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Abstract

Here we study a noise-induced transition when the system is driven by a noise source taken as colored and non-Gaussian.
We show—using both, a theoretical approximation and numerical simulations—that there is a shift of the transition as the
noise departs from the Gaussian behavior. Also, we confirm the reentrance effect found for colored Gaussian noise and show
the behavior of the transition line in the phase-like diagram as the noise departs from Gaussianity in the large correlation time
limit.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

During the last three decades a wealth of research results on fluctuations or noise have led us to the recognition
that in many situations noise can actually play a constructive role that induces new ordering phenomena. Some
examples are stochastic resonance in zero-dimensional and extended $¥st&jmmoise-induced transitiorj4],
noise-induced phase transitidiast], noise-induced transpdit—10], noise sustained patterfisl], etc.

Most of the studies on the noise-induced phenomena indicated above assume that the noise source has a Gaussia
distribution (either white or colored). In addition to the intrinsic interest in the study of non-Gaussian noises, there
are some experimental evidences, particularly in sensory and biological sy&&nmdicating that at least in
some of these phenomena the noise sources could be non-Gaussian. The use of non-Gaussian noises in studies ¢
noise-induced phenomena is scarce mainly due to the mathematical diffifl&]e3 his is in contrast with the
existence of some analytical tools when working with Gaussian (particularly white) noises.

Here we present some results on one of those noise-induced phenomena when driven by a noise source taken a
colored and non-Gaussian. It correspondsiioige-induced transitiolike those discussed {@]. The problem we
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discuss here corresponds the so-cadjiedetic modelvhich follows from a particular biological modeling or from a
chemical reactiof4,14]. In Ref.[15] the effect of a colored Gaussian (Ornstein—Uhlenbeck) noise on that model was
analyzed in detail and a novel reentrance phenomenon in the phase diagram was found. In order to study the effec
that the non-Gaussian nature of the noise can have in the transition, we have used here a particular didtsipution
whose departure from the Gaussian behavior is governed by a paragmetele ¢ = 1 corresponds to Gaussian

noise, the valug > 1 produces a long tail distribution agd< 1 gives a cut-off distribution. Such a distribution

is based on the generalized thermostatistics proposed by T4&lliwhich has been widely applied to a variety of
physical systems (for a state of the art Eg#)). As discussed for other noise-induced phenomefadh we have

found that the departure from the Gaussian distribution for the noise produces a strong effect. In this case such ar
effect corresponds to an anticipation of the transition when the distribution has long tails, and to a retardation when
it is cut-off. This effect could have interesting consequences in the case of noise-irnghasatFansitiong5,6].

In the next section we briefly discuss the form and properties of the non-Gaussian noise source. After that, we
present the model we analyze here and a simple analytical approximation to treat the non-Gaussian noise that allow
us to determine some of the general features of the phase diagram. We continue discussing numerical simulation
that support and extend the theoretical results. In the last section we draw some conclusions.

2. Non-Gaussian noise and its properties

We start considering the following general form of a Langevin equation:
&= ) + g . @)

As described irBection 1 we assume that the noise tenr) has a non-Gaussian distribution. More precisely, we
consider thap(¢) is a Markovian process generated as the solution of the following Langevin eq[igjon
1d 2
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beingé&(r) a standard Gaussian white noise of zero mean and correlgtiof(¢')) = §(t — ¢'), and
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Although we believe that our results are quite general, such a particular form for the;@iaows us to easily
control the departure from the Gaussian behavior by changing a single pargm@tandr are noise parameters
related to the noise intensity and the correlation time, as we now detail. The stationary properties of the noise
including the time correlation function, have been studief2B] and here we summarize the main results. The
stationary probability distribution is given by
-1/(g-1
1 T n°
Py == |1+ —=(g-D— , 4
7 (1) Zq[+D(q )2] 4

whereZ, is the normalization factor. This distribution can be normalized only far3. The first momentn) = 0,
is always equal to zero, and the second moment,

(5 —39)
is finite only forg < 5/3. Furthermore, fog < 1, the distribution has a cut-off and it is only defined figr < nc =
J/2D/t(1— ¢). Finally, the correlation time, of the stationary regime of the procegs) diverges neag = 5/3

(n ()
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and it can be approximated over the whole range of valugsst, ~ 2t/(5—3q). Clearly, whery — 1 we recover
the limit of n being a Gaussian colored noise, hamely the Ornstein—Uhlenbeck préaggss,with correlations
(Eou(DEou(?)) = (D/7) &~ —1/T and probability distributiorPSi(£oy) = 2~ e~ (/2D)ééu,

In Ref.[20], an effective Markovian approximation to the procgessa a path integral procedure was obtained,
that is analogous to the “unified colored noise approximation” obtainglijrfor the case of Ornstein—Uhlenbeck
noise. Such an approximation allowed us to get quasi-analytical results for the mean-first-passage time or transition
rate. These results and its dependence on the different parameters in the case of a double well potential were
compared with extensive numerical simulations with excellent agreement. That approximation was also exploited
to study stochastic resonance with theoretical re$2BFthat are in very good agreement with experimental ones
[23].

3. ¢ & 1 approximation for the non-Gaussian noise

The “effective Markovian approximation” introduced in REX0] and indicated above has been shown to have
some drawbacks. As discussed 28], such an approximation renders a hon-normalizable stationary probability
distribution function,P;t(n). This seems to be a general characteristic of such an approximation that, at least in
the case discussed [A0], was solved introducing an adequate and controlled cut-off. However, it is not clear
that such a methodology could be always used, and particularly for the models we can analyze in relation to
noise-induced transitions. Hence, for the kind of models we use in order to study the effect of non-Gaussian noises
on a noise-induced transition we have resorted to a more simple, albeit physically reasonable, approximation. Our
aim is to analytically study the regidg — 1| <« 1 (both forg < 1 andg > 1), with the idea that in such a region
the non-Gaussian noise will only slightly depart from the Gaussian behavior, but will show some of the main trends
of theq # 1 region. Hence ifEq. (2)we adopt

1oV, 1 T ?1 T w71
- on —;[1—1- B(q—1)3:| ~;|:1+ B(q_1)7:| =a(Dn (6)
with
22—
o = ™

This implies a renormalized (Gaussian) Ornstein—Uhlenbeck noise where the effective correlation time is indicated
above Eq. (7), and the associated effective noise intensitdg = (2(2—1)/(5— 3¢))2D. Clearly, forg — 1, we
haverett — T andDest — D, as could be expected. Using this form of the noise we proceed to study the problem
in Eq. (1)in the neighborhood of ~ 1.

Thegenetic modeis described by the following equatij#,14,15}

k=3 —x+ix(l—x) +x(L—x)n@), (8)

and, according to the discussion above, we consider in this worlgthais a non-Gaussian noise described by
Egs. (2) and (3)
The analytical treatment simplifies if we make the change of variables

X
y=m(:). ©

so that the original multiplicative stochastic differentéjuation (8)Xransforms into a new one but now with an
additive noise
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y = —sinh(y) + 1 4+ n(®. (10)

From now on, as in Ref15], and in order to simplify the algebra, in what follows we adbpt O.
The use of the (Gaussian-like) approximatieg. (6) (that we reiterate could be valid only foy — 1| « 1)
together with the “unified colored noise approximati¢a1], yields

U0 PR - ) (11)
PSP 0)/a@] T w@ L - F ) /am]
with f(y) = — sinh(y). This result can be obtained in two ways: (a) Applying a direct adiabatic-like elimination

procedure to the Langevin system givertgy, (10)andEgs. (2) and (6) [21]That s, taking the derivative &q. (10)
with respect ta and settingy = 0. (b) A formal one, through the application of the path-integral formalism to the
indicated non-Markovian Langevin equations, supplemented with a consistent Markovian approximation scheme
[24].

Since, by the use of these “drastic” approximations, the problem has been redipd1d)which contains
a white, Gaussian, noise, it is straightforward now, using standard techniques, to obtain the stationary probability
density function. For the original variahle it reads

Psi(x) = N exp[F(x)], (12)
whereN is a normalization constant and
i(s—sq)zl—z)urzx?(l t(2—q)(1—2x+2x2)>
“ap\2-4) xa—v» U T 26-3pxd—»n
72 — ¢)(1 — 2x + 2x?)
B_3x1—n ] — In[x(1 - x)]. (13)

A noise-induced transitio] appears when this density function changes from being unimodal to bimodal. More
specifically, the poink = 1/2 changes from being a maximum to being a minimum. The condition of extremum
atx = 1/2 and the condition for finding the boundary separating the regions wherd /2 is a maximum or a
minimum yield

_1(5-3\? 2—q . \? 2—¢ \1
D(r)_é(z_q> <1+ﬁ21) <1+5_3q61) , (14)

such that for a fixed, the distribution is bimodal fob > D(z) anditis unimodalfoD < D(z). This last expression
can be written in terms aPe andzes as

F(x) =

+ In [1+

Deft (teft) = 2(1 + Tefr)*(1 + 3tefr) 2, (15)

that has the same form found[ib5] for the casey = 1. Clearly, in the limity — 1, this expression reduces to the
indicated result, i.e.D(t) = 2[1+ 7]?[1 + 37] L.

Fig. 1 plots theD(7) boundary (the “transition line”) for different values @fin the (D, 1) plane. As indicated
above, the approximation we have just described is only strictly valid for valugssath thatlq — 1] <« 1.
However, and only in order to make more apparent the main trends predicted by our “drastic” approximation for
the non-Gaussian case, we have plotted (14)for values ofg well departed fromy = 1. Several features can
be noticed in this figure. It is clear that a minimum value of the noise intedsityalways needed to induce the
transition. The dependence with the paramet@ppears as an advancement of the transition to smaller valugs of
wheng > 1 and a retardation when< 1. We believe that this will be a general behavior for long tail (power-law)
and cut-off noise distributions, respectively. A closer look shows the persistence of the reentrance effect previously
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Fig. 1. Phase diagram vs. 7 for different values of;. Probability distributions are bimodal for points above the curves and unimodal below.
Solid lines are the theoretical predictions, as giverEly (14)for ¢ = 0.5, = 1, ¢ = 1.5 (from top to bottom). The numerical results are
indicated by symbols joined by a dashed linedct 0.5, a dotted line fog = 1, and a dash-dotted fgr= 1.5. It is clear the reentrance effect
and the shift of the transition line.

found in[15]: for some fixed values of the noise intensdyit is possible to obtain a transition, first from unimodal
to bimodal and then back to unimodal, just by varying the time correlatigithe noise.

These main features, as obtained from our very simplifying assumptions have been supported by the results
from numerical simulations of the complete (that is for all valueg)aget ofEgs. (2), (3) and (8]details of the
numerical integration scheme are givenAppendix A). In Fig. 2 we show that the probability distribution can

P(X)

Fig. 2. Simulation results for the stationary probability distributigyg(x) for fixed valuesD = 2, T = 0.4 and different values af: ¢ = 0.5
(%), ¢ = 1 (x), g = 1.5 (+). Itis clear that it is possible to induce a transition from unimodal to bimodal just by changing the parameter
measuring the departure from the Gaussian distribution for the noise source.
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P(X)

Fig. 3. Simulation results for the stationary probability distributif(x) for ¢ = 1 (Gaussian case) for fixdd = 1.95, and different values of
.7 =0.(x), =04 (+), T = 1.0 (*). The reentrance effect indicated in the phase diagbews.  is apparent.

switch from unimodal to bimodal just by increasing the paramgtéor fixed values ofD andt. The reentrance
effectis illustrated, foy = 1 in Fig. 3.

The numerical simulations show that there is a crossing of the transition lings<fot andg > 1, an aspect
which is not predicted at all by the approximated theoretical results. Another aspect obsdfigedLiis that for
large 7, the theoretically predicted transition line, has a smaller linear slope for increasing valgemndhct,
according toEq. (14)we haveD ~ ((5 — 3¢)/3(2 — ¢))t in that limit. There seems to be not such a strgng
dependence of the slope of the curves for largethe numerical results. Otherwise, the numerical and theoretical
results are in good qualitative agreement.

4. Final remarks

We have presented some preliminary results on a noise-induced phenomenon driven by a colored and non-Gaussie
noise source that was generated by-distribution. The phenomenon studied here inaase-induced transi-
tion like those discussed if], and corresponds to the so-callgdnetic modelWe have resorted to a simple
approximation—that avoids the difficulties of the effective Markovian approximati¢@dp—introduced with the
idea that forlg — 1| <« 1, the non-Gaussian noise will only slightly depart from the Gaussian one, and its effect
being only a correction to the Gaussian behavior. The resuiing14)shows some of the correct tendencies with
g > lorg < 1, although some features observed in the simulations (crossing of the transition lines and slight
dependence of the linear slope for largeare not reproduced by the simplified theoretical treatment. In addition,
the stationary probability density function definedEgs. (12) and (13g¢learly shows, for constant values bf
andt and as a function of, the transition from unimodal to bimodal behavior. Again, these general results and
tendencies, together with the reentrance effect, have been confirmed by extensive numerical simulations as show
in Figs. 1-3 However, the agreement between theory and simulations is only qualitative, as the first are unable to
reproduce some of the details revealed by the second. For instance, from the numerical simulations a more comple:
behavior of the transition line for largeis apparent, while it is not present in the theoretical predictionsKigpd)
being worth remarking here that they are strictly valid onlydfoe 1.
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These results are in the same line that a series of previous studies on noise-induced phenomena where the nois
source was non-Gaussian. In all the cases, we have found that the response of the system results to be enhanced ¢
to have a strong dependence for values of the parameterresponding to a departure from Gaussian behavior.
Some of such studies, including stochastic resonf22,23], gated trap$25], Brownian motorg26], have been
reviewed in[19].

Eventhough our results are so far only preliminary and further studies are required, we expect that the phenomenon
discussed here will have remarkable effects on the noise-induced phase traf@jtameell as in the problem of
coupled ratchetf9,10]. For instance, we can expect changes in the phase diagram of the first, or in the hysteresis
cycle of the second, that could have interesting consequences in technological applications. Such studies will be the
subject of further work.
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Appendix A. Numerical simulations

In order to test our theoretical predictions, we have resorted to numerical simulations of the system indicated by
Egs. (8)and(2) and (3) For the numerical integration of those equations we have used a second-order stochastic
Runge—Kautta type algorithf27]. For the general problem

x = f(x) + gn(@), n=q(n) + @), (A1)

wheres(r) is a white noise of mean equal to zero and correlat{gtig: (1)) = §(t —t'), the algorithm is as following:
time is discretized in steps of sizeand the value of the procegsr) at the discretized times is obtained by the
recursion relation

k(t) = hg(n(®), 1(1) = eh'?G (1), n+h) =n@ + %h[Q(Ti(l)) +qm(0) + k@) + 1)) + (1)
(A.2)

with the initial valuen(0) = 0. Here the number& (¢) for different timesr are independent Gaussian random
numbers of mean equal to zero and variance equal to one. They have been obtained by using a particularly efficient
generatof28]. In the case < 1, it might occur that the generated value®() is such that(z + i) is outside the
cut-off interval (—n¢, n¢). If this happens, that value is discarded and a 65w is generated until the condition
In(t+ h)| < ncis fulfilled. We have found that the percentage of discar@éd values is less than s 10~% in the
worst case analyzed here corresponding £0 0.5, T = 4. No such a problem ever occurs fpp 1.

Once the values ofi(¢) at the discretized times have been obtained, the integrati¢A.bj proceeds with a
standard Runge—Kutta second order method:

k() = f(x(D), x(t+h) =x() + %h[f(X(t)) + flx (@) + kx (1) + g(x(D)n (1) + gx(®) + kx ()0t + h)].
(A.3)
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We have used a time stép= 0.01 and the histogram faPSi(x) has been obtained from 40alues ofx separated
by a timer = 1 (corresponding, hence, to 100 integration steps).
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