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By using a generalization of the multiple scales technique we develop a method to derive amplitude equa-
tions for zero-dimensional forced systems. The method allows to consider either additive or multiplicative
forcing terms and can be straightforwardly applied to the case that the forcing is white noise. We give examples
of the use of this method to the case of the van der Pol–Duffing oscillator. The writing of the amplitude
equations in terms of a Lyapunov potential allow us to obtain an analytical expression for the probability
distribution function which reproduces reasonably well the numerical simulation results.
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I. INTRODUCTION

It is known that the general trends of the behavior of a
dynamical system can be captured, in some cases of interest,
by the so-called amplitude equations[1,2], describing the
slow dynamics of the envelope of the trajectories. One of the
most interesting features of amplitude equations is their uni-
versality: many systems can share the same amplitude equa-
tion depending only on general symmetry considerations.
Another advantage of using the amplitude equations is that
they allow numerical integration with a bigger integration
step. A very successful technique, amongst others, for the
derivation of amplitude equations is that of the multiple
scales method. This technique has been extensively applied,
for instance, to both unforced and periodically forced non-
linear oscillators[1,3,4]. However, for more general, e.g.,
nonperiodic, forcing terms there is no systematic derivation
of the amplitude equation. In this paper we develop a pos-
sible extension of the multiple scales method to obtain am-
plitude equations for dynamical systems forced with general
functions. As an application, we consider oscillators which
are randomly forced either by additive noise[5–9] or by
multiplicative noise[6,10–12].

The derivation of amplitude equations for randomly
forced dynamical systems has been previously considered in
the literature. In some works, dynamical systems are treated
in a probabilistic way and noise effects on bifurcations are
studied[13–16]. A different approach has been used in Refs.
[17,18] where the authors derive a stochastic Landau form as
the amplitude equation for the stochastic Swift-Hohenberg
model and use it to describe the dynamics of the bifurcating
solutions. A simplifying feature of this case is that the Swift-
Hohenberg equation has only first-order derivatives in time.
Second order equations have been studied in Ref.[19] at the
level of probability distribution functions. Our method, being
a straightforward extension of the multiple scales method,
can be easily applied to dynamical systems including
second-order time derivatives.

This paper is structured as follows. In Sec. II, the general
theory is presented using the van der Pol–Duffing oscillator

with an arbitrary forcing term as an example. In Sec. III, the
same oscillator is considered under the influence of an addi-
tive noise forcing term. In Sec. IV, we present the results for
the multiplicative noise case. Finally, the main conclusions
of this paper are reviewed in Sec. V.

II. GENERAL THEORY

Although we believe our method to be quite general, for
the sake of concreteness, in this section we study an oscilla-
tory system, namely, a van der Pol–Duffing oscillator, with a
general additive forcing term, as defined by the following
dimensionless equation for the variablexstd:

ẍ + x = efk1s1 − x2dẋ − k2x
3g + efstd, s1d

being fstd any time dependent function ande is considered as
a small parameter. The specific casesk1=1, k2=0 (van der
Pol oscillator) andk1=0, k2=1 (Duffing oscillator) are con-
tained in this general equation. Forfstd=0, the van der Pol–
Duffing oscillator has an unstable fixed point and a stable
limit cycle in the phase spacesx, ẋd. Equation parameters
have been rescaled out such that the frequency of the linear
oscillator, i.e.,e=0, is v0=1. Fore.0, the evolution can be

written as xstd=Astdeiv0t+Āstde−iv0t, being Astd the slowly

varying complex amplitude(Ā denotes the complex conju-
gate ofA).

We extend the method of multiple scales in order to be
able to consider Eq.(1) for a general functionfstd. Let us
briefly review the method of multiple scales[1]. In this
method, one looks for a series expansion of the time depen-
dent variablexstd of the form

xstd = x0std + ex1std + e2x2std + ¯ . s2d

The main point is to consider different time scales:
T0,T1,T2,¯, with Tm=emt as independent variables and
hence any function of time becomes a function of theTm’s:

x0std = x0sT0,T1, . . . d, s3d

x1std = x1sT0,T1, . . . d, s4d*URL: http://www.imedea.uib.es
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x2std = x2sT0,T1, . . . d s5d

A

fstd = f̂sT0,T1, . . . d. s6d

The notation f̂sT0,T1, . . .d stresses the fact that, although

equal in value, both functionsf and f̂ are formally different
since they contain a different number of variables. Note that

the decomposition offstd into f̂sT0,T1, . . .d is not unique, as
we will see in the following examples. The time derivative is
transformed according to

d

dt
=

]

] T0
+ e

]

] T1
+ e2 ]

] T2
+ ¯ = D0 + eD1 + e2D2 + ¯ ,

s7d

whereDi ;] /]Ti. By substituting this expansion into Eq.(1)
and equating coefficients up to ordere1, one obtains

sD0
2 + 1dx0 = 0, s8d

sD0
2 + 1dx1 = k1s1 − x0

2dD0x0 − k2x0
3 − 2D0D1x0 + f̂sT0,T1, . . . d.

s9d

The solution of Eq.(8) is

x0sT0,T1, . . . d = AsT1deiT0 + ĀsT1de−iT0, s10d

where it has been assumed that the amplitudeAsT1d of the
sinusoidal solution depends only on the slow time variable
T1 instead of all the sequenceT1,T2, . . ..Accordingly, at this

order, fstd= f̂sT0,T1d. Replacing this solution in Eq.(9), we
get

sD0
2 + 1dx1 = fi k1As1 − uAu2d − 2iA8 − 3k2AuAu2geiT0

+ f− ik1Ās1 − uAu2d + 2iĀ8 − 3k2AuAu2ge−iT0

− iA3e3iT0 + iĀ3e−3iT0 + f̂sT0,T1d;gsT0,T1d,

s11d

whereA8 denotes the derivative ofA with respect toT1, and
we definegsT0,T1d as the right-hand side of the equation.
The amplitude equation is obtained by avoiding resonant
terms with the frequency of the left-hand side of the equa-
tion,

keiT0ugsT0,T1dl = 0, s12d

with the scalar product for theT0 variable defined as

kvsT0duwsT0dl =E
−`

`

v̄sT0dwsT0ddT0, s13d

and the resultkeinT0 ueimT0l=dn,m. By using Eqs.(11) and(12)
one obtains

ifk1As1 − uAu2d − 2A8g − 3k2AuAu2 + keiT0u f̂sT0,T1dl = 0.

s14d

The problem has been reduced to extract fromfstd
= f̂sT0,T1d the resonant terms, i.e., those with a component of
eiT0. These terms are those giving a contribution different
from zero in the previous equation.

The particular case of a periodic forcing term,fstd
=cossl td, with a forcing frequencyl=v0+se=1+se, and
s=Os1d (soft resonant excitation) has been extensively stud-
ied in the past. In this case, the standard approach[1] con-
siders the decomposition,

cosfs1 + sedtd = cosst + setd = cossT0 + sT1d = 1
2seiT0eisT1

+ e−iT0e−isT1d. s15d

When substituting this expression in Eq.(14) for the A vari-
able, the term multiplyingeiT0 is the only one giving a non-
zero contribution. In other words, the contribution to the
equation forA is the spectral component of the functionfstd
at the frequencyv0=1. The resulting amplitude equation is

dA

dT1
= k1

1

2
As1 − uAu2d + ik2

3

2
AuAu2 −

i

4
eisT1, s16d

where it appears that the proper time scale for the variation
of the amplitudeA is given byT1.

As it is clear in this and other examples, the derivation of
the amplitude equation requires the evaluation of expressions
of the general form,

keiT0ueimT0f̂sT0,T1dl, s17d

for which Eq.(14) is a particular case withm=0. As stated
before, the problem reduces then to find a suitable expression

for f̂sT0,T1d. Some particular functions might allow a “natu-
ral” decomposition, e.g., Eq.(15). However, for an arbitrary
fstd the splitting in terms of slow,T0, and fast,T1, variables
might not be so straightforward. Our proposal is to make the
following decomposition:

f̂sT0,T1d = e−sm−1diT0eism−1dT1/efsT1/ed, s18d

which allows to compute Eq.(17) as

keiT0ueimT0f̂sT0,T1dl = eism−1dT1/efsT1/ed. s19d

This simple rule has to be applied with the necessary values
of m as demanded in each case. Notice that this decomposi-
tion gives always a nonvanishing contribution to the scalar
product. This is particularly interesting in the case of nearly
constant functionsfstd for which the spectrum has a peak at
v=0, far from the main peaks at ±v0. In the white noise
case, our proposal is able to extract a suitable contribution
from the flat spectrum.

Coming back to our example, Eq.(14) contains a term of
the form (17) with m=0. Substitution of the ansatz Eq.(19)
yields
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dA

dT1
= k1

A

2
s1 − uAu2d + ik2

3

2
AuAu2 −

i

2
e−iT1/efsT1/ed. s20d

This is our result for the amplitude equation of the van der
Pol–Duffing oscillator under general forcingfstd. Concretely,
the choicefstd=cosfs1+sedtg gives

dA

dT1
= k1

A

2
s1 − uAu2d + ik2

3

2
AuAu2 −

i

4
eisT1 −

i

4
e−isT1e−i2T1/e.

s21d

As compared to the standard result of Eq.(16), this equation
includes an extra term that gives oscillations in the amplitude
at the scaleT1/e. However, in this case these oscillations
belong to the fast time scaleT0 and could, in principle, be
eliminated thus leading to the standard result, Eq.(16). In-
deed, as shown in Fig. 1, the effect of this extra term is very
small and decreases with increasings.

We now consider the forcing termfstd= f0, constant, for
which the standard method does not obtain any contribution.
Our method immediately yields

dA

dT1
= k1

A

2
s1 − uAu2d + ik2

3

2
AuAu2 −

i

2
e−iT1/ef0. s22d

One could again decide to eliminate the oscillations in the
fast scaleT1/e. However, as shown in Fig. 2, the influence of
the extra term can actually improve upon the predictions of
the amplitude equation. In particular, it can describe the lack
of symmetry around the zero value observed in the evolution
of xstd.

The above scheme can be applied to the case of multipli-
cative forcing term. Again, we consider a specific example;
the van der Pol–Duffing equation with a linear multiplicative
term of the form

ẍ + x = efk1s1 − x2dẋ − k2x
3g + ex fstd. s23d

The multiple scales ansatz(2) leads in the first-order ap-
proximation to the form(10). The next order yields

FIG. 1. Time evolution ofxstd in a van der Pol oscillator(1) (oscillating thin solid line) forced with fstd=cosfs1+sedtg. In order to extract
the envelope from the complex amplitudeA we also plot ±2R, whereA=Reif in two cases: the solid line is the result of method(21), the
dashed line comes from the standard method(16). Notice that both methods give almost indistinguishable results. The values of the
parameters aree=0.1,k1=1, k2=0. The initial conditions:xs0d=1, ẋs0d=0 are used henceforth in all the examples given. The different plots
are: (a) s=0; (b) s=1; (c) s=10; (d) s=500.

FIG. 2. Time evolution ofxstd in a van der Pol oscillator(1)
(oscillating thin solid line) forced with fstd=2.0. We also plot the
envelope ±2Rstd as coming from Eq.(22) (solid line). The param-
eters aree=0.1, k1=1, k2=0. Notice that the fit of the envelope to
the trajectory ofxstd worsens if we neglect the last term in Eq.(22),
as shown by the dashed line, specially in the negative values ofxstd.
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D0
2x1 + x1 = k1s1 − x0

2dD0x0 − k2x0
3 − 2D0D1x0 + x0f̂sT0,T1d

=eiT0F− 2i
] A

] T1
+ ik1A − ik1AuAu2 − 3k2uAu2A

+ f̂sT0,T1dAG+ e−iT0F2i
] Ā

] T1
− ik1Ā + ik1ĀuAu2

− 3k2uAu2Ā + f̂sT0,T1dĀG− e3iT0A3sik1 + k2d

+ e−3iT0Ā3sik1 − k2d;g1sT0,T1d s24d

The nullity of the scalar productkeiT0 ug1sT0,T1dl=0 involves
two contributions of the form(17): one with m=1 and an-
other withm=−1. These contributions are computed accord-
ing to the general rule(19). The amplitude equation obtained
is

dA

dT1
= k1

1

2
As1 − uAu2d + ik2

3

2
AuAu2 −

i

2
AfsT1/ed

−
i

2
Āe−2iT1/efsT1/ed. s25d

Let us be more specific and considerfstd=coss2td. The
amplitude equation is

dA

dT1
= k1

1

2
As1 − uAu2d + ik2

3

2
AuAu2 −

i

4
Ā −

1

2
ĀcosS2T1

e
D

−
i

4
Āe−4iT1/e. s26d

Again the last two terms, belonging to the temporal scaleT0,
could be discarded reobtaining the amplitude equation de-
rived after replacing directly coss2td=coss2T0d in Eq. (24),

dA

dT1
= k1

1

2
As1 − uAu2d + ik2

3

2
AuAu2 −

i

4
Ā. s27d

In Fig. 3 we compare the results of Eqs.(23), (26), and(27).
Observe that both amplitude equations faithfully follow the
envelope of thexstd variable.

III. ADDITIVE NOISE

We apply the above developed technique to the case of an
additive noise forcing term, while in a following section we
will consider multiplicative noise. We take equation(1) with
a real noise termfstd=jstd with zero mean value and tempo-
ral correlationskjstdjst8dl=dst− t8d. The general amplitude
equation(20) adopts now the form

dA

dT1
= k1

A

2
s1 − uAu2d + ik2

3

2
AuAu2 −

i

2
e−iT1/eÎejsT1d,

s28d

with kjsT1djsT18dl=dsT1−T18d, and it has been used that
jsT1/ed=ÎejsT1d. The statistical properties that follow from
this equation are contained in the corresponding Fokker-
Planck equation for the time evolution of the probability den-
sity functionPsA,td [20]. It is possible to obtain an approxi-
mate analytical expression in the steady statePstsAd. We first
write down the real and imaginary parts of the amplitude
equation,

dAr

dT1
=

k1

2
Arf1 − sAr

2 + Ai
2dg − k2

3

2
AisAr

2 + Ai
2d

−
1

2
sinsT1/edÎe jsT1d,

dAi

dT1
=

k1

2
Aif1 − sAr

2 + Ai
2dg + k2

3

2
ArsAr

2 + Ai
2d

−
1

2
cossT1/edÎe jsT1d, s29d

with A=Ar + iAi. It can be shown that the deterministic terms
are that of a nonrelaxational potential flow with the
Lyapunov function[21,22],

VsAd = k1F−
uAu2

4
+

uAu4

8
G . s30d

Using this fact, one can obtain an approximate analytical
expression for the stationary probability distributionPstsAd.
To this end, we simplify the stochastic set of Eqs.(29) by
substituting the cosine and sine functions by its root-mean
square valueksin2stdl1/2=kcos2stdl1/2=1/Î2 and considering
that ksinstdcosstdl=0, effectively introducing different noise
terms for the real and imaginary parts. This yields

dA

dT1
=

k1

2
Af1 − uAu2g + ik2

3

2
AuAu2 −

1

2
Îe

2
hsT1d, s31d

whereh is a complex noise term with zero mean value and
correlationskhsT1dh̄sT18dl=dsT1−T18d. It turns out that this
new noise terms satisfy the fluctuation-dissipation relation
[21], and the stationary probability distribution is given in
terms of the Lyapunov potential as

PstsAd ~ exps− VsAd/ẽd, s32d

whereẽ=e /16.

FIG. 3. Time evolution ofxstd in a van der Pol–Duffing oscil-
lator (23) (oscillating thin solid line) with multiplicative forcing
xfstd=x coss2td, together with the envelope ±2Rstd coming both
from Eqs.(26) and (27) (they are indistinguishable at the scale of
the figure). The values of the parameters arek1=1, k2=1, e=0.01.
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We have simulated the dynamics of Eq.(1) with fstd
=jstd following standard stochastic integration methods as
given in Ref.[21]. The results are compared with the corre-
sponding amplitude equation, i.e., Eq.(29), in Fig. 4. We
observe that the amplitude equation does not fit the actual
maxima xmax of xstd for a given realization. However, by
taking many realizations, the averaged amplitude does fit the
maxima of the average values. As an evidence, we show in
Fig. 5, the histogram for thexmax is compared to the histo-
gram for the amplitude. In solid line, it appears the approxi-
mate theoretical expression(32). The concordance between
solid line and triangles reveals the validity of the approxima-
tion which allowed us to derive Eq.(31) from Eq. (29).

IV. MULTIPLICATIVE NOISE

In this section we consider the van der Pol oscillator with
a multiplicative noise term of the formfstd=xjstd. The cor-
responding amplitude equation(25) becomes

dA

dT1
= k1

1

2
As1 − uAu2d + ik2

3

2
AuAu2 −

i

2
AÎejsT1d

−
i

2
Āe−2iT1/eÎejsT1d. s33d

In this case of multiplicative noise terms, the time traces are
similar to the ones observed for additive noise terms, see Fig.
6.

In order to be able to compute the stationary probability
distribution, we now introduce modulus and phase variables:
A=R eif, the resulting equations are

dR

dT1
= k1

1

2
Rs1 − R2d −

1

2
RjsT1/edsins2fT1/e + fgd,

df

dT1
= k2

3

2
R2 −

1

2
jsT1/ed −

1

2
jsT1/edcoss2fT1/e + fgd.

s34d

Again, we approximate the sine and cosine terms by its root-
mean-square value. In this way, the equation for the modulus
does not contain the phase variable,

dR

dT1
= k1

1

2
Rs1 − R2d −

1

2
RÎe

2
jsT1d. s35d

This equation can be analyzed using the general methods
[21,23,24] and it can be shown that, despite the fact that the
Lyapunov function does not satisfy the fluctuation-
dissipation relation, Eq.(32) still holds asymptotically in the
limit e→0 giving

PstsRd ~ expS−
4k1

e
F− R2 +

R4

2
GD . s36d

This result is compared in Fig. 7 with the numerical simula-
tions.

We would like to end this section by commenting that Eq.
(35) has the same structure that Eq.(35) of Ref. [19], in the
sense that the noise termjsT1d appears multiplying the vari-
ableR. In that reference, the result is obtained by working at
the level of the probability distribution function. Our

FIG. 4. Time evolution ofxstd in a van der Pol–Duffing oscil-
lator (1) (oscillating thin solid line) forced with additive white noise
fstd=jstd, and the envelope ±2Rstd coming from Eq.(29) (solid
line) and from the approximated expression(31) (dashed line). The
parameters arek1=1, k2=1, e=0.1. Notice that the individual tra-
jectories are not exactly approximated by the amplitude equations,
while the mean values would be(see next figure).

FIG. 5. The diamonds correspond to the histogram for the
maxima ofx for a van der Pol–Duffing oscillator in the same case
of additive white noise forcing and parameters than in the previous
Fig. 4. The triangles are the histogram of the envelope 2Rstd as
obtained from the amplitude equation(29). The solid line is the
probability distribution function as given by the approximate ana-
lytical result of Eq.(32).

FIG. 6. Time evolutionxstd for a van der Pol–Duffing oscillator
(thin solid oscillating line) with a multiplicative noise termxfstd
=xjstd, and the envelope ±2Rstd coming from the amplitude equa-
tion (33) (solid line). The parameters arek1=1, k2=1, e=0.1.
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method, which we believe to be simpler and more straight-
forward, works directly at the level of the(stochastic) dy-
namical equation.

V. CONCLUSIONS

In this work, we develop a simple, general method to
obtain amplitude equations for a large variety of dynamical
systems forced by an arbitrary time dependent functionfstd
including noises, both additive and multiplicative. Our

method is based on the multiple scales analysis combined
with a recipe to extract the resonant terms for arbitrary forc-
ing functions. As a representative example, we analyze in
detail the van der Pol–Duffing oscillator.

In the deterministic case, our method is able to reproduce
standard results. It only differs from them in the presence of
some extra terms in the amplitude equations. We show that
those terms are either very small or improve upon the pre-
dictions of the equation. For example, it can incorporate the
asymmetries observed in the simulations, as in Fig. 2.

In the stochastic additive case,fstd=jstd, our method is
able to satisfactorily capture its contribution to the amplitude
equation. A simple set of approximations allows us to obtain
analytically the stationary probability distributionPstsAd in
terms of a Lyapunov potential function.

Similar conclusions can be drawn for the multiplicative
noise,fstd=xjstd. Again, our method allows us to obtain eas-
ily the stochastic amplitude equation. An approximation,
valid now in the limit of small noise, yields the stationary
distribution.
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