Excitable optical wavesin semiconductor microcavities
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We demonstrate experimentally and theoretically the existence of excitable optical waves in semiconductor
microcavities. Although similar to those observed in biological and chemical systems, these excitable optical
waves are self-confined. This is due to a new dynamical scenario, where a stationary Turing pattern controls the
propagation of waves in an excitable medium, thus bringing together the two paradigms of dynamical behaviour

(waves and patterns) in active media.

PACS numbers:

Excitability is a general behaviour encountered in many
fields of science including biology, chemistry and physics
[1]. Excitable systems have one stable steady state and a
threshold-like response to external perturbations: for stimuli
above a certain threshold the system recovers its stable state
by emitting a pulse of well defined amplitude and duration
(refractory time), independent of the details of the perturba-
tion. In spatially extended excitable media where diffusion
processes occur, complex spatio-temporal dynamics arise, and
propagating pulses, target waves [2], spiral waves [3], or sta-
tionary Turing patterns [4] have been observed. Excitable
waves are the result of the propagation of a locally induced
nonlinear response through the whole system, while Turing
patterns are stationary heterogeneous spatial states arising
from spontaneous symmetry-breaking phenomena [5]. These
spatiotemporal dynamics play an important role in the func-
tional aspects of many biological systems [6, 7]: for instance,
they constitute the main mechanism of signal propagation in
nerve and cardiac cells [8-10]. Until now, excitable waves
have been mainly studied in biological and chemical systems
[11], although their existence in optics has been theoretically
predicted in several systems [12-14].

It has recently been shown that semiconductor microcav-
ities with optical injection may exhibit global excitable be-
haviour [15, 16] compatible with the scenario of the Fitzhugh-
Nagumo model [17]. However, due to the small transverse di-
mensions of the device, no propagation phenomena has been
observed. Vertical-cavity Semiconductor Optical Amplifiers
(VCSOASs) allow us to make the passage from an excitable
system to a 2D excitable medium. VCSOAs have a short cav-
ity length (=~ 1 m) and a short active medium that ensure lon-
gitudinal correlation in the system, but their transverse dimen-
sion, 4, can be quite large. In this case, the eventual existence
of an excitable regime together with carrier diffusion give
the necessary conditions for the existence of excitable opti-
cal waves propagating through the transverse plane. In broad-
area devices (6 > 50 um), though, a homogeneous injected
beam can yield a non-homogeneous output because of a Tur-
ing instability of the optical field [19, 20]. In these conditions,
several spatial structures like rings, rolls and hexagonal pat-
terns [19], and even the formation of cavity solitons [20, 21]
can be found depending on the system parameters. These pat-
terns break the homogeneity of the excitable medium, thus

they may affect the propagation of excitable waves.

Here we report the first experimental observation of ex-
citable optical waves in semiconductor microcavities. Al-
though being similar to those observed in biological and
chemical systems, these excitable optical waves are self-
confined. This is due to a new dynamical scenario, where a
stationary Turing pattern controls the propagation of waves
in an excitable medium, thus bringing together the two
paradigms of dynamical behaviour (waves and patterns) in ac-
tive media. It has recently been predicted that the two phe-
nomena may appear simultaneously [22], but no observations
of such a behavior have been reported. We also show that
a physical model of our system reproduces the experimental
results.

In our experiment we inject monocromatic light into an
electrically pumped 54 pm oxide-confined VCSOA operating
close to 980nm. The active region consists of three quantum-
wells (QW) embedded between two Bragg mirrors consisting
of 17 n-type and 30 p-type pairs. The input beam (diame-
ter ~ 50 pm) is provided by a tunable external-cavity laser
(for details see Ref. [23]). A CCD camera records a time-
averaged image of the output facet of the VCSOA, while a
fast photodetector is used to monitor the corresponding total
output intensity.

By increasing the VCSOA bias current, we pass from a sta-
ble state of low output power (lower solid trace in Fig. 1 a)toa
stable state of high output power (higher solid trace) crossing
a regime of self-sustained oscillations (dotted trace), typical
in FitzHugh-Nagumo systems [15, 16]. Accompanying this
transition, there is a change in the output profile of the system
(see Fig. 1 b-d): the low-power state is quite homogeneous,
but the high-power state displays a bright spot. The image of
the self-oscillating regime (Fig. 1 c) appears as an interme-
diate situation between the low- and high-power states due to
the temporal average performed by the CCD camera hence re-
vealing that the observed pulsation is not an oscillation of the
whole system. This is due to a Turing instability of the optical
field in the upper branch, where a localized spatial structure
develops [20]. Further increasing the current leads to a pat-
tern of modulated rings whose modulation pitch decreases as
the bias current increases (Fig. 1 e-h) [24]. Although these
patterns are influenced by the transverse boundary conditions,
they have a nonlinear origin: if the injected optical power is
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FIG. 1: a) Time traces corresponding to the following states: lower
and upper state (solid traces) and self-oscillating state (dotted trace).
Below: transverse cuts of the amplifier output and their correspond-
ing near field CCD images in the (b) low power state (bias current
177.2 mA), (c) self-oscillating state (bias current 177.6 mA) and (d)
high power state (bias current 178.1 mA). (e)-(h): near field CCD im-
ages for current values: 179.6, 183.1, 187.9, 192.6 mA. The injected
wavelength is 982.1 nm and the injected power is 1 mW

decreased in e.g. Fig. 1h, the modulation of the rings disap-
pears.

The same sequence can also be observed by fixing the bias
current and decreasing the injected wavelength, which can be
understood as the effect of thermal tuning of the cavity reso-
nance due to Joule heating of the VCSOA.

When the system is in its low-power state, excitable up-
ward pulses in the system’s response can be triggered by ap-
plying fast perturbations to the bias current (see Fig. 2). The
response remains spatially confined (see inset), displaying a
spot —similar to that of the self-oscillating regime in Fig. 1
— which may correspond to a confined target wave, where
excitable pulses arise at one spatial point and then they prop-
agate away from it while loosing amplitude. In order to check
this hypothesis, we simultaneously monitor the output inten-
sity coming from two different points of the VCSOA with two
fast avalanche photodetectors (APD), one fixed at the center
of the bright spot, while the other can be displaced through
the VCSOA transverse plane. The delay between the traces of
the APDs increases with the distance between the two mon-
itored points (see Fig. 3 a), thus confirming our hypothesis.
The delay time (at 50% of the pulse height) is proportional
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FIG. 2: Excitable pulse emitted by the amplifier in response to an
external perturbation. The dashed line shows the time when the per-
turbation is applied. Inset: CCD image of the transverse profile of
the output obtained by applying a periodic sequence of fast pertur-
bations (8 ns duration; 100 mV amplitude, corresponding to a bias
current variation of 2 mA); 1.0 us repetition period).

to the distance between observed points in the middle region,
but it seems to saturate just before the pulses die (see Fig. 3
b)). This may indicate a spatial inhomogeneity of the sys-
tem [25], corroborated by the decrease in the pulse amplitude
as the monitored points get further away. For higher injected
power, the self-confined excitable optical waves disappear and
bistability between the homogeneous low power state and a
localized structure is observed. This is one of the characteris-
tic of cavity solitons recently observed in these devices [21].
Then, the self-confined excitable waves could be related to
the (temperature induced) instability of cavity solitons. These
observations have been reproduced in another VCSOA thus
confirming the reproducibility of the experimental results.

Excitable dynamics in semiconductor microcavities arise
from the coupling of temperature with the optical and mate-
rial variables [15, 16]. In [16], a model was developed for a
similar system without spatial degrees of freedom: excitabil-
ity appears because the interaction between the field and the
carriers modifies the power dissipated into the cavity and thus
it makes the temperature vary. Temperature variations in turn
induce a refractive index change that shifts the cavity reso-
nances, and hence the amount of stimulated emission in the
cavity and the dissipated power. This effect may lead to self-
oscillations and excitable behaviour of the optical power in-
stead of the expected optical bistability [19]. The model in
[16] can be generalized by including carrier and thermal dif-
fusions and field diffraction. We consider the injection of
a monochromatic field at optical frequency w in normal in-
cidence over the first mirror of the VCSOA. We solve the
travelling-wave equations for the left- and right-propagating
fields inside the cavity (length L), and we impose the bound-
ary conditions at the cavity mirrors and at the QW (located at
zp) in the paraxial approximation. We assume that the field
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FIG. 3: a) Rising edge of the excitable pulse in different spatial points
after the application of a perturbation to the VCSOA current: the
dotted line shows the time when the perturbation is applied, the solid
trace is the reference excitable pulse in the center of the bright spot
(inset of Fig. 2) and the dashed traces represent the pulse in differ-
ent spatial points as the distance from the spot center increases. b)
Corresponding time delay at 50% of the rising edges as a function of
distance from the center of the bright spot.

evolves on a time-scale much shorter than those for the carrier
density and the temperature, so that it adapts instantaneously
to the distributions of these two magnitudes. Upon suitable
scaling, the resulting model reads

1, 1—ia
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where F'is the intracavity optical field at the QW plane, G
is the single-pass gain, and ¢ = nw/c is the propagation
wavevector of the injected field F; inside the cavity. In these
equations we have defined
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where V3 = 02 + 92 denotes the transverse laplacian, r, =
(z,y) and Go(rL) is the gain distribution due to current in-
jection into the device which we take homogeneous inside a
disk of radius R. L (Ly) is the diffusion lengths for the
carriers (temperature). Finally, r; (r}) and ¢; (¢;) denote the
internal (external) reflection and transmission coefficients of
each cavity mirror. For the sake of simplicity we consider
a symmetric VCSOA structure, with identical Bragg mirrors
and zp = L/2. This assumption allows us to reduce the num-
ber of parameters to be explored but it does not affect the gen-
erality of our results.

In this model, excitability arises from the dynamics of ¢
on the slow thermal time-scale +;,'. The dynamical charac-
ter of ¢ is due to the temperature sensitivity of n, assumed to

be linear. In the absence of optical field, ¢ would evolve to-
wards a stationary distribution go (r ), determined both by the
Peltier element fixing the temperature of the device’s substrate
and by Joule dissipation. However, the power locally dissi-
pated in the device increases due to optical injection while it
is reduced due to stimulated and spontaneous emission; the
contribution of these effects is given by the local energy bal-
ance H = A (|F;|> — |F,|? — |F1|?) — BG, where BG is the
power emitted by spontaneous emission. F;. ; are the reflected
and transmitted fields, which are found to be
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Regarding the field and gain dynamics, our model is equiv-
alent to that in [26] when the optical field is adiabatically elim-
inated. The main differences are that: i) in our case we con-
sider a local energy balance for the optical power dissipated
in the device, H, while in [26] only the spontaneous emission
contribution BG was accounted for; and ii) that we neglect the
temperature dependence of the parameters describing the sus-
ceptibility of the active medium since we are assuming that the
temperature variations in the QW plane are relatively small.

The numerical integration of the model reproduces the es-
sential qualitative features observed in the experiment. A tran-
sition from a low power state with almost uniform intensity
profile to an inhomogeneous high power state is observed as
G| or the injected frequency increase. The inhomogeneity of
the high-power state is due to the Turing instability of the op-
tical field that leads to pattern or soliton formation in this sys-
tem. Inbetween these two states, a localized self-oscillatory
regime appears.

When in the low power state, the system displays localized
excitable response to global pulses in G, and propagation ef-
fects appear (see Figs. 4 a and 4 b): the initially narrow pulse
(see time t;) broadens as it propagates to the outer regions
(times ¢, and t3), and the death of the excitable pulse also
begins at the center (¢4) and then it propagates away. More-
over, the amplitude of the pulse diminishes as the outer region
is approached. This indicates a spatially varying excitability
threshold —due to the non uniformity of the optical inten-
sity induced by the modulational instability— which confines
the excitable wave. Since the propagation velocity of an ex-
citable wave depends on the excitability threshold of the sys-
tem, the delay with respect to the central point in the outer
region should then saturate, as observed in the numerical re-
sults (see Fig. 4 c¢) and also in the experiment (Fig. 3 b).
The initial slow increase of the delays (first three points in
Fig. 4 c) is due to the fact that in these points the excitable
wave is still rising; this effect is not clearly visible in the
experiment due to the low spatial resolution of the measure-
ment. Finally, we would like to remark that by neglecting the
diffraction term (V2 F' = 0), i. e. without the aforementioned
modulational instability, the excitable waves are not confined
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FIG. 4: a) Transverse cut of the intensity at different times (¢o < ¢1
<ty < t3 < t4) after a perturbation is applied. b) The corresponding
excitable response in different positions. The dashed line shows the
time when the perturbation is applied. c) Time delay calculated at
50% of the rising edges as a function of distance from the point where
the pulse is born. Parameter values are: Gy =0.057, o =3.37, F; =
6051072, A=08,r1 =72 =-09, B=0,a=3, v, =351072,
L% /L2, =0.25. The perturbation amplitude is 5 1072, R = 40.

and they propagate through the whole space as in a common
reaction-diffusion system.

In conclusion our experiment gives direct evidence of ex-
citable propagating phenomena in semiconductor microcavi-
ties. These excitable waves, however, become self-confined
to a finite region of the transverse plane due to an effective

spatial variation of the excitability threshold arising from the
modulational instability of the optical field in the high-power
state. Thus, our results provide a connection with the observed
biological and chemical waves while extending previous stud-
ies to the case of a modulationally unstable upper state. The
connection between self-confined excitable waves and cavity
solitons will be the subject of future experimental and thoret-
ical studies.
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