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Abstract

We study a one-dimensional version of Axelrod’s model of cultural transmission. We classify
the equilibrium con8gurations and analyze their stability. Below a critical threshold, an initially
diverse population will converge to a monocultural equilibrium, or ordered state. Above this
threshold, the dynamics settle to a multicultural or polarized state. These multicultural attractors
are not stable, so that small local perturbations can drive the system towards a monocultural state.
Cultural drift is modeled by perturbations (noise) acting at a 8nite rate. If the noise rate is small,
the system reaches a monocultural state. However, if the noise rate is above a size-dependent
critical value, noise sustains a polarized dynamical state.
? 2004 Elsevier B.V. All rights reserved.
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1. Introduction

In this paper, we discuss the Axelrod model for culture transmission (Axelrod,
1997a,b). In this model, culture is de8ned as a set of attributes subject to social
inBuence. An individual is characterized by F cultural features, each of which can
take q values that represent the possible traits of that feature. Each individual occupies
one site of a regular lattice and interacts with its immediate neighbors. The model
incorporates two interesting extensions of familiar models of interacting agents. First,

∗ Corresponding author. Interdisciplinary Centre for Bioinformatics, University Leipzig, Kreutzstr. 7b,
Leipzig D-04103, Germany. Fax: +49-341-14951-19.

E-mail address: klemm@izbi.uni-leipzig.de (K. Klemm).

0165-1889/$ - see front matter ? 2004 Elsevier B.V. All rights reserved.
doi:10.1016/j.jedc.2003.08.005

mailto:klemm@izbi.uni-leipzig.de


322 K. Klemm et al. / Journal of Economic Dynamics & Control 29 (2005) 321–334

instead of an individual being characterized by a single attribute with binary values,
culture is characterized by an array of features, each with q possible values. Second,
the dynamics of the model explicitly rely on the interaction between these diLerent
cultural features. The basic premise of the model is that the more similar an actor is to
one of its neighbors, the more likely the actor will be to adopt one of the neighbor’s
cultural traits. This similarity criterion for social inBuence is an example of social
comparison theory in which individuals are most inBuenced by others who are similar.
Axelrod’s model illustrates how local convergence can generate global polarization.

In a typical dynamical evolution, the system freezes in a multicultural state with co-
existing spatial domains of diLerent cultures. The number of these domains is taken
as a measure of cultural diversity. It is interesting to notice that it is precisely the
dynamics of local imitation that lead to polarization and stops the evolution towards
global monoculture. Indeed, if similarity is not used to weight the probability of so-
cial interaction, the system always reaches a uniform (monocultural) state (Kennedy,
1998). Axelrod explored how the number of diLerent cultural domains in equilibrium
(the frozen states) changes with diLerent values of F and q, with the size of the
interaction neighborhoods and with the size of the system. The robustness of the pre-
dictions of Axelrod’s model has been checked by alignment (Axtell et al., 1996) with
the Sugarscape model developed by Epstein and Axtell (1996). In addition, the model
has been extended in a number of ways, including its use as an algorithm for opti-
mizing cognition (Kennedy, 1998). Further, a study that increased the range of agents’
interactions with each other (Greig, 2002) suggests that an increase in communication
promotes the emergence of a global culture that is not simply composed of the initially
dominant traits, but is a hybrid of the initial population of cultures. In another exten-
sion, the eLect of mass media in the cultural evolution has also been incorporated into
the model (Shibanai et al., 2001). A systematic analysis of the dependence on q of the
original model was carried out by Castellano et al. (2000) through extensive numerical
simulations. Analyzing the relative size of the largest cultural domain, these authors
unveil an order–disorder transition: There exists a threshold value qc, such that for
q¡qc the system orders in a monocultural uniform state, while for q¿qc the system
freezes in a polarized or multicultural state. This result partially modi8es the original
conclusions of Axelrod, in the sense that globalization or polarization is determined by
the parameter q which measures the degree of initial disorder in the system.
The questions that we address in this paper are, 8rst, how robust is the above result

that local imitation dynamics trap the system in a multicultural state for q¿qc, and,
second, what is the stability of such multicultural states. We do this in a one-dimensional
version of the model considered by Axelrod. In the one-dimensional setup, individu-
als are distributed at regular intervals along a line. The advantage of considering the
one-dimensional case is that it can be proved that the total number of shared cultural
features in neighboring sites is non-increasing during the dynamical interactions. This
fact allows us to classify systematically the diLerent equilibrium con8gurations of the
model. We show that the uniform monocultural states are stable equilibria, while the
other equilibrium con8gurations, corresponding to multicultural states, are not stable
equilibria: when the system is trapped in one of these multicultural equilibria, any
small perturbation will take the system away from the multicultural attractor. Such
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a perturbation can be seen as the eLect of cultural drift. Thus, this result answers
the question posed by Axelrod: “Perhaps the most interesting extension and, at the
same time, the most di=cult to analyze is cultural drift”. In this sense, cultural drift,
against the naive expectation of promoting diLerentiation, and within the limitations
of the present model, turns out to be an eOcient mechanism to take the system to
the uniform monocultural state. These results imply that the order–disorder transition
described by Castellano et al. (2000) is not robust: exogenous perturbations will drive
the system to a monocultural state. However, if perturbations act at a suOciently high
rate, the system cannot settle to a monocultural state and noise dominated dynamics
persist. These two competing eLects of noise, namely, helping to 8nd the path to a sta-
ble equilibrium or producing a noisy disordered dynamics, were previously recognized
in studies of social impact theory (Latane et al., 1994).

The paper is organized as follows. Section 2 reviews the formal de8nitions and some
general properties of the model. In Section 3, an order–disorder transition with respect
to the parameter q is discussed in terms of global collective properties. In Section 4, we
characterize the equilibrium states and their stability. Section 5 shows that by iterated
perturbation and subsequent relaxation the system is driven towards the monocultural
equilibrium state. Section 5 also contains a discussion of the eLect of cultural drift.
Concluding remarks are given in Section 6.

2. Axelrod model

Axelrod’s cultural diLusion model (Axelrod, 1997a, b) structures a population of N
individuals or agents as the sites of a lattice. Each agent i has a cultural state vector
(�i1; �i2; : : : ; �iF) with F components. Each component (cultural feature) �if can take
any of the values 1; : : : ; q (cultural traits). These values are initially assigned to each
agent independently and with an equal probability of 1=q. The discrete time dynamics
of the model are governed by the principle that the probability of trait transmission
from one agent to another increases with the number of features that they already
have in common. Thus, agents that are similar will tend to become more similar. The
dynamics are de8ned by the following iterative steps:

1. Select at random a site i and any of its neighbors j.
2. Calculate the overlap (number of common features) lij =

∑F
f=1 ��if;�jf . The bond

(i; j) is said to be active if there is at least one common feature, lij ¿ 0.
3. In the case of an active bond, if there exist any features that agent i and agent j

do not share in common, agent j, with probability lij=F , will change the value of
one of these features (chosen randomly) to that of i.

In the remainder of the paper, the topology is that of a one-dimensional lattice with
bonds only between nearest neighbors. Unless stated otherwise, boundaries are open,
i.e. the boundary sites i = 1 and i = N have only one neighbor, j = 2 and j = N − 1,
respectively.
A useful description of a state or con�guration {�} of the system is in terms of

cultural domains. A cultural domain is a contiguous set D ⊆ {1; : : : ; N} of sites all



324 K. Klemm et al. / Journal of Economic Dynamics & Control 29 (2005) 321–334

1
2
3

5
3
6

1
1
8

5
3
6

1
2
8

1
1
8

t

t+1

5
3
8

1
2
3

1
1
8

5
3
8

1
2
8

1
1
8

5
3
3

1
2
3

1
1
8

5
3
3

1
2
8

1
1
8

(a) (b) (c)

i-1 i i+1 i-1 i i+1 i-1 i i+1

Fig. 1. Three possible outcomes of an interaction between agents i and i+1 for a system with F=3 features
and q = 10. Shared features are indicated by gray background. The trait of feature �i3 = 3 is switched to
�i3 = �(i+1)3 = 8. The new acquired trait by agent i increases the overlap with its i + 1 neighbor and
(a) has no eLect on i − 1[L(t + 1) = L(t) − 1]; (b) increases the overlap with i − 1[L(t + 1) = L(t) − 2];
(c) decreases the overlap with i − 1[L(t + 1) = L(t)].

sharing the same culture, i.e., �if=�jf, for all i; j∈D and for all f. A con8guration is
assigned a degree of order (social homogeneity) de8ned as the relative size of the largest
cultural domain Smax =max{|D|; D is cultural domain} (Castellano et al., 2000). There
are qF monocultural con8gurations with maximal order Smax=N =1, where one culture
extends over the whole system. If none of the cultural domains reaches a size that is
appreciable on the scale of the system size, Smax�N , the con8guration is extremely
polarized and agents have shared cultural attributes with only a small neighborhood.
For the one-dimensional topology considered here, the total overlap L=

∑N−1
i=1 li; i+1

never decreases when the agents change their features. 1 This is seen easily by con-
sidering an interaction where agent i adopts a trait from one of its neighbors i ± 1,
such that the overlap in features associated with this bond increases by one. At the
same time, the overlap between agent i and its other neighbor i ∓ 1 cannot change
by more than one unit. Since overlaps of all other bonds remain the same, the total
overlap L cannot decrease (see Fig. 1). Note that this argument is valid only in the
given topology where agents do not have more than two neighbors. See the concluding
section for a discussion of other topologies.
The maximum value of L is reached for a single cultural domain for which L =

(N − 1)F ≡ L0. The comparison between results for diLerent parameter values of
F and N is facilitated by using the normalized negative overlap �=(L0−L)=L0. This is a
non-increasing function that adopts its minimum value, �=0, in a monocultural con8g-
uration. For the random initial con8gurations, �(t=0)=1−1=q is the expectation value.
Most of the results in the following sections are based on the study of an ensemble

of identical systems. In order to reduce Buctuations, we plot data as mean values over
the ensemble and indicate the averaging by angle brackets 〈:〉.

3. Globalization–polarization transition

In this section, we present simulation results under variations in the parameter q.
All dynamical runs reach an equilibrium after a 8nite time. We can characterize the

1 From the point of view of dynamical systems, the total overlap L is said to be a Lyapunov function.
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Fig. 2. Averaged normalized negative overlap 〈�〉 in the equilibrium as a function of q for F =10 (circles),
F = 20 (squares) and F = 30 (diamonds). Number of agents is N = 100 (8lled symbols) and N = 1000
(open symbols). The inset shows the diLerence S� between the initial value and the value reached in the
equilibrium for N = 1000 and F = 10.

equilibria in terms of the number of overlapping features, as shown in Fig. 2. We
observe that, as a function of q, the overlap decreases continuously from its maximum
value. It is apparent in this 8gure that a change in the system’s behavior, in which
there is a transition from equilibria with maximum overlap to equilibria with smaller
overlap, occurs at q � F . This change in system dynamics is also manifest in the
diLerence S�= 〈�〉− 〈�(t=0)〉 between the values in the initial random con8guration
and the 8nal equilibrium. The maximum of S� is also observed at F � q (see inset
of Fig. 2), suggesting that F and q are not two independent relevant parameters,
but rather than the combination q=F is the proper parameter. This is corroborated in
Fig. 3 where we observe that � is indeed a function only of q=F . These results indicate
the existence of a transition at q= qc � F . If the initial number of traits is below the
critical value qc, the system evolves towards an equilibrium where one culture spans
a system-wide domain. However, if the initial diversity is above the critical value,
the system will evolve towards an equilibrium with the coexistence of small cultural
domains. Therefore, q ≈ qc identi8es a globalization–polarization transition. It is also
interesting to note that the convergence to the equilibrium is faster as the initial diversity
is farther from the critical value.
This transition is also captured by Smax=N . Fig. 4 shows, for F = 10, the values

of the average 〈Smax〉=N in the equilibrium as a function of the number of available
traits q. For q¡ 9 we always 8nd a monocultural equilibrium. Increasing q beyond
9, 〈Smax〉=N drops towards zero, more rapidly with increasing system size, indicating
the existence of a transition for q � 9. This change of behavior between monocultural
and polarized equilibria is highlighted by looking at the outcomes of the simulations
(without averaging) in Fig. 5. We observe that this transition is not accompanied by
a regime of bistability close to qc. That is, there is not a 8nite range of q-values
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rescaled parameter q=F .

0 10 20
q

0

0.2

0.4

0.6

0.8

1

<
S

m
ax

>
/N

Fig. 4. The average 〈Smax〉=N in one-dimensional lattices as a function of q for N = 100 (circles), 1000
(squares), 10 000 (triangles) agents. Each plotted value is an average over 100 runs with independent initial
conditions. Number of features F = 10.

for which a similar number of simulations 8nish either in a monocultural or in a
multicultural equilibrium. The absence of bistability suggests that the transition can
be classi8ed as continuous. A similar type of transition observed in two-dimensional
lattices is accompanied by a bistable regime, indicating that in the two dimensional
case the transition is discontinuous or 8rst order (Castellano et al., 2000, Klemm
et al., 2003b, 2003c).
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Fig. 5. Scatter plot of the Smax=N in one-dimensional lattices as a function of q for N = 1000 agents and
F = 10 features. For each value of q the outcome of 100 independent runs is plotted.

4. Characterization of the equilibria

Thus far, the asymptotic presence of order or disorder in the system has been un-
derstood in terms of equilibrium con8gurations. In order to obtain some analytical
understanding of our numerical derivations of a phase transition and its robustness,
we now examine the connection between the number of overlapping features and the
equilibrium con8gurations of the system. For a general (not necessarily equilibrium)
con8guration, the overlap can be derived from the number nk of bonds with overlap
k by

L=
k=F∑
k=0

k nk ; (1)

with
∑F

k=0 nk = N − 1. The equilibrium con8gurations correspond to the case nk = 0,
for 0¡k¡F . For these con8gurations we obtain

Leq = nFF = (N − 1 − n0)F; (2)

where n0 is the number of barriers (bonds with zero overlap). Therefore, the equilibria
can be ordered according to the number of barriers.

1. In the monocultural equilibria all the bonds have overlap F and thus nk=0, ∀k �= F
and nF = N − 1. They correspond to the global maxima of the overlap with L0 =
(N − 1)F . There is a multiplicity of these maxima corresponding to the �0 = qF

possible diLerent cultures. Which one of these monocultural con8gurations is se-
lected depends solely on the initial conditions and the stochastic realization of the
dynamics.

2. Multicultural states consisting of two or more cultural domains separated by
barriers are equilibria as well. The 8rst level corresponds to the �1 = [q(q− 1)]FN
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con8gurations in which two diLerent cultural domains coexist separated by one
barrier. In this case n0 = 1, nF = N − 2 and all other nk = 0. The overlap is L1 =
(N−2)F . The next level corresponds to the �2=[q(q−1)2]FN (N−1)=2 con8gurations
with three cultural domains (and two bonds of zero overlap), and with an overlap
L2 = (N − 3)F(n0 = 2; nF = N − 3 and all other nk = 0). In general there will be

�K = [q(q− 1)K ]F
(
N

K

)
(3)

equilibrium con8gurations with K +1 cultural domains and K barriers, and with an
overlap

LK = (N − 1 − K)F: (4)

Let us analyze the stability of the equilibria against perturbations. We concentrate 8rst
on single feature perturbations, de8ned as randomly choosing an agent i and one of
its features f, and replacing trait �if by a new value randomly chosen from {1; : : : ; q}.
When performed in a monocultural con8guration, such a perturbation introduces an
island of one agent with a single deviant feature. The subsequent relaxation process is
treated in the following section. The important fact with respect to stability is that this
island may grow, and there is a 8nite probability that the deviating trait will take over
the whole system. From any monocultural con8guration a small perturbation may cause
the system to settle into a diLerent monocultural con8guration. A perturbation cannot
take the system from a monocultural con8guration to a multicultural one. This would
require at least one barrier in the 8nal equilibrium. Barriers cannot be introduced by
a single feature perturbation because all features but one remain unaltered, and thus
deviant agents can still interact with all of their neighbors. Consequently, the set of
monocultural con8gurations is stable, but a particular monocultural con8guration is
metastable.
Now we turn to the multicultural equilibria. These con8gurations are not local max-

ima of the overlap function and they consist of two or more domains separated by
barriers. Let us 8rst consider the equilibria where each domain contains at least two
agents. After a perturbation, the introduced deviant trait may spread in the given do-
main and eventually reach one of the barriers. If this deviant trait is part of the feature
set of the culture across the barrier, the members of adjacent cultures suddenly become
able to share active bonds. This way a barrier may be dissolved or moved. Note that
the outcome of the relaxation process is probabilistic. In general, the spreading of the
perturbation is reversible. So, for any perturbation there is a non-zero probability to
return to the original state. We call marginally stable these multicultural equilibria
without domains of size one, because there are always neighboring con8gurations with
the same value of the overlap. Neighboring con8gurations are those that diLer by a
single feature perturbation.
There is a special class of multicultural con8gurations, namely those with ‘dou-

ble’ barriers. They contain at least one domain of size one – a single agent with a
unique culture. Perturbing such an agent is an irreversible step because the overwritten
trait cannot be recovered. Multicultural con8gurations with double barriers are unsta-
ble because there are perturbations that, with certainty, will drive the system towards
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a diLerent con8guration. This is so because they have at least one neighboring con8g-
uration with a larger value of the overlap.
We expect that by repetition of cycles of perturbation and relaxation the number

of domains is decreased, and the overlap is increased, until a monocultural con8gu-
ration with the global maximum value of overlap L is reached. If this is correct, the
phase transition described in Section 3 would not be robust in presence of exogenous
perturbations. This is the topic we address in the next section.

5. E!ect of random perturbations

5.1. Exogenous perturbations

In order to describe the consequences of the stability properties of the multicultural
states, we have simulated subjecting equilibrium states to the single feature perturba-
tions de8ned above. The simulations are designed as follows:

(A) Draw a random initial con8guration.
(B) Run the dynamics by iterating steps 1–3 of Section 2, until an equilibrium is

reached.
(C) Perform a single feature perturbation of the equilibrium and resume at (B).

Whenever an equilibrium con8guration has been reached, we measure L and Smax,
perform a perturbation and restart the dynamics from the perturbed con8guration. This
process models the eLect of a random inBuence on the system which acts on a much
slower timescale than the dynamics of cultural imitation. We 8nd that under these
conditions the system is driven to complete order, i.e., L gradually increases to the
maximum value (N − 1)F and Smax gradually increases to the maximum value N .
In summary, the exogenous perturbations allow the system to exit the multicultural
con8guration towards a monocultural stable state. For a typical simulation run, Fig. 6
displays the evolution towards the monocultural state. One observes that L decays
exponentially, which implies that the number of barriers also decreases exponentially.
This reBects the fact that barriers dissolve independently, i.e., the probability for a given
barrier to vanish does not depend on the number of barriers present in the system.

5.2. Cultural drift

We stress that in the above discussion of the eLect of exogenous perturbations,
the system is always allowed to relax to an equilibrium con8guration before a new
perturbation is performed. However, if perturbations can occur at any time during
the dynamics, their eLects may accumulate. At a suOciently large perturbation rate,
this may result in a disordered system with many cultures. For a very low rate of
perturbation, the system will be close to the process of alternating perturbation and
relaxation that we have discussed, resulting in a monocultural state. As a way to
approximate cultural drift, we consider the eLect of random perturbations acting at a
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Fig. 6. Ordering of the system by iterated cycles of perturbation and relaxation. The upper panel shows the
cultural barriers (bonds with zero overlap) after a given perturbation cycle. For the same dynamical run the
lower panel shows the values of the size of the largest cultural domain Smax (thin curve) and the normalized
negative overlap 〈�〉 (thick curve). Parameter choices are F = 10, q = 13 and N = 1000.

constant rate r. To be more speci8c, we implement cultural drift by adding a fourth
step in the iterated loop of the model de8ned in Section 2.

4. With probability r, perform a single feature perturbation.

This is intended to be a more realistic approximation of uncertainty in the agent’s
behavior than the perturbation and relaxation procedure. Notice that we are using asyn-
chronous updating in which a single agent is perturbed in each time step. The important
diLerence between the continuous noise case and the perturbation and relaxation case
explored above is that in this case the system is not necessarily in an equilibrium con-
8guration when a perturbation occurs. Therefore, it is not straightforward to generalize
to this case from the previous results. We will see, however, that an analytical result
in the study of random walks is able to give us some quantitative predictions.
We 8rst show the results of the numerical simulations of the model with cultural

drift. Fig. 7 shows the variation of the size of the largest cultural domain 〈Smax〉=N
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with the noise rate r. As expected, disorder appears for suOciently large noise rate r
where noise should dominate the dynamics. But for small values of r the system settles
into a monocultural state. Therefore we 8nd a transition, controlled by the parameter
r, from an ordered state to a disordered state. The exact location of the transition point
strongly depends on the number of agents N , but it is only weakly dependent on the
number of traits q. In fact, the variation of q from q= 5 to 50, which in the absence
of noise or perturbations leads to qualitatively diLerent outcomes, causes an almost
negligible shift of the transition towards slightly lower values of r.
To understand these changes to the system’s behavior, we oLer a dynamical expla-

nation for the transition from ordered to disordered states in the presence of cultural
drift. Let us de8ne T as the average time the system takes to reach equilibrium after a
single feature perturbation. If the noise rate is such that the typical time 1=r between
perturbations is shorter than T , the eLect of the perturbations adds up in the system
and disorder appears. The system is in a polarized, ‘noisy’ dynamical state. On the
contrary, if the noise rate is small, noise becomes an eOcient way to take the system
to explore nearby con8gurations, and the system eventually escapes from multicultural
equilibrium states to 8nd a monocultural state. This simple picture tells us that disorder
will set in when the average relaxation time T of perturbations of a monocultural state
satis8es r ≈ 1=T .
It is possible to obtain analytical estimation of T . Imagine a completely ordered

state as the initial condition at t=0. A single feature perturbation of this state induces
‘damage’ of size x(t = 0) = 1 in one of the features. In the subsequent time steps,
the damage may spread until an ordered state is reached again by x(t) = 0 or x(t) =
N . Therefore, we can envisage the system as a damaged cluster and an undamaged
background separated by two active bonds (interfaces). These interfaces execute a
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random walk type of diLusion and the average time needed for them to merge into an
ordered region that spans the whole system is well known (Grimmett and Stirzaker,
1982) to scale as

T ∼ N 2; (5)

so that the average relaxation time of perturbations diverges quadratically with in-
creasing number of agents. This result implies that the number of agents is a relevant
parameter (as already seen in Fig. 7). The N 2 dependence is con8rmed, see Fig. 8,
by showing that the data of Fig. 7 collapse into a single curve when the noise rate is
measured in units of T−1. That is, when it is plotted as a function of a rescaled noise
rate rN 2, which incorporates the noise rate r and the number of agents N .
Cultural drift, as modeled by continuous random perturbations, has a crucial role in

the behavior of Axelrod’s model: it induces a transition from a state of global culture
to a polarized state. For any 8nite size population, there is a critical value of the noise
rate below which cultural drift induces the dominance of a single culture. Conversely,
if the noise rate is large enough, polarization prevails. In the limit of large number
of agents (N → ∞) polarization always prevails, recovering Axelrod’s original idea
of polarization in spite of a local mechanism of convergence at work. However, these
polarized states no longer correspond to a frozen con8guration. Rather they present a
noise-sustained dynamical system.

6. Conclusions and outlook

We have shown that Axelrod’s model of cultural diLusion in a one-dimensional
world can be understood as a system in which global monoculture corresponds to a
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global maximum of overlap among features. When the initial cultural diversity is large
enough, the system 8nds an attractor corresponding to a culturally polarized state.
The system can always escape from these attractors by any small perturbation, since
there are always nearby con8gurations with the same or higher number of overlap-
ping features. Cultural drift, as modeled by continuous perturbations, can provide a
mechanism for promoting cultural globalization. However, if cultural drift acts at high
enough rate, it can have the opposite eLect of promoting a dynamical state of global
polarization.
As we have previously mentioned, our results about the maximization of over-

lap among features can be rigorously proven only for the one-dimensional topol-
ogy. Most of our qualitative 8ndings for the one-dimensional world are the same as
those obtained from simulations in a two-dimensional regular network (Klemm et al.,
2003a). In the two-dimensional world, there is a transition between the uniform and
multicultural states for a threshold value qc, but the attractors are not easily classi-
8ed in terms of the number of barriers. The dynamical stability of the other attrac-
tors is also unknown. However, simulations indicate that, as in the one-dimensional
case, perturbations acting on the multicultural states take the system to a mono-
cultural state. Further, in the presence of cultural drift there is also a transition
from uniform states to a polarized multicultural state controled by the noise
rate.
Our discussion has been restricted to regular networks with interactions between

nearest neighbors. However, social networks are known in many cases to be diLerent
from regular or random networks. In fact, the idea that network topologies might re-
Bect social cleavages was already posed by Axelrod (Axelrod, 1997a, b). Two types
of networks that have received a lot of attention recently are the small world networks
(Watts and Strogatz, 1998), representing an intermediate situation between regular and
random networks, and the scale free networks (Barab*asi and Albert, 1999), character-
ized by a power law tail in the probability distribution for the number of links to each
site in the network. Such a power law indicates the presence of few sites with a very
large number of links. Simulations of the Axelrod model in these networks (Klemm
et al., 2003b) indicate that small world networks favor cultural globalization, in the
sense that the value of qc for the transition to a polarized multicultural state is larger
than in the regular network. For small world networks, the maximum value of qc is
obtained in the limit of a random network; however, scale free connectivity is more
eOcient than random connectivity in promoting global culture, and thus scale free net-
works have an even larger value for qc. In fact, for scale free networks the value of qc
depends on the number of agents N , and in the limit of very large N , the system reaches
the uniform multicultural state for any value of q. An interesting unsolved question is
whether the dynamics of cultural evolution can introduce dynamics into the social net-
works of the agents that will in turn eLect the original dynamics of the model. Models
that better approximate social dynamics will not take networks as given a priori or as
8xed for the duration of the model (Lazer, 2001). As a 8rst step, the co-evolution of in-
dividual culture and social network could be modeled similarly to studies of cooperation
in which the social network emerges from the results of the dynamics of cooperation
(Zimmermann et al., 2001).
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