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Abstract

Here we study a noise-induced transition when the system is driven by a noise source taken as colored and non-Gaussian.
We show—using both, a theoretical approximation and numerical simulations—that there is a shift of the transition as the
noise departs from the Gaussian behavior. Also, we confirm the reentrance effect found for colored Gaussian noise and show
the behavior of the transition line in the phase-like diagram as the noise departs from Gaussianity in the large correlation time
limit.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

During the last three decades a wealth of research results on fluctuations or noise have led us to the recognition
that in many situations noise can actually play a constructive role that induces new ordering phenomena. Some
examples are stochastic resonance in zero-dimensional and extended systems[1–3], noise-induced transitions[4],
noise-induced phase transitions[5,6], noise-induced transport[7–10], noise sustained patterns[11], etc.

Most of the studies on the noise-induced phenomena indicated above assume that the noise source has a Gaussian
distribution (either white or colored). In addition to the intrinsic interest in the study of non-Gaussian noises, there
are some experimental evidences, particularly in sensory and biological systems[12], indicating that at least in
some of these phenomena the noise sources could be non-Gaussian. The use of non-Gaussian noises in studies on
noise-induced phenomena is scarce mainly due to the mathematical difficulties[13]. This is in contrast with the
existence of some analytical tools when working with Gaussian (particularly white) noises.

Here we present some results on one of those noise-induced phenomena when driven by a noise source taken as
colored and non-Gaussian. It corresponds to anoise-induced transitionlike those discussed in[4]. The problem we
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discuss here corresponds the so-calledgenetic modelwhich follows from a particular biological modeling or from a
chemical reaction[4,14]. In Ref.[15] the effect of a colored Gaussian (Ornstein–Uhlenbeck) noise on that model was
analyzed in detail and a novel reentrance phenomenon in the phase diagram was found. In order to study the effect
that the non-Gaussian nature of the noise can have in the transition, we have used here a particular distribution[16]
whose departure from the Gaussian behavior is governed by a parameterq: while q = 1 corresponds to Gaussian
noise, the valueq > 1 produces a long tail distribution andq < 1 gives a cut-off distribution. Such a distribution
is based on the generalized thermostatistics proposed by Tsallis[17] which has been widely applied to a variety of
physical systems (for a state of the art see[18]). As discussed for other noise-induced phenomena in[19], we have
found that the departure from the Gaussian distribution for the noise produces a strong effect. In this case such an
effect corresponds to an anticipation of the transition when the distribution has long tails, and to a retardation when
it is cut-off. This effect could have interesting consequences in the case of noise-induced-phasetransitions[5,6].

In the next section we briefly discuss the form and properties of the non-Gaussian noise source. After that, we
present the model we analyze here and a simple analytical approximation to treat the non-Gaussian noise that allows
us to determine some of the general features of the phase diagram. We continue discussing numerical simulations
that support and extend the theoretical results. In the last section we draw some conclusions.

2. Non-Gaussian noise and its properties

We start considering the following general form of a Langevin equation:

ẋ = f(x) + g(x)η(t). (1)

As described inSection 1, we assume that the noise termη(t) has a non-Gaussian distribution. More precisely, we
consider thatη(t) is a Markovian process generated as the solution of the following Langevin equation[16]:

η̇ = −1

τ

d

dη
Vq(η) +

√
2D

τ
ξ(t), (2)

beingξ(t) a standard Gaussian white noise of zero mean and correlation〈ξ(t)ξ(t′)〉 = δ(t − t′), and

Vq(η) = D

τ(q − 1)
ln

[
1 + τ

D
(q − 1)

η2

2

]
. (3)

Although we believe that our results are quite general, such a particular form for the noiseη(t) allows us to easily
control the departure from the Gaussian behavior by changing a single parameterq. D andτ are noise parameters
related to the noise intensity and the correlation time, as we now detail. The stationary properties of the noiseη,
including the time correlation function, have been studied in[20] and here we summarize the main results. The
stationary probability distribution is given by

Pst
q (η) = 1

Zq

[
1 + τ

D
(q − 1)

η2

2

]−1/(q−1)

, (4)

whereZq is the normalization factor. This distribution can be normalized only forq < 3. The first moment,〈η〉 = 0,
is always equal to zero, and the second moment,

〈η2〉 = 2D

τ(5 − 3q)
, (5)

is finite only forq < 5/3. Furthermore, forq < 1, the distribution has a cut-off and it is only defined for|η| < ηc ≡√
2D/τ(1 − q). Finally, the correlation timeτq of the stationary regime of the processη(t) diverges nearq = 5/3
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and it can be approximated over the whole range of values ofq asτq ≈ 2τ/(5−3q). Clearly, whenq → 1 we recover
the limit of η being a Gaussian colored noise, namely the Ornstein–Uhlenbeck process,ξou(t), with correlations
〈ξou(t)ξou(t

′)〉 = (D/τ) e−|t−t′|/τ and probability distributionPst(ξou) = Z−1 e−(τ/2D)ξ2
ou.

In Ref. [20], an effective Markovian approximation to the processη via a path integral procedure was obtained,
that is analogous to the “unified colored noise approximation” obtained in[21] for the case of Ornstein–Uhlenbeck
noise. Such an approximation allowed us to get quasi-analytical results for the mean-first-passage time or transition
rate. These results and its dependence on the different parameters in the case of a double well potential were
compared with extensive numerical simulations with excellent agreement. That approximation was also exploited
to study stochastic resonance with theoretical results[22] that are in very good agreement with experimental ones
[23].

3. q ≈ 1 approximation for the non-Gaussian noise

The “effective Markovian approximation” introduced in Ref.[20] and indicated above has been shown to have
some drawbacks. As discussed in[20], such an approximation renders a non-normalizable stationary probability
distribution function,Pst

q (η). This seems to be a general characteristic of such an approximation that, at least in
the case discussed in[20], was solved introducing an adequate and controlled cut-off. However, it is not clear
that such a methodology could be always used, and particularly for the models we can analyze in relation to
noise-induced transitions. Hence, for the kind of models we use in order to study the effect of non-Gaussian noises
on a noise-induced transition we have resorted to a more simple, albeit physically reasonable, approximation. Our
aim is to analytically study the region|q − 1| � 1 (both forq < 1 andq > 1), with the idea that in such a region
the non-Gaussian noise will only slightly depart from the Gaussian behavior, but will show some of the main trends
of theq �= 1 region. Hence inEq. (2)we adopt

1

τ

∂Vq(η)

∂η
= η

τ

[
1 + τ

D
(q − 1)

η2

2

]−1

≈ η

τ

[
1 + τ

D
(q − 1)

〈η2〉
2

]−1

≡ a(τ)η (6)

with

τeff = 2(2 − q)

5 − 3q
τ. (7)

This implies a renormalized (Gaussian) Ornstein–Uhlenbeck noise where the effective correlation time is indicated
above (Eq. (7)), and the associated effective noise intensity isDeff = (2(2−1)/(5−3q))2D. Clearly, forq → 1, we
haveτeff → τ andDeff → D, as could be expected. Using this form of the noise we proceed to study the problem
in Eq. (1)in the neighborhood ofq ≈ 1.

Thegenetic modelis described by the following equation[4,14,15]:

ẋ = 1
2 − x + λx(1 − x) + x(1 − x)η(t), (8)

and, according to the discussion above, we consider in this work thatη(t) is a non-Gaussian noise described by
Eqs. (2) and (3).

The analytical treatment simplifies if we make the change of variables

y = ln

(
x

1 − x

)
, (9)

so that the original multiplicative stochastic differentialequation (8)transforms into a new one but now with an
additive noise
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ẏ = − sinh(y) + λ + η(t). (10)

From now on, as in Ref.[15], and in order to simplify the algebra, in what follows we adoptλ = 0.
The use of the (Gaussian-like) approximationEq. (6) (that we reiterate could be valid only for|q − 1| � 1)

together with the “unified colored noise approximation”[21], yields

ẏ ≈ f(y)
1

[1 − f ′(y)/a(τ)]
+ 1

τa(τ)

1

[1 − f ′(y)/a(τ)]
ξ(t) (11)

with f(y) = − sinh(y). This result can be obtained in two ways: (a) Applying a direct adiabatic-like elimination
procedure to the Langevin system given byEq. (10)andEqs. (2) and (6) [21]. That is, taking the derivative ofEq. (10)
with respect tot and setting̈y = 0. (b) A formal one, through the application of the path-integral formalism to the
indicated non-Markovian Langevin equations, supplemented with a consistent Markovian approximation scheme
[24].

Since, by the use of these “drastic” approximations, the problem has been reduced toEq. (11)which contains
a white, Gaussian, noise, it is straightforward now, using standard techniques, to obtain the stationary probability
density function. For the original variablex, it reads

Pst(x) = N exp[F(x)], (12)

whereN is a normalization constant and

F(x) = − 1

8D

(
5 − 3q

2 − q

)2 1 − 2x + 2x2

x(1 − x)

(
1 + τ(2 − q)(1 − 2x + 2x2)

2(5 − 3q)x(1 − x)

)

+ ln

[
1 + τ(2 − q)(1 − 2x + 2x2)

(5 − 3q)x(1 − x)

]
− ln[x(1 − x)]. (13)

A noise-induced transition[4] appears when this density function changes from being unimodal to bimodal. More
specifically, the pointx = 1/2 changes from being a maximum to being a minimum. The condition of extremum
at x = 1/2 and the condition for finding the boundary separating the regions wherex = 1/2 is a maximum or a
minimum yield

D(τ) = 1

2

(
5 − 3q

2 − q

)2 (
1 + 2 − q

5 − 3q
2τ

)2 (
1 + 2 − q

5 − 3q
6τ

)−1

, (14)

such that for a fixedτ, the distribution is bimodal forD > D(τ) and it is unimodal forD < D(τ). This last expression
can be written in terms ofDeff andτeff as

Deff(τeff) = 2(1 + τeff)
2(1 + 3τeff)

−1, (15)

that has the same form found in[15] for the caseq = 1. Clearly, in the limitq → 1, this expression reduces to the
indicated result, i.e.:D(τ) = 2[1 + τ]2[1 + 3τ]−1.

Fig. 1 plots theD(τ) boundary (the “transition line”) for different values ofq in the (D, τ) plane. As indicated
above, the approximation we have just described is only strictly valid for values ofq such that|q − 1| � 1.
However, and only in order to make more apparent the main trends predicted by our “drastic” approximation for
the non-Gaussian case, we have plottedEq. (14)for values ofq well departed fromq = 1. Several features can
be noticed in this figure. It is clear that a minimum value of the noise intensityD is always needed to induce the
transition. The dependence with the parameterq appears as an advancement of the transition to smaller values ofD

whenq > 1 and a retardation whenq < 1. We believe that this will be a general behavior for long tail (power-law)
and cut-off noise distributions, respectively. A closer look shows the persistence of the reentrance effect previously
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Fig. 1. Phase diagramD vs. τ for different values ofq. Probability distributions are bimodal for points above the curves and unimodal below.
Solid lines are the theoretical predictions, as given byEq. (14)for q = 0.5, q = 1, q = 1.5 (from top to bottom). The numerical results are
indicated by symbols joined by a dashed line forq = 0.5, a dotted line forq = 1, and a dash-dotted forq = 1.5. It is clear the reentrance effect
and the shift of the transition line.

found in[15]: for some fixed values of the noise intensityD it is possible to obtain a transition, first from unimodal
to bimodal and then back to unimodal, just by varying the time correlationτ of the noise.

These main features, as obtained from our very simplifying assumptions have been supported by the results
from numerical simulations of the complete (that is for all values ofq) set ofEqs. (2), (3) and (8)(details of the
numerical integration scheme are given inAppendix A). In Fig. 2 we show that the probability distribution can
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Fig. 2. Simulation results for the stationary probability distributionPst(x) for fixed valuesD = 2, τ = 0.4 and different values ofq: q = 0.5
(∗), q = 1 (×), q = 1.5 (+). It is clear that it is possible to induce a transition from unimodal to bimodal just by changing the parameterq,
measuring the departure from the Gaussian distribution for the noise source.
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Fig. 3. Simulation results for the stationary probability distributionPst(x) for q = 1 (Gaussian case) for fixedD = 1.95, and different values of
τ: τ = 0. (×), τ = 0.4 (+), τ = 1.0 (∗). The reentrance effect indicated in the phase diagramD vs.τ is apparent.

switch from unimodal to bimodal just by increasing the parameterq, for fixed values ofD andτ. The reentrance
effect is illustrated, forq = 1 in Fig. 3.

The numerical simulations show that there is a crossing of the transition lines forq < 1 andq ≥ 1, an aspect
which is not predicted at all by the approximated theoretical results. Another aspect observed inFig. 1 is that for
largeτ, the theoretically predicted transition line, has a smaller linear slope for increasing values ofq. In fact,
according toEq. (14)we haveD ∼ ((5 − 3q)/3(2 − q))τ in that limit. There seems to be not such a strongq

dependence of the slope of the curves for largeτ in the numerical results. Otherwise, the numerical and theoretical
results are in good qualitative agreement.

4. Final remarks

We have presented some preliminary results on a noise-induced phenomenon driven by a colored and non-Gaussian
noise source that was generated by aq-distribution. The phenomenon studied here is anoise-induced transi-
tion like those discussed in[4], and corresponds to the so-calledgenetic model. We have resorted to a simple
approximation—that avoids the difficulties of the effective Markovian approximation in[20]—introduced with the
idea that for|q − 1| � 1, the non-Gaussian noise will only slightly depart from the Gaussian one, and its effect
being only a correction to the Gaussian behavior. The resultingEq. (14)shows some of the correct tendencies with
q > 1 or q < 1, although some features observed in the simulations (crossing of the transition lines and slight
dependence of the linear slope for largeτ) are not reproduced by the simplified theoretical treatment. In addition,
the stationary probability density function defined inEqs. (12) and (13)clearly shows, for constant values ofD

andτ and as a function ofq, the transition from unimodal to bimodal behavior. Again, these general results and
tendencies, together with the reentrance effect, have been confirmed by extensive numerical simulations as shown
in Figs. 1–3. However, the agreement between theory and simulations is only qualitative, as the first are unable to
reproduce some of the details revealed by the second. For instance, from the numerical simulations a more complex
behavior of the transition line for largeτ is apparent, while it is not present in the theoretical predictions (seeFig. 1)
being worth remarking here that they are strictly valid only forq ≈ 1.
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These results are in the same line that a series of previous studies on noise-induced phenomena where the noise
source was non-Gaussian. In all the cases, we have found that the response of the system results to be enhanced or
to have a strong dependence for values of the parameterq corresponding to a departure from Gaussian behavior.
Some of such studies, including stochastic resonance[22,23], gated traps[25], Brownian motors[26], have been
reviewed in[19].

Even though our results are so far only preliminary and further studies are required, we expect that the phenomenon
discussed here will have remarkable effects on the noise-induced phase transitions[6] as well as in the problem of
coupled ratchets[9,10]. For instance, we can expect changes in the phase diagram of the first, or in the hysteresis
cycle of the second, that could have interesting consequences in technological applications. Such studies will be the
subject of further work.
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Appendix A. Numerical simulations

In order to test our theoretical predictions, we have resorted to numerical simulations of the system indicated by
Eqs. (8)and(2) and (3). For the numerical integration of those equations we have used a second-order stochastic
Runge–Kutta type algorithm[27]. For the general problem

ẋ = f(x) + g(x)η(t), η̇ = q(η) + εξ(t), (A.1)

whereξ(t) is a white noise of mean equal to zero and correlations〈ξ(t)ξ(t′)〉 = δ(t−t′), the algorithm is as following:
time is discretized in steps of sizeh and the value of the processη(t) at the discretized times is obtained by the
recursion relation

k(t) = hq(η(t)), l(t) = εh1/2G(t), η(t + h) = η(t) + 1
2h[q(η(t)) + q(η(t) + k(t) + l(t))] + l(t)

(A.2)

with the initial valueη(0) = 0. Here the numbersG(t) for different timest are independent Gaussian random
numbers of mean equal to zero and variance equal to one. They have been obtained by using a particularly efficient
generator[28]. In the caseq < 1, it might occur that the generated value ofG(t) is such thatη(t + h) is outside the
cut-off interval(−ηc, ηc). If this happens, that value is discarded and a newG(t) is generated until the condition
|η(t + h)| < ηc is fulfilled. We have found that the percentage of discardedG(t) values is less than 5× 10−4 in the
worst case analyzed here corresponding toq = 0.5, τ = 4. No such a problem ever occurs forq ≥ 1.

Once the values ofη(t) at the discretized times have been obtained, the integration of(A.1) proceeds with a
standard Runge–Kutta second order method:

kx(t) = f(x(t)), x(t + h) = x(t) + 1
2h[f(x(t)) + f(x(t) + kx(t)) + g(x(t))η(t) + g(x(t) + kx(t))η(t + h)].

(A.3)
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We have used a time steph = 0.01 and the histogram forPst(x) has been obtained from 108 values ofx separated
by a timet = 1 (corresponding, hence, to 100 integration steps).
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