 1000 ps (diamonds). (b) Kaplan—Yorke dimension as a function of the
pump current for s = 5 X 10~7 (crosses), and without the saturation effect s =
0 (asterisks). The external round-trip time is 7 = 1000 ps. (c) Kaplan—Yorke
dimension as a function of the delay. The feedback strength is fixed to 10 ns .
In all panels the feedback phase is zero.

ration. The line with crosses, where saturation is taken into ac-
count, indicates that the dimension of the attractor experiences
an increase of its magnitude with the pump until the injection
current is around ~ 2.2[yy,, value at which it begins to continu-
ously decrease. In the case without saturation (in asterisks) the
dimension grows with the pump for all the range of values that
we explored, although it is also expected to decrease for larger
pump currents. The origin of the difference between the points
at which the Kaplan—Yorke dimension and the largest Lyapunov
exponent reach their respective maxima, is related to the fact that
as contrary as happens with the Kolmogorov—Sinai entropy, the
main contribution to the Kaplan—Yorke dimension comes from
the number of positive Lyapunov exponents and not from its
magnitude.

Finally, the linear growth of the information dimension with
the delay time is clearly demonstrated in Fig. 11(c) for 7 >
150 ps.

C. Kolmogorov-Sinai Entropy

The dependence of the entropy with the strength and longi-
tude of the feedback loop is represented in Fig. 12. The graphic
of Fig. 12 (a) demonstrates that the exact value of the feed-
back delay time hardly influences the entropy measure, when-
ever moderate or large delay values are considered. Only in the
case of very short external cavities, the Kolmogorov—Sinai en-
tropy is strongly dependent on the specific delay time. This ef-
fect is clear in the inset of the panel a) of Fig. 12, where the ex-
plicit dependence of hks on the delay time is shown for a fixed
value of the feedback rate (v = 10 ns~1). So, as it happens in
the case of electrooptical feedback, an increase of the delay in-
duces an increase of the information dimension because we have
more positive Lyapunov exponents. However, as their value be-
come smaller the Kolmogorov—Sinai entropy remains basically
constant for delays long enough. There is, however, an impor-
tant difference with respect to the electrooptical feedback case,
namely, that now the entropy does not increase linearly with the
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Fig. 12. (a) Kolmogorov—Sinai entropy as a function of the feedback strength

for delay times 7 = 100 ps (solid), 7 = 200 ps (crosses), 7 = 300 ps
(asterisks), and 7 = 1000 ps (diamonds). The inset of panel a) shows the
Kolmogorov—Sinai entropy as a function of the delay time for a fixed feedback
x = 10 ns~ 1. (b) Kolmogorov—Sinai entropy as a function of the pump current
for s = 5 x 10~7 (crosses) and without the saturation effect s = 0 (asterisks).
The external round-trip time is 7 = 1000 ps.

strength of the feedback, but it rather reaches a maximum and
then it decreases.

When the entropy is studied varying the pump current, clearly
there is a maximum for the entropy that is reached at I =
1.51;y, as it is observed in the curve indicated by crosses in the
Fig. 12(b). That would be the optimal point of operation from
the point of view of obtaining the most complex dynamics. Cer-
tainly, the dimension, as discussed in the previous subsection,
is larger at I = 2.21I}, since the number of positive Lyapunov
exponents, which represent the main contribution to the dimen-
sion, is maximum at that point. However, the entropy, which
is dominated by the magnitude of the largest Lyapunov expo-
nents, reaches its maximum at I = 1.5[,, very close to the
point where A; goes through a maximum. If saturation is not
included one typically finds a dependence like the exhibited by
the curve with asterisks. Consequently, for s # 0 it seems that
generally there exists an optimal value of the pump current for
which the chaos is wildest, or in other words, the rate of infor-
mation loss is maximum.

Therefore, the conclusion at this point is that for s # 0 is not
an easy task to increase the value of the entropy in the case con-
sidered in this section (optical coherent feedback). For a given
pump value, increasing the feedback level beyond an optimal
value leads to a decreasing of the entropy. For a given feed-
back strength, increasing the pump beyond an optimal value,
also leads to a decreasing value for the entropy. A possibility
is to simultaneous increase the pump and the feedback level.
However, from a practical point of view the pump level can not
be increased beyond certain limit without damaging the semi-
conductor laser, what basically leads to a fundamental limita-
tion of the level of unpredictability that can be attained with this
system.

IV. CONCLUSION

Since both of the setups we are dealing with are delayed
systems, typically the number of positive Lyapunov exponents
grows linearly with the delay time in the feedback loop [9],
[21]. This seems to be a general characteristic of delayed sys-
tems. The Kaplan—Yorke dimension also increases linearly with
the delay time. Therefore, very large dimensionalities can be
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achieved. However, the Lyapunov exponents that become posi-
tive as the delay time is increased have a very small magnitude.
This, together with the fact that the largest positive Lyapunov
exponent decreases as the delay time increases yields saturation
in the Kolmogorov—Sinai entropy. This is also what occurs in
delayed maps, where the number of periodic orbits and, there-
fore, the topological entropy are bounded when the delay time
is increased [22]. Therefore, although the system has a larger
dimensionality when increasing the delay, its behavior does not
become more unpredictable. Consequently, for the purpose of
using this chaotic output as a carrier for encoding a message,
these results suggest that increasing the delay time beyond the
value at which the entropy saturates will neither yield a better
masking nor improve the security.

In the electrooptical case, the feedback is nonlinear while
the laser operates in the linear regime. The number of positive
Lyapunov exponents as well as their value increases with the
feedback strength in a linear way. Therefore, the Kaplan—Yorke
dimension and the Kolmogorov—Sinai entropy grow also lin-
early with the feedback strength. A clear way to achieve a better
masking and more secure encoding is to increase the nonlinear
feedback strength.

In the all optical case, the feedback is linear and nonlinearities
come from the laser itself. Keeping a constant pump value and
increasing the feedback level, the number of positive Lyapunov
exponents and their value increase up to a certain value of the
feedback strength. Beyond this value, the largest Lyapunov ex-
ponent starts to decrease. For a slightly larger value, the second
largest Lyapunov exponent also start to decrease, and so on. As
a consequence, the Kolmogorov—Sinai entropy reaches a max-
imum and then decreases for larger feedback values. So, for
a given pump value, there is an optimal feedback strength for
masking. Keeping the feedback strength fixed and increasing the
pump current, the Kolmogorov—Sinai entropy also goes through
a maximum at an optimal pump rate. These results suggest that
for the use of this scheme as a chaotic waveform generator for
secure communication applications, there is an optimal point of
operation that yields to the most unpredictable chaos that this
system is able to show.

As a future direction, we think that a detailed comparison
between the complexity of a system subject to feedback and
the complexity of a system coupled to similar units is a very
interesting point.

REFERENCES

[1] P.ColetandR. Roy, “Digital communications with synchronized chaotic
lasers,” Opt. Lett., vol. 19, pp. 2056-2058, 1994.

[2] C.R. Mirasso, P. Colet, and P. Garcia-Fernandez, “Synchronization of
chaotic semicondcutor lasers: Application to encoded communications,”
IEEE Photon. Technol. Lett., vol. 8, no. 2, pp. 299-301, Feb. 1996.

[3] L. M. Pecora and T. L. Carroll, “Synchronization in chaotic systems,”
Phys. Rev. Lett., vol. 64, pp. 821-824, 1990.

[4] A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Uni-
versal Concept Nonlinear Science. Cambridge, U.K.: Cambridge Uni-
versity Press, 2002.

[S] A. Locquet, C. Masoller, and C. Mirasso, “Synchronization regimes
of optical-feedback-induced chaos in unidirectionally coupled semicon-
ductor lasers,” Phys. Rev. E, vol. 65, p. 56205, 2002.

[6] J.Ohtsubo, “Chaos synchronization and chaotic signal masking in semi-
conductor lasers with optical feedback,” IEEE J. Quantum Electron., vol.
38, no. 9, pp. 1141-1154, Sep. 2002.



548

[7]

[8]
[9]
[10]
[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

R. Vicente, T. Perez, and C. R. Mirasso, “Open- versus losed-loop per-
formance of synchronized external cavity semiconductor lasers,” IEEE
J. Quantum Electron., vol. 37, no. 9, pp. 1197-2004, Sep. 2002.

K. M. Short and A. T. Parker, “Unmasking a hyperchaotic communica-
tion scheme,” Phys. Rev. E, vol. 58, pp. 1159-1162, 1998.

J. D. Farmer, “Chaotic attractors of an infinite-dimensional system,”
Physica D, vol. 4, pp. 366-393, 1982.

H. Kantz and T. Schreiber, Nonlinear Time Series Analysis.
bridge, U.K.: Cambridge University Press, 2000.

J. Pesin, “Characteristic Lyapunov exponents and smooth ergodic
theory,” Russ. Math Surveys, vol. 32, p. 55, 1977.

J. P. Goedgebuer, L. Larger, and H. Porte, “Optical cryptosystem based
on synchronization of hyperchaos generated by a delayed feedback tun-
able laser diode,” Phys. Rev. Lett., vol. 80, pp. 2249-2252, 1998.

J. P. Goedgebuer, L. Larger, F. Porte, and H. Delorme, “Chaos in wave-
length with a feedback tunable laser diode,” Phys. Rev. E, vol. 57, pp.
2795-2798, 1998.

L. Larger, J. P. Goedgebuer, and F. Delorme, “Optical encryption system
using hyperchaos generated by an optoelectronic wavelength oscillator,”
Phys. Rev. E, vol. 57, pp. 6618-6624, 1998.

R. Lang and K. Kobayashi, “External optical feedback effects on semi-
conductor injection laser properties,” IEEE J. Quantum Electron., vol.
16, pp. 347-355, 1980.

C. Masoller, “Coexistence of attractors in a laser diode with optical feed-
back from a large external cavity,” Phys. Rev. A, vol. 50, pp. 2569-2578,
1994.

V. Ahlers, U. Parlitz, and W. Lauterborn, “Hyperchaotic dynamics and
synchronization of external-cavity semiconductor lasers,” Phys. Rev. E,
vol. 58, pp. 7208-7213, 1998.

J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, “Strong in-
fluence on nonlinear gain on spectral and dynamic characteristics of in-
gaasp lasers,” Electron Lett., vol. 21, pp. 496497, 1985.

R. Olshansky, D. M. Fye, C. B. Manning, and J. Su, “Effect of nonlinear
gain on the bandwidth of semiconductor lasers,” Electron Lett., vol. 21,
pp. 721-722, 1985.

T. Heil, I. Fischer, W. Elsasser, and A. Gavrielides, “Dynamics of semi-
conductor lasers subject to delayed optical feedback: The short cavity
regime,” Phys. Rev. Lett., vol. 87, p. 243901, 2001.

P. Grassberger and I. Procaccia, “Measuring the strangeness of strange
attractors,” Physica D, vol. 9, pp. 189-208, 1983.

E. Ferreti, “Properties of Systems with Time Delayed Feedback,” Ph.D.
dissertation, Max-Planck-Institut, Dresden, Germany, 2002.

Cam-

Raiil Vicente was born in Palma de Mallorca, Spain,
in 1979. He received the degree in physics (first class
hons.) from the Universitat de les Illes Balears, Palma
de Mallorca, Spain, in 2001, where he is currently
working toward the Ph.D. degree in physics.

In 2003 and 2004, he was a Visitor Scholar of
the Electrical Engineering Department, University
of California, Los Angeles. His research interests
include nonlinear dynamics and synchronization,
with an emphasis on semiconductor lasers.

IEEE JOURNAL OF QUANTUM ELECTRONICS, VOL. 41, NO. 4, APRIL 2005

José Daudén was born in Palma de Mallorca, Spain, in 1978. He received the
degree in physics from the Universitat de les Illes Balears, Palma de Mallorca,
Spain, in 2001.

His research interest include semiconductor lasers dynamics, nonlinear dy-
namics, and cryptography.

Pere Colet was born in Vilafranca del Penedes,
Barcelona, Spain, on April 21, 1964. He received the
M.Sc. degree in physics in 1987 from the Universitat
de Barcelona, and the Ph.D. degree in physics in
1991 from the Universitat de les Illes Balears, Palma
de Mallorca, Spain.
In 1991, he became a Teaching Assistant at the De-
partament de Fisica, Universitat de les Illes Balears.
/ g From September 1991 to February 1993 and from
Ve ] s April to September 1994, he was a Postdoctoral Ful-
bright Fellow at the School of Physics, Georgia In-
stitute of Technology, Atlanta. In October 1994, he joined the Departament de
Fisica, Universitat de les Illes Balears. Since May 1995, he has held a perma-
nent research position at the Spanish Consejo Superior de Investigaciones Cien-
tificas. He has co-authored 60 journal papers as well as 20 other scientific pub-
lications. His research interests include fluctuations and nonlinear dynamics of
semiconductor lasers, synchronization of chaotic lasers and encoded commu-
nications, synchronization of coupled nonlinear oscillators, pattern formation
and quantum fluctuations in nonlinear optical cavities and dynamics of local-
ized structures.

Raiil Toral received the M.Sc. degree in 1980 and the
Ph.D. degree in physics in 1985 from the Universitat
de Barcelona, Barcelona, Spain.

After four years of postdoctoral stays at the
Physics Departments of Edinburgh University, Ed-
inburgh, U.K., and Temple University, Philadelphia,
PA, he joined the Statistical and Nonlinear Physics
Group, Universitat de les Illes Balears, Palma de
Mallorca, Spain, where he became Full Professor
of Condensed Matter Physics in 1994. He has
coauthored over 150 papers in scientific journals
and his current research interests include the constructive role of fluctuations
(noise induced phase transitions, stochastic resonance and coherence), the
synchronization of nonlinear dynamical systems (including that of chaotic
lasers and its use in encoded communications), sociophysics and the dynamics
opinion and culture formation, ratchets, and Parrondo’s games.



	toc
	Analysis and Characterization of the Hyperchaos Generated by a S
	Raúl Vicente, José Daudén, Pere Colet, and Raúl Toral
	I. I NTRODUCTION
	II. H IGH -D IMENSIONAL C HAOS IN S EMICONDUCTOR L ASERS W ITH E

	Fig. 1. Temporal trace of the normalized wavelength deviation in
	Fig. 2. The 30 largest Lyapunov exponents as a function of the f
	A. Lyapunov Exponents

	Fig. 3. (a) Scaling of the largest Lyapunov exponent with the de
	Fig. 4. Lyapunov spectra as a function of the feedback strength 
	B. Information Dimension

	Fig. 5. (a) Kaplan Yorke dimension as a function of the feedback
	C. Kolmogorov Sinai Entropy
	III. H IGH D IMENSIONAL C HAOS IN S EMICONDUCTOR L ASERS W ITH C

	Fig. 6. Temporal evolution of the intracavity photon number for 
	Fig. 7. Lyapunov spectra as a function of the feedback strength 
	A. Lyapunov Exponents

	Fig. 8. The 20 largest Lyapunov exponents as a function of the f
	Fig. 9. The largest Lyapunov exponents as a function of the feed
	Fig. 10. The 50 largest Lyapunov exponents as a function of the 
	B. Information Dimension

	Fig. 11. (a) Kaplan Yorke dimension as a function of the feedbac
	C. Kolmogorov Sinai Entropy

	Fig. 12. (a) Kolmogorov Sinai entropy as a function of the feedb
	IV. C ONCLUSION
	P. Colet and R. Roy, Digital communications with synchronized ch
	C. R. Mirasso, P. Colet, and P. Garcia-Fernandez, Synchronizatio
	L. M. Pecora and T. L. Carroll, Synchronization in chaotic syste
	A. Pikovsky, M. Rosenblum, and J. Kurths, Synchronization: A Uni
	A. Locquet, C. Masoller, and C. Mirasso, Synchronization regimes
	J. Ohtsubo, Chaos synchronization and chaotic signal masking in 
	R. Vicente, T. Perez, and C. R. Mirasso, Open- versus losed-loop
	K. M. Short and A. T. Parker, Unmasking a hyperchaotic communica
	J. D. Farmer, Chaotic attractors of an infinite-dimensional syst
	H. Kantz and T. Schreiber, Nonlinear Time Series Analysis . Camb
	J. Pesin, Characteristic Lyapunov exponents and smooth ergodic t
	J. P. Goedgebuer, L. Larger, and H. Porte, Optical cryptosystem 
	J. P. Goedgebuer, L. Larger, F. Porte, and H. Delorme, Chaos in 
	L. Larger, J. P. Goedgebuer, and F. Delorme, Optical encryption 
	R. Lang and K. Kobayashi, External optical feedback effects on s
	C. Masoller, Coexistence of attractors in a laser diode with opt
	V. Ahlers, U. Parlitz, and W. Lauterborn, Hyperchaotic dynamics 
	J. Manning, R. Olshansky, D. M. Fye, and W. Powazinik, Strong in
	R. Olshansky, D. M. Fye, C. B. Manning, and J. Su, Effect of non
	T. Heil, I. Fischer, W. Elsasser, and A. Gavrielides, Dynamics o
	P. Grassberger and I. Procaccia, Measuring the strangeness of st
	E. Ferreti, Properties of Systems with Time Delayed Feedback, Ph



