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Mismatch-Induced Bit Error Rate in Optical Chaos
Communications Using Semiconductor Lasers

With Electrooptical Feedback
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Abstract—We analyze the influence of parameter mismatch
between emitter and receiver systems on the bit error rate of an
optical chaos communication scheme. Intensity hyperchaos is gen-
erated in the system by semiconductor lasers with electrooptical
feedback. We find analytical predictions for the dependence of
the bit error rate with the amplitude of the various mismatches
and the statistical properties of the hyperchaotic carrier. A good
concordance is found with numerical and experimental results.

Index Terms—Bit error rate (BER), electrooptical feed-
back, optical chaos communications, semiconductor lasers,
synchronization.

I. INTRODUCTION

AKEY issue in optical chaos communication schemes
[1] is to quantify the detrimental influence of parameter

mismatch on the quality of the decrypted message, since the
little discrepancies between the emitter and receiver system
parameters unavoidably give rise to sustained deviations from
the perfect synchronization manifold. In the temporal domain,
the related parasite oscillations correspond to the instantaneous
synchronization error, and they are sometimes referred to as
mismatch noise.

An important characteristic of the mismatch noise is that it is
not a random noise: it is rather a chaotic noise, i.e., determin-
istic, even though unpredictable. Generally, this chaotic noise
may be divided into three main contributions. The first one is the
deviation chaotic noise, which is equal to zero when the emitter
and the receiver are identical, and whose amplitude generally
grows proportionally to the mismatch [2], [3]. The second
contribution is the bursting chaotic noise, whose origin relies
on the local unstable invariant sets eventually embedded within
the globally stable synchronization manifold [4]. Although
this bursting noise vanishes for perfect matching, it increases
drastically with the amplitude of the mismatches, and it can be
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quite significant even in case of quasi-perfect matching. These
two contributions are independent of any message insertion:
the first one is associated with system matching accuracy while
the second one is associated with synchronization robustness.
The third and last contribution, to which little attention has
been paid in the literature, is the nonlinear mixing chaotic
noise, and it is directly related to the encryption/decryption
process. It arises when the chaotic carrier nonlinearly mixes
the former two mismatch noise contributions with the message.
Consequently, studying the influence of parameter mismatch
in a chaos communication scheme requires to take into ac-
count five key features: the system itself, the amplitude of the
various mismatches, the type of coupling between emitter and
receiver, the characteristics of the message, and at last, the
encryption/decryption process.

The quality of a digital communication link is almost always
evaluated in terms of bit error rate (BER). The issue of BER
efficiency in optical chaos communication schemes is quite
scarcely addressed in the literature. Some results can be found
in [5]–[8]. A more detailed numerical study has been performed
by Liu et al. for different laser-chaos communication systems
(optical injection, optical feedback, optoelectronic feedback)
with various encryption schemes (chaos shift-keying, chaos
masking, additive chaos modulation) [9]. In general, the BER
depends on several elements such as the random noise in the
emitter and receiver systems, dispersion and nonlinear effects
in the fiber communication channel, and of course parameter
mismatch between the emitter and receiver.

The aim of this work is to study the mismatch-induced BER
for an optical communication scheme based on intensity chaos
generated by a delayed nonlinear electrooptic oscillator. We first
define an appropriate signal-to-noise ratio (SNR) for which we
will give an analytical approximation. In a second step we relate
this SNR to the BER. We will then compare the theoretical ap-
proximations with numerical simulations and experimental re-
sults. Finally, this will lead to a discussion on the possible ways
to improve the BER of the system.

II. SYSTEM

The electrooptical chaos communication scheme under study
is represented in Fig. 1. The architecture and principles of the
chaos generator are inspired by the pioneering work of Ikeda
[10] on nonlinear delay dynamics in Optics, and by the exper-
imental work by Neyer and Voges [11]. The encryption and
decryption scheme is detailed in [12], and it corresponds to
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Fig. 1. Experimental setup.

a significant improvement of the setup reported in [13]. The
chaotic transmitter consists of a closed electrooptical feedback
loop whose main components are the following.

• A LiNbO 12.5-Gb/s integrated electrooptic
Mach–Zehnder (MZ) modulator, for which is
the radio-frequency (RF) half-wave voltage, and
is the bias electrode half-wave voltage. A voltage
is applied to the bias electrode, and a large amplitude
voltage is applied to the RF electrode to ensure a
strong nonlinear dynamical operation of the electrooptic
interferometer.

• A continuous-wave (CW) semiconductor laser oper-
ating at 1550 nm and serving as the light source feeding
the MZ; its constant optical power is referred to as

, and the MZ optical output can thus be written as
, where is the

electrooptic voltage applied to the MZ.
• A second semiconductor laser with an identical or

close wavelength (with respect to the optical spectrum
spreading) that is directly modulated by the digital mes-
sage to be hidden in the chaotic carrier. The 0 bits are
assumed to correspond to a null optical power, and the 1
bits have an optical power . The parameter can be
considered as a measure of the masking efficiency of the
message within the chaotic carrier. The binary message
light beam can thus be written , where takes
the values 0 or 1.

• A 2 2 50/50 fiber coupler serving as an all-optical mean
for mixing the message within the chaos. The chaos and
the message optical beams are assumed to be added in in-
tensity, i.e., without interfering one with each other. This

can be ensured, for example, by properly adjusting orthog-
onal relative polarizations of the two beams in the fiber
coupler; note that a fast polarization scrambler should be
used before transmission of the chaos + message light
beam, to prevent eavesdropping through polarization sep-
aration. One output of the fiber coupler is used to transmit
the chaos encoded light beam to the receiver, while the
other output serves as a feedback signal in the emitter for
the generation of the chaotic oscillations.

• A fiber delay-line is used to shift in time the optical signal
with a delay .

• An amplified photodiode detects the feedback chaos +
message light beam, and converts it into an electrical
signal with a sensitivity .

• An RF driver with a gain is finally used to close the
chaotic oscillation loop, applying the previous electrical
signal to the RF MZ electrode.

For modeling purposes, the overall normalized electrooptic os-
cillator gain is expressed as . It is usually
considered as the bifurcation parameter to be tuned in order to
observe different dynamical regimes among which the chaotic
ones are found. Practical values of the bifurcation parameter
vary between 5 and 10, thus allowing the chaotic regimes re-
quired for encryption. These gain values are required for a high
amplitude of the electrooptic voltage, thus allowing a highly
nonlinear dynamical operation of the MZ interferometer (typi-
cally, two to three constructive and destructive interference con-
ditions are scanned dynamically, since ). The pa-
rameter corresponds to the operation point
of the nonlinear interference transfer function. The normalized
dynamical variable proportional to the electrical signal applied
to the MZ RF electrode is (see Fig. 1). The
dynamics of the chaotic oscillations is assumed to be ruled by
the linear filtering of the electronic feedback, which is modeled
by a second-order bandpass filter with a low cutoff character-
istic response time , and a high cutoff characteristic response
time . The differential equation ruling the emitter dynamics is
thus written as

(1)

where is the nonlinear function involved in
the dynamical process, and with

is the transmitted optical signal corresponding to the
message superimposed to the chaos. The inloop addition of the
message might change significantly the chaotic oscillations with
respect to the message-free chaotic oscillations, depending on
the actual masking efficiency used to tune the relative weight
of the message compared to the chaos.

The receiver is constructed similarly to the emitter, except
it is organized in an open loop architecture. The received op-
tical signal is split first into two branches using a variable fiber
coupler. One output of the coupler is directly detected by a fast
photodiode, thus giving an electrical signal

, where is a factor depending on the CW optical
power of the emitter semiconductor laser, on the receiver optical
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splitting ratio, and on the fast photodiode sensitivity. The other
coupler output is processed in a similar way than at the emitter
after the feedback output of the 50/50 fiber coupler, in order to
provide at the receiver a replicated electrical chaos to be
applied to the receiver MZ modulator. This receiver electrical
chaos is ruled by

(2)
where depends on the receiver optoelectronic gain between
the variable fiber coupler and the MZ modulator electrical input.
At the output of the receiver MZ driven by the electrical chaos
signal, the photodiode generates a chaotic signal corre-
sponding to the locally replicated optical chaos

, where depends on the receiver CW laser
power and on the photodiode sensitivity. The latter signal is then
added to the direct detection photodiode output through
a RF power combiner. The power combiner output is thus ex-
pressed as

(3)

The power combiner output achieves chaos cancellation and op-
timal message retrieving under the following conditions:

• perfect matching , , , and ,
leading to the MZ driving signal replication ;

• adequate biasing of the receiver MZ following
, so that ;

• proper tuning of the optical power of the receiver laser,
so that .

The fulfillment of these three conditions leads to
, and the dc value (here equal to ) is typically can-

celed by the bandpass filtering of usual high-speed preamplified
photodiodes as the ones used in the experiment.

According to this model, we therefore have five control pa-
rameters: the time delay , the nonlinear feedback strength ,
the off-set phase , the low cutoff response time , and the high
cutoff response time . Note that the primes indicate the receiver
parameters, which are in practice always slightly different from
the emietter ones.

III. DETERMINATION OF THE SNR

The message to be encrypted in this optical chaos commu-
nication scheme is a nonreturn-to-zero (NRZ) polar sequence
of bits at a fixed bit rate . At the decryption stage in the re-
ceiver, the two possible discrete values of this binary signal are
0 for a 0 bit, and for a 1 bit. For mathematical commodity,
we introduce the signal-to-carrier ratio as , where

is the quadratic average amplitude of the
carrier. In fact, because in the hyper-
chaotic regime.

The instantaneous decrypted signal at the power combiner
can be decomposed following

(4)

where and

(5)

is the mismatch noise. It is important to note that in our setup,
the mismatch noise is different from the synchronization
error , even though does (like )
uniformly vanish to zero in case of perfect matching. For mis-
matched emitter and receiver, neither the synchronization error
nor the mismatch noise are zero.

In the small mismatch approximation, the mismatch noise
can be approximated as

(6)
where . From the above equation, the root
mean square (rms) amplitude of can also be approximated
as

(7)

where is the amplitude of the mismatch noise relatively to the
rms amplitude of the hyperchaotic carrier. We have shown in
a former work [14] that for small mismatch with

(8)

where stands for the mismatch related to a given
parameter . The rms amplitude of the mismatch noise can,
therefore, completely be determined analytically with (7) and
(8). It appears that for the physical understanding of the var-
ious features of the system, all amplitudes (namely, , , and )
should preferentially be expressed relatively to the rms ampli-
tude of the hyperchaotic carrier.

From (4), we can consider that the convenient SNR is the
peak-to-peak signal-to-rms mismatch noise ratio following

SNR (9)

Some important remarks can be made at this point. The first one
is that there is no bursting mismatch noise contribution in this
electrooptical communication scheme. The reason of this ab-
sence is that the receiver has a passive (without feedback) non-
linear delayed dynamics, driven by the “chaos + message” op-
tical signal. Therefore, the synchronization manifold is uncondi-
tionnaly and uniformly stable. Consequently, neither the signal
nor the mismatch noise can destabilize the receiver. The second
remark is that the encryption/decryption process we are using
does not introduce any nonlinear mixing of the message with
the mismatch noise: it only adds them linearly, even though the
message is still nonlinearly mixed with the hyperchaotic carrier.
This is a key property that allows for an analytical definition of
the SNR. Notice that (4) and (5) implicitly assume that the mis-
match noise with or without message remains the same.
Equation (9) gives the SNR when no filter is used at the decoding
output and, therefore, turns to be independent of the bit rate.
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Therefore, the bit rate of the message could be as large as the
bandwidth of the hyperchaotic carrier. If the full chaotic band-
width is not used, one can practically use a filter at the output,
so that the fastest chaotic fluctuations of could be filtered
out without distorting the message, thus improving the SNR. In-
deed in that case, (9) provides a lower limit of the SNR. In the
general case where a significant amount of mismatch noise is in-
duced by the nonlinear mixing, the SNR cannot be determined
as straightforwardly as we did, because of the strong correlation
between the noise and the message, and moreover, severe limi-
tation of bit rate is generally observed in these cases.

IV. DETERMINATION OF BER

We now use the previous results to derive analytically the
BER [15]. Generally, each bit is evaluated at a sampling time

chosen at half of the bit period. Since the binary message is
a NRZ polar sequence of bits relatively to its mean value
(which is canceled together with in the process of
decryption), the digital decision level system considers that an
incoming bit is a 1 if and is a 0 otherwise. A 1 bit is
mistaken as a 0 when , so that .
Similarly, a 0 bit is mistaken as a 1 when .
Since a 0 precludes a 1 appearing (and vice-versa), and since
both of them have a 1/2 probability of appearance, the BER may
be evaluated as the relative sum of the mistaken bits 1 and 0
following

BER Prob Prob

(10)
These probabilities can be evaluated from the probability den-
sity function (pdf) of the mismatch noise . It is convenient
to scale this pdf with its variance as

(11)

where is the center value of . The scaled pdf has exactly
the same shape as the original pdf but with zero mean value and
variance 1. Throughout the whole paper, the tilde over a pdf will
denote such scaling. From (9) –(11), it can therefore be deduced
that

BER

(12)

The key issue is, therefore, the determination of the pdf of
the mismatch noise.

It can be seen in Fig. 2(a), the variable displays a hyper-
chaotic behavior when the nonlinear feedback gain parameter

is high enough, as it is usual for that kind of delayed system
[16], [17]. The corresponding pdf is almost Gaussian [Fig. 2(b)],
and the main qualitative difference between both is that unlike
the Gaussian pdf, the pdf of does naturally not have infinite

Fig. 2. Numerical simulations of the electrical chaos x(t) and its pdf (solid
line). The pdf is resulting from 180 000 random samples of the time trace. Its
Gaussian counterpart has also represented (dashed line) for comparison. The
parameters used for the simulation are � = 10,� = 0:1,T = 40 ns, � = 5 �s,
and � = 25 ps. This set of parameters is compatible with the experimental ones,
and it will be used throughout all the paper.

Fig. 3. PDFs for the synchronization error and for the mismatch noise. The
upper row corresponds to the pdf of the synchronization error �(t), while the
lower row corresponds to the pdf of the mismatch noise n(t). The left column
corresponds to the pdfs for simultaneous ��=� = 0:005 and �� = 0:004
mismatches (tuneable mismatches), while the right column corresponds to the
pdfs for simultaneous ��=� = 0:02 and ��=� = 0:015 mismatches (filter
mismatches). In all cases, a photodetector mismatch of �K=K = �0:002
has been considered (with K = 1:0). The Gaussian counterparts have also
be represented in dashed lines. In all cases, the pdfs are the results of 180 000
random samples of the related time traces.

tails. Therefore, it can be considered with a good approximation
that the scaled pdf of the electrical variable is very close to
its Gaussian counterpart

(13)

In Fig. 3, the pdfs of the synchronization error and of the
mismatch noise have been depicted for various kind of mis-
matches. We have divided the mismatched parameters into two
groups: the so-called “tuneable mismatches” corresponding to

and on one hand, and the “filter mismatches” corresponding
to the response times and on the other. We have set to
0 because the delay-time parameter can be matched with a
relatively high precision at the experimental level. For the syn-
chronization error, it is noticeable that the maxima of the pdfs
are significantly lower than the one of their Gaussian counter-
part, inducing a noticeable quantitative distortion. On the other
hand, for the mismatch noise, one can notice that a better quanti-
tative similitude is observed with the Gaussian, but qualitatively
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important differences can be identified. For example, the pdfs of
the mismatch noise are peaky, and the two peaks correspond to
the two contributions in (6).

The above analysis indicates that an analytical tool is needed
for the comparison of these pdfs relatively to the “reference”
Gaussian pdf. The best tool to investigate the effect of the non-
Gaussianity of a pdf is the Gram–Charlier expansion [18]. Any
scaled pdf can be expressed as a function of a Gaussian and its
derivatives following the infinite series

(14)

with . Knowing that

(15)

the Gram–Charlier coefficients can be recovered through

(16)

where are Hermite polynomials. From a purely mathemat-
ical point of view, (16) enables to recover the coefficients
owing to the orthogonality of Hermite polynomials, as well as
Fourier coefficients are recovered owing to the orthogonality of
trigonometric functions. In the Gram–Charlier (GC) formalism,
any pdf is fully characterized by its coefficients, which are
uniformly equal to zero in case of a Gaussian pdf. It is inter-
esting to note that for ergodic systems, the GC coefficients are
linear combinations of the moments .
Since our hyperchaotic system can be considered as ergodic
[14], this property that transforms a complicated spatial inte-
gration problem into a simple temporal integration issue will be
used later for the GC coefficients computation.

Using both (12) and (14), the BER for a non-Gaussian mis-
match noise can, therefore, be evaluated as a function of its GC
coefficients following

BER BER SNR SNR (17)

where

BER erfc (18)

is the BER corresponding to a purely Gaussian noise, and

(19)

is the th correction of the Gaussian BER, weighted with the GC
coefficient . It may be interesting to note that the three special
functions involved in these equations (the complementary error
function erfc, the confluent hypergeometric function , and the

Fig. 4. Representation of the function 	 . The inset shows a zoom for an
argument between 0 and 6.

complete Gamma function ; see [19]) are usual tools when
the BER has to be evaluated analytically in optical and radio-
frequency communication systems [20]–[22].

According to (16), the GC coefficients rapidly decrease to
zero as is increased, so that high-order coefficients have less
relevance. Hence, only the first coefficients should be consid-
ered in a first approximation for the analytical BER evaluation.
Let us consider the first odd and the first even GC coef-
ficients. Typically, describes the asymmetry relatively to the
central value, and it is considered that noticeable asymmetry is
observed when , while corresponds to an
extreme asymmetry. On the other hand, describes the decay
to zero of the pdfs tails at infinity, in the sense that de-
notes a fast decay to 0, while indicates a slow decay to 0.

The function is uniformly equal to zero when is odd
[the denominator in (19) diverges to infinity], so that only the
even GC coefficients are involved in the BER evaluation at this
precision: in particular, the first corrective term relative to the
Gaussian BER-law will be SNR . For the mismatch noise

, numerical simulations indicate that , in
agreement with Fig. 3(c) and (d) where it can be seen that the
pdfs decay slower than the Gaussian to zero. To evaluate the
BER correction, we have also computed the function in
Fig. 4. One can notice that in terms of order of magnitude, no
significant deviation relatively to the Gaussian BER law should
be expected for SNR . More precisely, according to the
inset of Fig. 4, the BER in the system should be slightly smaller
than BER for SNR , and slightly greater that BER for

SNR . For SNR , the corrective term be-
comes significant comparatively to BER , so that we should
take higher order terms (starting from ) into account. How-
ever, the divergence to infinity of indicates that a drastic
qualitative change is to be expected for SNR . This drastic
change is in fact a “threshold effect”: since the pdf of the noise
has finite tails (unlike the Gaussian pdf), there is a limit of the
SNR above which the mismatch-induced BER drops to 0 ac-
cording to (12).

Numerical simulations completely support the above anal-
ysis. In Fig. 5, we have numerically evaluated the BER as a
function of the SNR for different configurations, varying the
bit rate and the origin of the mismatch. The BER is directly
measured from the numerical time trace. Two bit rates have
been considered, the OC-24 standard bit rate of 1.2 Gb/s, and
the OC-48 standard of 2.5 Gb/s. As in Fig. 3, we have divided
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Fig. 5. Numerical simulation for the dependence of the BER with the SNR.
Symbols correspond to numerical integration of (1) and (2) with a binary
message of 2 � 10 bits. Tuneable and filter mismatches are considered as
in Fig. 3.

the mismatched parameters into two groups, the tuneable mis-
matches corresponding to and on one hand, and the filter
mismatches corresponding to the response times and on the
other. For comparison purposes, we have also plotted the theo-
retical BER corresponding to a Gaussian pdf.

In agreement with our theoretical analysis, the BER is prac-
tically independent of the bit rate, and it does only weakly de-
pend on the origin of the mismatch. As the SNR is increased,
the qualitative behavior predicted from the SNR correc-
tive term is effectively observed: from a quantitative point of
view, there is no significative difference between the BER com-
puted numerically and the theoretical BER . Qualitatively, the
features predicted analytically are numerically recovered: one
can effectively notice that the simulated BER is slightly lower
than BER when SNR , and then turns to be slightly
higher than BER until the occurrence of the threshold effect.
However, in a realistic situation, even though the mismatch-in-
duced BER may drastically decrease, other sources of BER like
random noise or fiber distortions (induced by chromatic disper-
sion and nonlinearities) may become increasingly important for
such high SNR values.

V. EXPERIMENTAL RESULTS

In our experimental setup, the electrooptical modulators
were commercial LiNbO integrated Mach–Zehnder modu-
lators with a dc value of V, and an RF value (at
1 GHz) of V for nm. One should note
that it is the dc value of that is used to define the off-set
phase parameter , even though only the RF value is relevant
for the hyperchaotic generator. The coherent optical feeders of
these modulators were InGaAsP distributed feedback (DFB)
semiconductor lasers with a polarization maintaining pigtail,
designed for 10-Gb/s digital system equipments. The delay
lines were 8–m-long single-mode optical fibers yielding an
overall time delay of 40 ns. We also used a matched pair of
photodetectors with a gain of 2 V/mW. The amplification within
the nonlinear feedback loops was performed by a pair of RF
amplifiers with a gain of 18 dB and a bandwidth ranging from
30 kHz to 25 GHz.

Fig. 6 shows the experimental evolution of the Gram–Char-
lier coefficients when the power of the emitter feeder laser is

Fig. 6. Experimental evolution of the first odd (a ) and first even (a )
Gram–Charlier coefficients corresponding to the electrical variable x(t), when
the powerP of the emitter feeder semiconductor laser is continuously increased
from 0–7 mW (60 000 samples have been used for their computation). Note the
convergence to 0 as P is increased.

Fig. 7. Experimental time trace of the electrical variable x(t), and its related
pdf (without scaling), for a feeder laser power of P = 7 mW. The pdf has been
built with 60 000 random samples. The Gaussian pdf has also been represented
in a dashed line to facilitate the comparison.

continuously increased (note that it corresponds to an increase
of ). We have only plotted the first two GC coefficients. It can
be observed that for low input power, may reach at specific
points a noticeable asymmetry, while clearly indicates a pdf
structure which is quite far from a Gaussian. The system un-
dergoes a sudden change around mW after which the
pdf converges to a Gaussian ( and both converge to zero).
The chaotic dynamics is becoming strongly chaotic beyond that
point. In an Ikeda system, a similar chaotic behavior has been
interpreted as a superposition of quasi-independent processes,
leading to a quasi-pdf profile though the central-limit theorem
[16].

Fig. 7 displays the electrical hyperchaotic variable used for
encryption, as well as its related pdf. It can be noticed in the time
trace as well as on the pdf that for high values of the laser power
(7 mW), the hyperchaotic oscillations are practically Gaussian,
so that according to the theoretical analysis performed in the
previous section, the mismatch noise is also expected to present
the same features as in Fig. 3.

Fig. 8 shows the BER experimentally recorded for the 1.2-
and 2.5-Gb/s bit rates. The concordance with analytic and nu-
merical results is good, and the analytically predicted qualitative
features are recovered. However, some quantitative discrepan-
cies can be noticed above SNR , probably due to the random
noise present in the system.

It should be emphasized that up to SNR values as high as 11,
the experimental curves at 1.2 and 2.5 Gb/s are quasi-perfectly
superimposed, in complete concordance with our theory which
states that in first approximation, the bit rate has no influence on
the BER variation-law.

Finally, a threshold effect is still experimentally observed:
around SNR , the BER sharply drops to zero, or at least,
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Fig. 8. Experimental variations of the BER at the standard bit rates of OC-24
(1.244 16 Gb/s) and OC-48 (2.488 32 Gb/s). The experimental parameters for
the OC-24 curve are P = 5 mW, V = 0:34 V, P = 2:88 mW, and V =

3:42 V. Those of the OC-48 curve are P = 5 mW, V = 3:38 V, P =

2:97 mW, and V = 7:20 V.

to values that are far below . From a more global perspec-
tive, one can notice that above SNR , a small increase of the
SNR leads to a very strong improvement of the BER. This limit,
therefore, seems to be the target to reach for the fulfillment of the
BER requirements in standard optical communication systems.
However, for such high SNR values, the message does notice-
ably deform the pdf of the optical carrier, and thereby induce a
faster decay to 0 for the BER.

VI. CONCLUSION

In this study, we have investigated the influence of the mis-
match noise on the BER of an electrooptical chaos communica-
tion scheme. We have shown that the pdf of the hyperchaotic
carrier and the peak-to-peak-signal-to-rms-noise ratio are the
only relevant parameters for the BER evaluation. The non-Gaus-
sianity of the pdf associated to the mismatch noise can be ana-
lytically characterized by the Gram–Charlier coefficients, which
enable to evaluate the BER of the cryptosystem as a correc-
tion of the well-known erfc law corresponding to conventional
Gaussian noise.

An interesting issue is to find the way to improve significantly
the mismatch-induced BER, or equivalently, the SNR when it
is below the threshold value. A first solution would be to de-
crease as much as possible the value of the rms mismatch
noise. This issue has been addressed in a former work [14], and
optimal constraints have been derived for the various parameter
mismatches in view of the noise level reduction. A second op-
tion would be to increase the signal-to-carrier ratio , but this
solution might threaten the security of the encrypted message,
even though along that line, it has yet been shown that an eaves-
dropper directly tapping the communication channel achieves a
BER of only when the authorized chaos receiver achieves
a [12]. The two precedent options aim to improve directly
the ratio , i.e., the SNR. A third solution, sometimes used
in numerical and experimental studies, may be to filter the de-
crypted signal at the receiver. The design of an optimal filter
is not the purpose of this work, even though it seems at first
glance that an integrator or an averager synchronized with the

clock of the bit rate (to avoid the smoothening of the bit transi-
tions) would be fairly convenient. This work has demonstrated
that the pdf of the carrier and the one of the mismatch noise
also play a key role in the cryptosystem’s performance and that
the existence of a threshold value of the SNR above which the
BER drops drastically is particularly interesting from a practical
standpoint. However, the influence of the various possible pdfs
on the security of the communication scheme [23] is an impor-
tant issue that is still to be investigated.
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