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Derivation of amplitude equations for nonlinear oscillators subject to arbitrary forcing
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By using a generalization of the multiple scales technique we develop a method to derive amplitude equa-
tions for zero-dimensional forced systems. The method allows to consider either additive or multiplicative
forcing terms and can be straightforwardly applied to the case that the forcing is white noise. We give examples
of the use of this method to the case of the van der Pol-Duffing oscillator. The writing of the amplitude
equations in terms of a Lyapunov potential allow us to obtain an analytical expression for the probability
distribution function which reproduces reasonably well the numerical simulation results.
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I. INTRODUCTION with an arbitrary forcing term as an example. In Sec. lll, the
It is known that the general trends of the behavior of asame oscillator is considered under the influence of an addi-

dynamical system can be captured, in some cases of intere&ye noise forcing term. In Sec. IV, we present the resullts for
by the so-called amplitude equatioft,2], describing the the multiplicative noise case. Finally, the main conclusions
slow dynamics of the envelope of the trajectories. One of th@f this paper are reviewed in Sec. V.

most interesting features of amplitude equations is their uni-

v_ersality: many systems can share the same amp!itude_equa- Il. GENERAL THEORY

tion depending only on general symmetry considerations.

Another advantage of using the amplitude equations is that Although we believe our method to be quite general, for
they allow numerical integrati(_)n with a bigger integration the sake of concreteness, in this section we study an oscilla-
step. A very successful technique, amongst others, for thgyry system, namely, a van der Pol-Duffing oscillator, with a

derivation of amplitude equations is that of the multiple general additive forcing term, as defined by the following
scales method. This technique has been extensively appliegimensionless equation for the variabig):

for instance, to both unforced and periodically forced non-
linear oscillators[1,3,4. However, for more general, e.g., X+ X = e[ky(1 = x2)x — kx| + €f (1), (1)
nonperiodic, forcing terms there is no systematic derivation ] ) ]
of the amplitude equation. In this paper we develop a posP€ingf(t) any time dependent function aeds considered as
sible extension of the multiple scales method to obtain am@ Small parameter. The specific casgs 1, k,=0 (van der
plitude equations for dynamical systems forced with generalP0l oscillatoy andk; =0, k,=1 (Duffing oscillatop are con-
functions. As an application, we consider oscillators whichtained in this general equation. Ffit)=0, the van der Pol-
are randomly forced either by additive noigg-9) or by  Duffing oscillator has an unstable fixed point and a stable
multiplicative noise[6,10-13. limit cycle in the phase spacg,x). Equation parameters
The derivation of amplitude equations for randomly have been rescaled out such that the frequency of the linear
forced dynamical systems has been previously considered @scillator, i.e..e=0, iswy=1. Fore>0, the evolution can be
the literature. In some works, dynamical systems are treate@ritten as x(t)=A(t)e€“ol+A(t)e7 o, being A(t) the slowly
in a probabilistic way and noise effects on bifurcations ar : : ™ -
studied[13-16. A different approach has bgen used in Refse_\glggr(\)?A(;f)mplex amplitudA denotes the complex conju
[17.18 where the aut.hors derive astocha_snc Lgndau form a We extend the method of multiple scales in order to be
the amplitude equation for the stochastic Swift-Hohenber b

%ble t ider Eq(1) f | functiorf(t). Let
model and use it to describe the dynamics of the bifurcatinq)ri eeflyorggir:/i/ ?rr] e % e)th(()):jao?egilr?pl eur:;;qé]) Inethlfg

solutions. A simpli_fying feature (.)f this case is_ ‘hﬁ!t the_ SV.V‘“' method, one looks for a series expansion of the time depen-
Hohenberg equation has only first-order derivatives in tlmedent variablex(t) of the form
Second order equations have been studied in [R6f.at the
level of probability distribution functions. Our method, being X() = Xg(t) + exq(t) + eXolt) + + -+ . 2
a straightforward extension of the multiple scales method,
can be easily applied to dynamical systems includingThe main point is to consider different time scales:
second-order time derivatives. T, T1, Ty, -+, with T,,=€™ as independent variables and

This paper is structured as follows. In Sec. Il, the generahence any function of time becomes a function of Thés:
theory is presented using the van der Pol-Duffing oscillator

XO(t) = XO(T01T11 e )! (3)

*URL: http://www.imedea.uib.es X1(1) =x%(To, Ty, +-0), (4)
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%0 =x(To, Ty, -) ®) i[KiA(L = [A2) = 2] = BIGA| A +(&T0[(To, Ty)) = 0.
(14)

The problem has been reduced to extract frdift)

f(t) = F(To, T ). (6) :?(TO,Tl) the resonant terms, i.e., those with a component of
oL €To. These terms are those giving a contribution different

The notationf(Ty,T;,...) stresses the fact that, although from zero in the previous equation.

. . - . The particular case of a periodic forcing termt)
e_qual in value, b_oth fu_ncUonBandf are form_ally different =cog\ 1), with a forcing frequency\ = wy+oe=1+oe, and
since they contain a different number of variables. Note that _ o .

N o _ . o=0(1) (soft resonant excitatigrhas been extensively stud-
the decomposition of(t) into f(Ty, Ty, ...) iS not unique, as

) g ) ; M=, 4> jed in the past. In this case, the standard apprdatiton-
we will see in the following examples. The time derivative is sijers the decomposition,

transformed according to
co§ (1 +oe)t) = codt + aet) = cogTo+ oTy) = 3(eTog M

E—i+ i+ezi+ =Dy+ eD, + €D, + ~iTop-ioT
dt 9T, oT, T, TroTeaTeeT terioen ). (19
(7)  When substituting this expression in Ed4) for the A vari-
o ) o able, the term multiplyingg "o is the only one giving a non-
whereD; = 4/ JT;. By substituting this expansion into E4)  zero contribution. In other words, the contribution to the
and equating coefficients up to ordet one obtains equation forA is the spectral component of the functib()

at the frequencywy=1. The resulting amplitude equation is
(DF+ 1% =0, ®) e ) AmPTHEE

dA 1 3 i
R — =k =A(1 - |AP) + ik, =A|A]? - L oy (16)
(D§+ 1) = ky(1 = X§)DoXo = kpX§ = 2DD1xo + f(To, Ty, ... dT, 2 2 4

(9)  where it appears that the proper time scale for the variation
The solution of Eq(8) is of the amplitudeA is given byT;.
As it is clear in this and other examples, the derivation of
_ o T the amplitude equation requires the evaluation of expressions
XO(TO=T11 . ) - A(Tl)e 0+ A(Tl)e 0: (10) Of the general form,
where it has been assumed that the amplitAdg,) of the T
sinusoidal solution depends only on the slow time variable (e"o[eMof (T, Ty)), (17
T, instead of all the sequendg,T,,.... Accordingly, at this

N for which Eq.(14) is a particular case witimh=0. As stated
order, f(t)=f(Ty, T;). Replacing this solution in Eq9), we d- (14 D

before, the problem reduces then to find a suitable expression

get for f(TO,Tl). Some particular functions might allow a “natu-
(D(2,+ 1)x, =[i kAL - |A) - 2IA" - 3k,A|Al2]eTo ral” decom_pqsiti(_)n, e.g., Eq15). However, for an ar_bitrary
. . f(t) the splitting in terms of slow],, and fast,T,, variables
+[—ik;A(L - |A]) + 2iA" - 3k,A|A[2]eTo might not be so straightforward. Our proposal is to make the

, - . following decomposition:
— A3 To+iA3e 3o + f(To, T)=g(To, To),

(11) f(To T = e ™ Do (MUTYef (T, /), (18)

whereA’ denotes the derivative & with respect tal;, and  which allows to compute Eq17) as
we defineg(T,, T;) as the right-hand side of the equation.

The amplitude equation is obtained by avoiding resonant (o[ Tof (T, Ty)) = &M DTVEf(T /). (19
terms with the frequency of the left-hand side of the equa-
tion, This simple rule has to be applied with the necessary values
of mas demanded in each case. Notice that this decomposi-
(€T0|g(Ty, TY)) =0, (12 tion gives always a nonvanishing contribution to the scalar
product. This is particularly interesting in the case of nearly
with the scalar product for th&, variable defined as constant functiong(t) for which the spectrum has a peak at
" =0, far from the main peaks atws. In the white noise
(W(To)|W(Ty) = f V(TIW(T)d T, (13  case, our proposal is able to extract a suitable contribution
o from the flat spectrum.

_ _ Coming back to our example, E@L4) contains a term of
and the resulte"To| €M)=, . By using Egs(11) and(12)  the form(17) with m=0. Substitution of the ansatz E.9)
one obtains yields
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FIG. 1. Time evolution ok(t) in a van der Pol oscillatail) (oscillating thin solid ling forced withf(t)=cog(1+oe€)t]. In order to extract
the envelope from the complex amplitudlewe also plot =R, whereA=Ré? in two cases: the solid line is the result of meth@d), the
dashed line comes from the standard metlid@). Notice that both methods give almost indistinguishable results. The values of the
parameters are=0.1,k;=1, k,=0. The initial conditionsx(0)=1, X(0)=0 are used henceforth in all the examples given. The different plots
are:(a) =0; (b) =1; (¢) 0=10; (d) c=500.

dA A o B ST ye The abo_ve scheme can be appligd to the case of multipli-

an, ki (1= |AJ%) + 'k2§A|A| —5€ *H(Ty/e). (200 cative forcing term. Again, we consider a specific example;
the van der Pol-Duffing equation with a linear multiplicative

This is our result for the amplitude equation of the van derterm of the form

Pol-Duffing oscillator under general forcirii¢t). Concretely,

the choicef(t)=cog(1+oe)t] gives

dA

~ X+ x= k(1 —x3)x — kx®] + ex f(t). (23)
daT,

A 3 i i .
ki—(1 - A2 +ik *AAZ—*e"’Tl—*e_'“Tle_'ZTlle.
L2 A kAR - -

(21)

The multiple scales ansai2) leads in the first-order ap-

As compared to the standard result of EDp), this equation é)roximation to the form(10). The next order yields

includes an extra term that gives oscillations in the amplitud
at the scaleT,/e. However, in this case these oscillations
belong to the fast time scal&, and could, in principle, be . T . . .
eliminated thus leading to the standard result, @). In- :
deed, as shown in Fig. 1, the effect of this extra term is very
small and decreases with increasing

We now consider the forcing terri(t)=f,, constant, for X
which the standard method does not obtain any contribution.
Our method immediately yields

dA A 3 i E :
— =k, —(1 - |A]?) +ik,—AlA]? - —eT/ef,. (22
i, 12( |Al%) 25 A 5 oo (22 0 10 20 30 40 50

One could again decide to eliminate the oscillations in the FiG. 2. Time evolution ofx(t) in a van der Pol oscillatofl)
fast scaleT,/ e. However, as shown in Fig. 2, the influence of (oscillating thin solid ling forced with f(t)=2.0. We also plot the
the extra term can actually improve upon the predictions otnvelope +R(t) as coming from Eq(22) (solid line). The param-
the amplitude equation. In particular, it can describe the lackters aree=0.1, k;=1, k,=0. Notice that the fit of the envelope to
of symmetry around the zero value observed in the evolutiorhe trajectory ok(t) worsens if we neglect the last term in §82),
of x(t). as shown by the dashed line, specially in the negative value@)of
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' ' - I1l. ADDITIVE NOISE

We apply the above developed technique to the case of an
additive noise forcing term, while in a following section we
will consider multiplicative noise. We take equaticl) with
a real noise ternfi(t) =&(t) with zero mean value and tempo-
ral correlations(&(t)&(t'))=46(t—t"). The general amplitude
equation(20) adopts now the form

0 200 400 600 dA A 3 P -
t d_Tl = k1§(1 - |A]?) + ik2§A|A|2 =5 TileVed(Ty),
FIG. 3. Time evolution ofx(t) in a van der Pol-Duffing oscil- (28)
lator (23) (oscillating thin solid ling with multiplicative forcing
xf(t)=x coq2t), together with the envelope R&t) coming both  with (&(T)&(T))=48(T,-T;), and it has been used that
from Egs.(26) and (27) (they are indistinguishable at the scale of £,/ €)=\e&(T,). The statistical properties that follow from
the figurg. The values of the parameters &ie=1, k=1, €=0.01.  this equation are contained in the corresponding Fokker-
Planck equation for the time evolution of the probability den-
DSXl +xq = ky(1 - X(Z))DOXO _ kzxg — 2D D10 + XO%(T01T1) sity function_P(A,t) [20]. .It ig possible to obtain an approxi-
mate analytical expression in the steady sBa6A). We first

- A ) 5 ) write down the real and imaginary parts of the amplitude
=¢'lo| - 2|E + |k1A_ |k1A|A| - 3k2|A| A
1

equation,
+ ?(To,n)A} + e-”o{ 2i j—f_l — koA + ik AJAR 3—% = %Ar[l (A7 +A)] - kngi(Arz +A2)
— 3ko|AZA + ?(To-TﬂK} - &3ToA3(ik, + k) - %Sin(Tl/ e &(Ty),
+ & 3ToA3(iky — k) =01(To, T1) (24) 3—_’? = %Ai[l - (AZ+ AP+ kngr(Ar2 +A?)
1

The nullity of the scalar produgg'™|g,(T,, T;))=0 involves
two contributions of the forn{17): one withm=1 and an-
other withm=-1. These contributions are computed accord-

ing to the general rulél9). The amplitude equation obtained . L
is with A=A, +iA,. It can be shown that the deterministic terms

are that of a nonrelaxational potential flow with the
Lyapunov function[21,22,

- %CO&TJ_/G) \:‘ g(Tl) , (29)

A 2 A - (AP + ik, AR - LART e
dT; 2 2 2 A2 A4
i V(A)=k1[——+—]. (30
— LAe2TY(T Je). (25) 4 8

2 Using this fact, one can obtain an approximate analytical

Let us be more specific and considét)=cog2t). The expression for the stationary probability distributiBg(A).

amplitude equation is To this end, we simplify the stochastic set of E¢®9) by
] substituting the cosine and sine functpns by its root-mean
dA _ kllA(l _AP) + ik2§A\A|2 i }ch){ﬂ) square value{sinz(t)>1’2:<c9§(t)>.1’2: 1/\2 and considering
dT; 2 2 4 2 € that (sin(t)coqt))=0, effectively introducing different noise
i— terms for the real and imaginary parts. This yields
- AeE (26) WA K . .
A
= AL AP ik AIAR- S \ﬁ 2T, (3D)
Again the last two terms, belonging to the temporal s@ale dm, 2 2 2V2

could be discarded reobtaining the amplitude equation d&jnere 5 is a complex noise term with zero mean value and

rived after replacing directly c68t)=cos2To) in Eq. (24), correlations(n(T,) 7(T;))=8(T,=T;). It turns out that this
dA 1 3 i— new noise terms satisfy the fluctuation-dissipation relation
— =k =A(1 - |AP) +ik,=A|A> - —A. (27)  [21], and the stationary probability distribution is given in
dTy 2 2 4 terms of the Lyapunov potential as

In Fig. 3 we compare the results of EqR3), (26), and(27).

Observe that both amplitude equations faithfully follow the

envelope of the(t) variable. wheree=¢/16.

Pi(A) = exp= V(A)/e), (32)
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FIG. 4. Time evolution of(t) in a van der Pol-Duffing oscil- FIG. 6. Time evolutiork(t) for a van der Pol-Duffing oscillator
lator (1) (oscillating thin solid ling forced with additive white noise  (thin solid oscillating ling with a multiplicative noise termxf(t)
f(t)=£&(t), and the envelope #t) coming from Eq.(29) (solid =x&(t), and the envelope #t) coming from the amplitude equa-
line) and from the approximated expressi@i) (dashed ling The  tion (33) (solid line). The parameters atg=1, k,=1, e=0.1.
parameters ar&; =1, k,=1, e=0.1. Notice that the individual tra-
jectories are not exactly approximated by the amplitude equations,

while the mean values would lsee next figure dA _ kllA(l -|AP) + ik2§A|A|2 - I—A\fzg(Tl)
dr, 2 2 2
We have simulated the dynamics of Ed) with f(t) —IEKe‘le’f\s’;g(Tl). (33

=¢(t) following standard stochastic integration methods as

given in Ref.[21]. The results are compared with the corre-, s case of multiplicative noise terms, the time traces are

sponding amplitude equation, i.e., EQ9), in Fig. 4. We  qimjijar o the ones observed for additive noise terms, see Fig.
observe that the amplitude equation does not fit the actugf
maxima Xmax Of X(t) for a given realization. However, by | qrder to be able to compute the stationary probability

taking many realizations, the averaged amplitude does fit thgjsripution, we now introduce modulus and phase variables:
maxima of the average values. As an evidence, we show iR -p d?, the resulting equations are
Fig. 5, the histogram for thg,,,, is compared to the histo-
gram for the amplitude. In solid line, it appears the approxi- dR 1 , 1 .
mate theoretical expressidB2). The concordance between aT. klER(l -R9) - §R§(T1/e)3|n(2[T1/e+ ¢,
solid line and triangles reveals the validity of the approxima- !
tion which allowed us to derive E¢31) from Eg. (29). do 3 1 .
d_Tl = kzz & §§(T1/€) - Ef(Tl/f)COS(Z[Tl/f"' ¢)).
IV. MULTIPLICATIVE NOISE (34)

In this section we consider the van der Pol oscillator withAgain, we approximate the sine and cosine terms by its root-
a multiplicative noise term of the forrf(t)=x&(t). The cor- ~Mean-square value. In this way, the equation for the modulus

responding amplitude equatig@s) becomes does not contain the phase variable,
dR 1 1 €
—=k—R1—R2——R\ﬁ Ty). 35
ar, o (1-R) - JRy/ &M (35

This equation can be analyzed using the general methods
[21,23,24 and it can be shown that, despite the fact that the
Lyapunov function does not satisfy the fluctuation-
dissipation relation, Eq.32) still holds asymptotically in the
limit e— 0 giving

: o .' S 4k R4
16 1.8 20 =22 24 Pst(R)oceXp<—T1{—R2+?D. (36)

FIG. 5. The diamonds correspond to the histogram for theThiS result is compared in Fig. 7 with the numerical simula-

maxima ofx for a van der Pol-Duffing oscillator in the same case 1ONS- . . . .

of additive white noise forcing and parameters than in the previous Ve would like to end this section by commenting that Eq.
Fig. 4. The triangles are the histogram of the envelopéti2as (35 has the same structure that E85) of Ref. [19], in the
obtained from the amplitude equatig9). The solid line is the ~S€nse that the noise teréiT;) appears multiplying the vari-
probability distribution function as given by the approximate ana-ableR. In that reference, the result is obtained by working at
lytical result of Eq.(32). the level of the probability distribution function. Our
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method is based on the multiple scales analysis combined
with a recipe to extract the resonant terms for arbitrary forc-

ing functions. As a representative example, we analyze in
detail the van der Pol-Duffing oscillator.

In the deterministic case, our method is able to reproduce
standard results. It only differs from them in the presence of
some extra terms in the amplitude equations. We show that
those terms are either very small or improve upon the pre-
dictions of the equation. For example, it can incorporate the

% asymmetries observed in the simulations, as in Fig. 2.
In the stochastic additive cas#(t)=£&(t), our method is

FIG. 7. The diamonds correspond to the histogram for theable to satisfactorily capture its contribution to the amplitude

maxima ofx for a van der Pol-Duffing oscillator in the same case equation. A simple set of approximations allows us to obtain

of multiplicative white noise forcing and parameters than in theanalytically the stationary probability distributidPy(A) in
previous Fig. 5. The triangles are the histogram of the envelopgerms of a Lyapunov potential function.

2R(t) as obtained with the amplitude equati@). The solid line is Similar conclusions can be drawn for the multiplicative
the prpbablllty distribution function as given by the approximate noise, f(t)=x&(t). Again, our method allows us to obtain eas-
analytical result of Eq(36). ily the stochastic amplitude equation. An approximation,

valid now in the limit of small noise, yields the stationary
method, which we believe to be simpler and more straightdistribution.

forward, works directly at the level of thestochastig dy-
namical equation.
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