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Dynamics of semiconductor lasers with bidirectional optoelectronic coupling:
Stability, route to chaos, and entrainment
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The dynamical behavior of two mutually coupled semiconductor lasers is studied. An optoelectronic cou-
pling including a time delay in the propagation of the signals between the two lasers is considered. Starting
from the appropriate rate equations for the photon and carrier densities, we investigate the stability of the fixed
points and limit cycles of the system as a function of the coupling strength and the propagation time. From this
analysis, a quasiperiodic route to chaos with boundary crisis events is identified as the responsible mechanism
leading the system from regular to complex behavior. Several interesting phenomena are predicted for this
system. Our analytical and numerical results are supported by experiments which are in good agreement with
our predictions.
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[. INTRODUCTION type of system is relevant because of its role as organizing
center of the dynamics. This configuration allows us to study
Neurons, chemical oscillators, Josephson junctions, othe relative dynamics between the two lasers and its depen-
semiconductor lasers are just a few examples of nonlineatence on several easily adjustable parameters, an investiga-
systems in which the interaction of many similar parts cartion with no counterpart in the case of a single laser subject
lead to very rich and unexpected behavifis Their impor-  to delayed optoelectronic feedback. Moreover, the mutual
tance, in both theoretical and practical applications, has agntrainment or synchronization phenomena between the two
tracted the attention of researchers for a long time. While théemiconductor lasers are topics under current research
dynamics of coupled oscillators has been extensively stud-17-19,21,2Pwith significant implications in such subjects
ied, only recently have the effects of finite connection time, @S optical cryptography and injection locking between lasers.
which naturally arise from the finite propagation speed of the The choice of the optoelectronic coupling between the

signals between the subsystems, been taken into account. [#pers allows for a better understanding of the general phe-

mutually interacting subsystems, the delay time not only in/1°mena in this kind of delayed coupled systems. Moreover,

troduces an infinite-dimensional phase sp#2k but also optoelectronic coupling avoids the complexity introduced by

provides a new source of possible instabilities. For their po-the phase of the electric field that otherwise plays a crucial

R . ' - . role when considering the optical couplifg7,20,23. An-
tential implications in physics, medicine, biology, and Chem'other advantage of the study of this system comes from the

istry, mutua!ly coupled nonlinear oscillators have receivedfact that we do not need to restrict ourselves to investigate
much attention. . . weak- or moderate-coupling coefficients in order to avoid
Semiconductor lasers are ideal candidates for the study qyjtiple delayed terms, as happens in the mutual coherent
coupled systems since their dynamics is well understoodyptical interaction, which allows us to explore both the
both theoretically and experimentally, in different situations.\eak- and strong-coupling regimes with a simple set of rate
Semiconductor lasers subject to optoelectronic feedbackquations. However, we must point out that at a very large
have been extensively studied for many yel@s8g]. Opto-  coupling strength additional terms that address the saturation
electronically linked semiconductor lasgf-12] have been effects in photodetectors and amplifiers have to be included
used in unidirectionally coupled schemes with applicationsn the model.
to encoded communicatio$3-15. However, mutually in- Our work is organized as follows. In Sec. Il we present
teracting semiconductor lasers have been only considered, tbe model of the system that is developed at the level of
the best of our knowledge, assuming a coherent optical counodified rate equations. After some general considerations,
pling [16=21. In all these studies interesting dynamical re-we present in Secs. Il and IV the analytical and numerical
gimes, including anticipated and retarded synchronizationtesults. These are mainly devoted to stability charts, the full
leader-laggard dynamics, etc., have been reported. explanation of the route to chaos followed by the system, and
In this paper, we investigate the dynamical properties othe study of the mutual entrainment between the two lasers.
two semiconductor lasers subject to a bidirectional optoelec Sec. V experimental results that validate our theoretical
tronic coupling. The lasers exhibit continuous wawe) op-  and numerical studies are presented. Concluding remarks are
eration when they are decoupled. We focus on the instabiligiven in Sec. VI.
ties arising from the delayed interaction and the entrainment
properties of these instabilities when the coupling strength is
enhanced. Although the study we perform here is under the We consider the system depicted in Fig. 1, where the op-
degenerate condition of identical lasers, we remark that thiical output power emerging from each laser is converted

Il. MODEL
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Numerical calculations and experimental measurements
show that, in a wide operation range, the material gain has a
linear dependence on both the carrier and photon densities.
Therefore, gN,S) is expanded as

g=0o* dh(N-Np) +gy(S- ), (5

where g=1v./T" is the material gain at the solitary threshold,
gn=0d9/dN>0 is the differential gain parameter, ;g
=dg/dS<0 is the nonlinear gain parametél; is the carrier
1, density at threshold, an8§, is the free-running intracavity
photon density when the lasers are decoupled. The param-
FlG 1. Scheme of two lasers with 0pt0€|eCtr0niC bidirectionaleters o] and gJ are taken to be approximate'y constants.
coupling. After introducing Eq.(5) into Egs.(1)«(4) and defining
the dimensionless variabl&s=(S-S;)/ S, N=(N-Ng)/Ny,
into photocurr_ent and, after an amplification process, iﬁ:(J/ed‘VSNo)/VSNo, and k.= ¢/ ., the rate equations
added to the bias current of the other laser. read
We consider each solitary laser described by the usual
single-mode semiconductor laser rate equations. The bidirec- a8 Ye,0n,
tional optoelectronic coupling is accounted for by adding, in ot =—=n
the carrier rate equations, the delayed photocurrent generated Ysd1
by a laser into the injection current of its counterpart. The
optical phase does not play any role due to the insensitivity dfy s, Yo~ ~ - ~ ~
of the photodetectors to the phase of the electrical field. — == ——J51(1 +3) + ys k¢, Ji[ 1 +5,(t — Ty)] - ¥

15+ 1) - 7p1§1(§1 +1), (6)

Hence, the rate equations for the evolution of the photon and dt Yey
carrier densities in both lasers re ~~ ~ ~
] ~ 5381~ Yo (1 4%y, )
ds
— =91 = 7)S1, (1) ds, Ye,Vn,. ~
dt “ g &t D && D, 8
'VSZJZ
M est-To-wN-aS, @
T T 1 — 12) = ¥ N1~ 0191, N s, Ypr~ - - ~ ~ ~
dt ed ™ B — 2= 2R (1 4%) + ye e AL+ Rt - TD] - vz
dt Ye, ) i)
ds ~ Y6358 = Yo o1 +)), 9)
ot - 1927 %,)S, () 2 "
where the differential and nonlinear carrier relaxation rates
are defined as,, =0, and y,=-1'g,S, respectively. It is
dN, worth noting that sinceg=JysNol'/ y, both y, and vy, are

J
ot e_ZI +ESi(t=Ty) = Y, N2— S, (4)  related to the bias current. The values of the parameters are
those used in Ref[8]—i.e., y,=2.4X 10" s, ,=1.458

-1 e -1 —2 A7 -1 -
whereS, , is the intracavity photon densitly, , is the carrier IX 10,[9. S 7”]|3‘t].x 1?9 s, and YP_S'?J >|< 1toiis ) -(T/ezre;
density, and g, is the material gain. The subindices 1,2 dis- axation oscillation frequency is calculated &s- m

tinguish between the two laserg, , stand for the coupling X(Ye¥nt ypys)l’z, and the dimensionless coupling strength
strengths that are proportional to the responsivity of the pho[eads
todetectors and the amplification factor of the respective am-

Cayl’
plifiers. Our definition for the coupling coefficient is the one Ke= aZn T Pext (10
typically used when modeling coupled systems. However, gYe

this definition is slightly different from the one used in pre- a being the amplifier multiplication factory the quantum
vious paperg8,14] which is easier to determine experimen- efficiency of the photodetector,, a parameter that takes
tally. T, , are the coupling delay times. Other parametersnto account additional external losseshe speed of light in
appearing in the rate equations are the bias current dehsity vacuum,a,, the laser facet losses, anglthe group refractive
the cavity decay rate., the spontaneous carrier relaxation index. For a typical casén=0.5, 7ex=1, an=48 cnt, ng
rate y,, the confinement factor of the laser waveguitlghe  =3.5, y.=0.24 ps?, and'=0.3), « is of the order of~0.1,
electron charge, and the active layer thicknesls For sim-  whena is fixed to 1. Then, the magnitude ef can be easily
plicity, spontaneous emission noise sources have been nmodified just by changing the amplification factor. In addi-
glected. It is also important to note that an infinite-bandwithtion, the sign ofx, can be reversed by subtracting the gen-
photodetector-amplifier response is assumed. erated photocurrent from the bias instead of adding it. In this
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paper, we consider both positive and negative values for thand periodic solutions of delay differential equations
coupling strength. (DDE’s) with both constant and state-dependent delays.
The study of the linear stability of these fixed points is
achieved, as is usual for delayed differential equations, by
[ll. FIXED POINTS AND STABILITY ANALYSIS investigating the roots distribution of the following transcen-

The fixed points of the system of equatiof®—(9) are dental equation:

obtained by imposing the conditioB,(t)=S;q, Sy(t) =S, af of

iy (t) =Tiys, andM,(t) =T, In order to simplify the algebraic de(— N+ —) + ——|  exp—ATy
manipulations and reduce the number of free parameters, we Xt T1lxg

establish that, hereafter, all the computations are under the

assumptions that the same bias current is applied to both + — | exp- 7\Tz)) =0, (13
lasers (i.e., J;=J,=J), a symmetric coupling(x. =k, T2 g

=k¢) is considered, and identical internal parameters argvherex=(3;,1i;,3,,T,)', f is the flow defined on the right-
taken for both lasers. Nevertheless, it is worth mentioninghand sides of Eqs(6)<9), and the notatiorx; stands for
that even though that redliction is performed, there are stik(t—T). Consequently, in the following we will focus on the
four free control parameteds «., T;, andT,. The search of study of the eigenvalues of E¢L3) and the Floquet multi-
equilibria in the system reveals the existence of four fixedpliers of the existing limit cycles. From these computations,

points. The first 50|Uti0fGFPJ)~SlsF—1,ﬁlst:1§zst=—1, and the route to chaos will be traced out in our system.

- . . For the configuration we are analyzing, the coupling be-
N,s=J defines the_ off state of both lasers. It loses its stablhtyWeen the two lasers introduces a delay in their interaction
as soon as the bias current crosses the threshold value. The. o 1100 <tor a variety of dynamical behaviors. The iden-
other three fixed points are :

tification of these dynamical states and their domains in a
Bt 2 =0 (- 1), given parameter space is_ one pf the purposes of_bifurcati_on
theory. Since any local bifurcation of fixed points is associ-
ated with a change of sign in the real part of the noaif the

Nist2sy = 0 (L +k)J), characteristic equatiofEq. (13)], it is useful to separately
study the cases in which this change occurs either when the
Sease=—1(0), root is real or when it is a complex conjugate pair.
~ ~ A. Real eigenvalues
st (159 = (1 + 103 (0), (11) e _
In the case of a real, it is simple to see that=0 is a
solution of Eq.(13) for the steady states FP2, FP3, and FP4
- Kc . -,
§jgqg= ————————, whenever the coupling strength reaches the critical value
(1- Kc) + Yo7s N VoY
Ye¥n Ke=—1--P= (14)
YeIn
Frow=1 ?’97951 The study of the complete set of eigenvalues of FP2 and
ISy, et FP3, together with the assumption that no other instability

perturbs the state determined by K@ will see later how
$H=% Hopf bifurcations are forbidden for delay times short

st 1st . . " .

enough, allows us to identify that at the critical coupling

R = (12) given by Eq.(14) the three fixed points experience a simul-

2st™ st taneous change of stability. Hence, the aforementioned
The two fixed pointgFP2 and FPBgiven by Eqs(11) cor- asymmetric fixed points FP2 and FP3 become stable for
respond to the case in which one laser is emitting while thec, < «.. However, we must realize that typical changes in the
other is switched off, thus constituting the only asymmetricstability of fixed points involve collisions between steady
steady-state solutions. Unlike the case of mutually opticallystates. The collisions between the fixed points FP2, FP3, and
coupled lasers, no other nontrivial asymmetric fixed pointd=P4 are strictly forbidden for the symmetric situation we are
are found[19,20,22,23 Finally, Eq.(12) defines theonstate  considering. It has to be noticed that only at the critical cou-
of both laserqFP4). Note that when both lasers are lasing pling strength do the stationary conditions of our system of
simultaneously there is no threshold reduction since the cowequationg6)—9) allow for an extra solution consisting of a
pling interaction is of incoherent nature. continuum of fixed pointCFP), lying on the lines;+5,

We now proceed to study the stability of fixed points and=-1, that connects the other three fixed points involved in
limit cycles of the system of equationi§)—<9). This study the stability flip. In Fig. 2, we represent the paths and stabil-
has been partly carried out analytically and partly using thety of FP2, FP3, and FP4 as a function of the coupling
Matlab packag®DE-BIFTOOL [24] which allows for the com-  strength. Figure 2 is generated by assuming a coupling delay
puting, continuation, and stability analysis of steady statesime short enoughsmaller than~20 pg so that we can
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FIG. 2. Paths of the fixed points in tfg-S, phase space pro- FIG. 4. Stability diagram in the coupling strength vs injection
jection as a function of the coupling strength Solid and dashed current planex.—J) according to the signs dd, b, andc. Solid,
lines indicate of the stable and unstable character of the fixedashed, and dotted lines represent the zero-level contouB, for
points, respectively. Dif‘_ferent fixec_i points_continuations are labeledand ¢, respectively. DISR: delay-independent stable region. DIUR:
as FP1-FP4. The continuum of fixed poik@FP only exists for  delay-independent unstable region. DDSR: delay-dependent stable
the critical coupling strength at which the stability flip ocurs. region.

avoid the presence of Hopf bifurcations. As we will show in 3, we follow the fixed points of the system when we have

the next subsectiofsee Fig. 5 beloywthe latter are forbidden fixed ky=0.5 andk., is varied. As in Fig. 2, a short enough
for small delay times. It is observed how decreasing the COUL- g ascsluméd to a\%id Hopf iﬁstabilitieé '

pling beyond the critical value, the symmetric FP4 becomes
unstable while simultaneously FP2 and FP3 become stable
nodes. B. Complex eigenvalues

In summary, we observe that there exists a sudden transi-
tion that occurs when varying the coupling strength, from the  The other possibility is to consider thatis an imaginary
operating regime in which both lasers are in trestate to  nhumber. In this case the transition across the imaginary axis
one in which one of the lasers switches off while the otheronly occurs for the fixed point FP4 which represents the two
remains lasing. If we break the symmetric scenario by, e_g_|,a.SeI’S operating in then state. Under the conditions we are
allowing different coupling strengths between the two lasersimposing—i.e., at the symmetric fixed poi=5,5=S and
we observe that the mechanism leading to the stability flijl1s=Ns=1—the associated characteristic equation reads
between fixed points is again a transcritical bifurcation that
this time only involves FP4 and FP2. As an example, in Fig. exp— 2\ keyeyn(1 +9 T2

= 7p(7$+ M@+ +Nyn+ ¥+ N+ 1)

2

+ X \R+y(-Ti+ ]| (15)

2y

after definingT=(T,+T,)/2. We notice that the delay times
(T, andT,) appear in the above equation only through their
sum; thus, the actual value of each of them is not important
provided their sum remains constant. The Hopf bifurcation
points are obtained by substituting:iw, with @ # 0, in Eq.
(15) and separating into real and imaginary parts on both
sides of the equation. In this way the delay time can be
eliminated, reducing the characteristic equation to the biqua-
dratic form

FIG. 3. Paths of the fixed points in tfeg-S, phase space pro-
jection as a function of the coupling strengly. k.1 has been fixed 4 2,
![o 0.5. Solid and dashed Iinespingicate g:%hedstable and unstable @ +bw”+c=0, (16)
character of the fixed points, respectively. Different fixed points
continuations are labeled as FP1-FP4. where the coefficients andc are given by
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~=\2
Yc¥al ~ ~ ~ ~
b= ( . 3 ) +[752+ 7n2(1+s)2+(7p+27p5)2+27n(1+5)('}’p+ 'ys+2')’p )],

¥sJ
2YYnr Ta e = = =
= YL+ + Ty + Yo+ WS+ 2%,59)]
2y
. [ypyd(L + B) + yoye -1+ T2 - [Trceyevn(1 +IT
= = _
The solutions of Eq(16) are
1 —————
w= 13\,—b¢ Vb? - 4c, (17)
AY

which depend on the internal parameters and the operating conditions. Once the valuleavef been obtained, the critical
delay time can be calculated from

et arcta,[_ ( oy v+ 209 + = 3+ 430 +§>]}>] | s
@ Yl veyn(3 -+ J5) + J[- w?+ Vp(ys +2y9) ]}

A simple inspection of Eq.(15) reveals that its pure injection current, coupling strength, and time delay. We start
imaginary solutions are periodic i due to the term our investigations by looking at the injection current versus
exp(-2iwT). It is now evident that ifT* is a critical delay  coupling strength parameter space. In Fig. 4, we show the
time (i.e., a delay for which an eigenvalue is crossing thestability diagram of FP4 according to the conditioneing
imaginary axi$, then any delay of the forrfi=T*+m#/w  zero or a purely imaginary number. We can identify three
Ome Z will also be a critical delay time. From E@l7) it  different regions: the delay-independent stable region
turns out that a necessary and sufficient condition for th€DISR), the delay-independent unstable reg{@UR), and
existence of a critical delay time can be obtained whenevetwo delay-dependent stable regioBDSR). In the DISR
the quantity b+ (b’-4c)'? provides a real and positive zone, no matter the delay times we chose, the system will
number. Since the coefficientsand c only depend on the remain operating in its symmetric steady state given by FP4.
current _ In the DIUR zone, independently of the delay times the FP4
injectionJ and coupling strengtk,, for a given set of inter- is unstable, while the FP2 and FP3 become stable. Finally, in
nal parameters, we can obtain the regions in the couplinghe DDSR zone the stability of the symmetric fixed point is
strength versus current plane where at least one real solutigibt only determined by the injection current and the coupling
for w exists. Consequently a critical delay time associated
with this value ofw will always exist. Since the expression
for T(w) is invariant under the transformatian— —w, we
only distinguish two branches of solutions depending on the
sign that is chosen inside the square ro@{={-b+ (b’
—4¢)2)/ 2142 and w,={[-b-(b?-4c)*?]/2}*2. From in-
spection of Eq.(17), it is observed that the region in the
coupling strength-current injection parameter space for
which an instability may ariséi.e., a real solution forw
existy is delimited by the conditions D=b? -0.
-4c>0N[b<0U(b>0Nc<0)]. In that area, we can be -0.
assured that there is a value for the delay time, given by -0.
expression Eq(18), beyond which at least one pair of com- -3
plex conjugate eigenvalues have a positive real part. Note 0 500 1000 1500 2000
that the casd=0 has not been considered since it violates T (ps)
the conditionD =0 unlessc=0 in which case botlw; andw,
are equal to zero. FIG. 5. Hopf curves™* (w; ») with m=0, 1, 2, 3, 4, and 5 in the
coupling strength vs time delay plane. Solid and dashed lines dis-
tinguish between the sequences associated ajtAnd w,, respec-

In this section, we provide a complete overview of thetively. The Hopf curve associated T (w,) with m=0 has not been
dependence of the stability with respect to variations of theonsidered here, since it appears at negative couping delay times.

o © O o

W & BN N © N N oy o =

m=0

C. Stability diagrams
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UNSTABLE

STABLE

strength but also by the exact value of the coupling delay
time. The size of each of these former regions may strongly
depend on the nonlinear carrier relaxation rate paramgter

For instance, we have observed that an increase of the satu-
ration yields a reduction of the size of DDSR island corre-
sponding to positive couplings. Hence, the nonlinear gain =<
parameter, besides introducing an essential nonlinearity in
the system, becomes an important laser parameter that tends
to stabilize the dynamics by reducing the areas where insta-
bilities may appear. Another remarkable feature of these sta-
bility diagrams is the_fact that it is easier to destab|I|_ze the 0 250 500 750 1000 1o50

system through inhibitory couplings than through excitatory T (ps)

ones. This can be understood by noting that the damping of

the relaxation oscillations decreases for negative coupling FIG. 6. Stability diagram of the FP4 in the coupling strength vs
since the effective injection current is reduced. It is alsotime delay plane obtained from margins of the critical lines in
worth noting the existence, for any fixed coupling, of a maxi-Fig. 5 and the critical linec,=~1-v,¥s/ Yc¥n-

mum bias beyond which any dynamical instability is strictly

forbidden. Only for the DIUR zone can stability flip be in- This result, together with the fact that w; < 7/ w,, demon-
duced below the critical coupling for an arbitrarily large cur- strates that the rate at which the eigenvalues become unstable
rent. at w, is larger than the rate they become stableatCon-

In order to better understand the effect of the time delaysequently, an arbitrarily large number of unstable eigenval-
on the stability properties, we fix the value of the bias currenties can be achieved for sufficiently long delay times. At this
to J=1/3. From Fig. 4, it can be seen that the minimum point, we can now guarantee the absence of stability islands
positive coupling which can lead to an instability is  inside the external borders of the curves plotted in Fig. 5.
~0.25, while for negative couplings the minimum is  The resulting stability diagram for FP4 is shown in Fig. 6.
~-0.23. To construct the stability diagram in the couplingWe further continue our study by looking at the periodic
strength versus time delay plane we have to compute thsolutions and the route to chaos the system can undergo.
critical delay times given by Eq18) for different values of
m, taking into account that the real solutions forcome in
pairs of different signs. This allows us to distinguish among
only two positive eigenfrequencies; and w,, and conse-
quently two families of curves fof* (w) are obtained. Fig- In the preceding section we showed that the system can be
ure 5 shows the critical delay time curves corresponding talestabilized through a Hopf bifurcation at frequeney,,
both eigenfrequencies, for valuesmfranging from 0 to 5.  leading to the appearance of oscillations at the same fre-

Besides the information provided by the critical delay quency. Now, we study the evolution of the eigenfrequencies
time curves, we also need to check where the crossing of the, , as a function of the coupling strength, and we compare
eigenvalues is from the left to the right half-plane of thethese values with the relaxation oscillation freque(R@P
complex plane, in order to construct the stability diagram.computed using the effective injection currébias plus pho-
This is achieved by evaluating the derivative of the eigenvaltocurrenj. Figure 7 illustrates that the transition of the sys-
ues when they cross the imaginary axis. The implicit derivatem from stable to pulsating behavior occurs at a nearly con-
tive of Eg. (15) with respect toT leads to the expression stant frequency that is close to the free-running ROF

(2.47 GH2 when negative coupling is considered. For posi-
ar = ~ A exp(= 2AT) , (19) tive values,f; grows above the ROF of the coupled system
dTt h()\)a_h +Texp—22T) until it reaches a maximum aroung~ 0.98. Concerning the
frequencyf,, it is observed that when stabilization of the
output of the lasers occurs, it is through an inverse Hopf
bifurcation at a frequency almost identical to the free-
hOV) = [KeYeYn(YeYn + )/pys)]_l{(l _ 2K¢)7<2;72n+ 2Ye Yo ¥s running ROF for pqsitive couplings values and at a lower
frequency for negative ones.
+ VoV + N1 = k) + ¥ ¥l + AV (Y + Y Next, we analyze the structure and stability of the limit
_ cycles embedded in the phase space in the route to chaos
)y mlmt ot Ve k)]l 20 followed by the system. In particular, we are interested in
We have numerically evaluatetiRe(\)/dTl,~i,, , from Eq.  understanding how a typical bifurcation diagram, like that
(19) as function ofm for several coupling constants. The shown in Fig. 8 for the normalized photon denty devel-
results show that for all the values gf andm investigated, ops in terms of the periodic solutions and their interactions.
dRe(\)/dT,- iv, >0, while d Re(\)/dT],- iv,<0. This indi-  We will see how the main features of Fig. 8—namé#y,the
cates that the destabilization of the elgenvalues occurs at tiesidden transitions from chad€) to periodic behaviokP),
critical delay lines associated with the eigenfrequergy (b) the increasing size of the quasiperiodic and chaotic re-
while stabilizations occur at the lines associated with  gions (Q and C, respectively, and (c) the clear repetitive

o O O o

c
@ O A N D N R oy DD

UNSTABLE

IV. PERIODIC SOLUTIONS AND THE ROUTE TO
CHAQOS

whereh(\) denotes the function
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FIG. 7. Eigenfrequencie$, , (solid lines and ROF(dashed
line) as a function of the coupling strength.

1 C

0.5
structure of this diagram—are nothing else but the signatur¢ =
of the properties of the limit cycles on the dynamics of the £
system. In Fig. 8 one can also observe that the route to chac
traced by our mutually interacting lasers resembles the oni -1
followed by a single laser subject to optoelectronic feedback -1 -05 0 05
8. Re(l)

The top panel of Fig. 9 shows the stability diagram for the
limit cycles as a function of the coupling delay time. We
typically observe an unstable Hopf poi#) [25—-27 giving o
rise to a limit cycle, which undergoes a stabilizing fold bi- £ o
furcation (B). This fold bifurcation is followed by a
Neimark-SackefC) bifurcation. At this point the limit cycle
in which the system is operating developes into a torus and :
quasiperiodic dynamical state emerges. When further de
creasing the time delay, a torus breakdown is generally ob-
served, leading to fully developed chaos. Besides the nu- FIG. 9. Top panel: stability diagram for limit cycles as a func-
merical evidence of this torus breakdown, a parametridion of the coupling delay time. The coupling strength has been
representation of the system defined by E$9) can be fixed to x.=0.5. Solid and dashed lines indicate stability and insta-
used to continue the quasiperiodic solutions when a paranfility, respectively. Bottom panel: Floquet multipliers at the points
eter is varied, as has been done in R¢i9,25,28. This labeled as “B” and “C” in the top panel.

[0}

-0.5

-1 —0.5 0.5 1

0
Re(p)

_ . . . . . route to chaos is rigorously checked through the computation
o Q 7 of the Floquet multipliersi.e., the eigenvalues of the mono-
ask ] dromic equation for limit cycles which give information
t about their stability at the appropriate points as is illustrated
in the bottom panel of Fig. 9. At the point labeled (&3, we
observe how a real Floquet multiplier is entering into the unit
circle through thgl, 0) coordinate, while for the pointC)
two complex conjugate Floquet multipliers are leaving the
unit circle, giving rise to a toroidal structure. For even
shorter delays, the sudden disappearance of the chaotic be-
havior observed in Fig. 8 might be induced by a boundary
o e a0 000 c_r|S|s(D_) that occurs_when another unstable limit cycle col-
T () lides Wl_th the chaotlc_attractor that was born _around the
torus. Finally, the amplitude of the periodic solution goes to

FIG. 8. Bifurcation diagram &, as a function of the coupling 2€ro(E). Since the limit cycle is borfA) and annihilatedE)
delay time. The coupling strength has been fixed¢e0.5. Only ~ On FP4, the periodic orbit connects different points on the
maxima of time series were recorded to plot the bifurcation dia-continuation path of FP4. Similar periodic orbit bridges but
gram. The label®, Q, andC on the top of the diagram identificate between different steady states have been reported in the
the dynamical states as periodic, quasiperiodic, and chaotidjterature of semiconductor lasers subject to optical feedback
respectively. [26,27,29.
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The above explanation was given for the limit cycle that T (ns)

covers the delay times in the range440—720 ps. Now, ) )

taken into account that any other limit cycle in Fig. 9 has FIG- 11.(&) Maximum of the cross correlatiopmad as a func-
similar properties to the one we described, we can easil§ion Of the coupling delay timé. (b) Absolute value of the lag at
understand thata) all the sudden transitions from complex which the maximum of the cross-correlation function occurs. In
to regular behavior are probably induced by crisis evehjs, P°th cases the coupling strength has been fixee;#0.5.

the size of the islands of quasiperiodic or chaotic behaviofoy changing the delay timewithin the long-delay-time
amounts to the distance between poi@tand D which in-  jimit), the lag at which the maximum of the correlation ap-
creases for longer delay times, a(@ the qualitatively re-  pears continues to be located -at-T and no zero-lagged
petitive structure found in Fig. 8 comes from the fact thatsolutions are found. When reversing the sign of the coupling
new periodic solutions with similar properties arise as thecoefficient, in order to take into account negative coupling
delay is increased. values, we found that the cross-correlation function decays to
Once the different dynamical states have been charactemuch smaller values than for its positive coupling counter-
ized and the transition from regular to complex behavior isparts, revealing that mutual entrainment is more difficult to
understood, it is interesting to know whether the lasers arechieve in the case that inhibitory couplings are considered.
able to mutual entrain their dynamics or not. To study this, In order to further study the relative dynamics between
we computed the maximum of the cross-correlation functiorthe two lasers and its dependence on the coupling delay time,
(pmax) between the two outputs as a function of the couplingthe maximum of the cross-correlation function and the time
strength, for a shortl n9 and a long(15 n9 delay time. lag of this maximum are investigated. The results are pre-
Only values ofk.=0.25 are considered since the systemsented in Fig. 11 for a fixed coupling strength gf=0.5.
operates in a stable regime for smaller values. In Fig. 10, iFigure 11a) shows the maximum correlation between the
can be seen that for shorta large correlation coefficient is two laser outputs. It can be clearly seen that the correlation
obtained for almost any value of the coupling coefficient wedecreases from a value near 1, for sfigrto a value around
have considered. However, for most of the coupling coeffi-0.8 for a largeT. We also observed that the high correlation
cients both lasers operate in a periodic regime exhibitings only obtained when the system operates in a limit cycle
synchronougzero-lagged pulsations. However, we noticed while it decreases when the system operates in a chaotic
that changing the time delay arourdl ns, antiphase oscil- regime. In Fig. 11b) we plot the absolute value of the lag at
lations can also be observed for almost any coupling coeffiwhich the maximum of the correlation appears. We have to
cient. Only for k. around~0.5 do the lasers operate in a stress that in all cases the cross correlation is a symmetric
guasiperiodic or chaotic regime, and in these cases the maxinction of the lag, which indicates that no leader-laggard
mum of the cross-correlation coefficient drops to arounddynamics takes place. For shdrsome windows of in-phase
~0.7. When increasing the delay time up to 15 ns, we oband antiphase dynamics, corresponding to the operation of
serve that for almost any coupling coefficient both laserdoth lasers in several limit cycles, are observed. There are
enter into a quasiperiodic regime or even into a chaotic pulalso some windows where the lag between series is larger
sating state for intermediate couplings. In this case, the maxihan the coupling delay tim&. These regimes mainly corre-
mum of the cross-correlation coefficient remains close to Jspond to situations where both lasers operate in a quasiperi-
except for intermediate-coupling values at which it decays tadic orbit. After these windows the lag between the two out-
~0.8. Now, the time lag at which this maximum is found puts tends to the coupling delay tirnidfor large values off,
always corresponds te-+T. Contrary to the previous case, where the system operates in a chaotic regime. The relative
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30F in the return map plot. Decreasing the delay downTto
= 50 =800 ps, the quasiperiodic state is revealed by the power
S spectrum. There, a slow frequency corresponding to the en-
w5 10F velop frequency, a fast frequency coinciding with the pulsat-
o kS ok ing frequency, and several harmonics and beatings between
£ the fast and slow frequencies are clearly observed. The
£ 10 annular-shaped return map also confirms the quasiperiodic
g 20 behavior. Finally, for a delay af=720 ps, a chaotically pul-

S

P

500

1000
T (ps)

1500

2000

FIG. 12. Bifurcation diagram o%;-5, at the maxima ofs;,

when the coupling delay tim€ is varied. The coupling strength has

been fixed tok.=0.5.

sating sequence is obtained. In this case, a broader spectrum
and return map are expected as can be checked in the figure.

V. EXPERIMENTAL RESULTS

In the experiments, the lasers are In-Ga-As-P/InP single-
mode DFB lasers both operating at 1.20& wavelength
and temperature stabilized at 21 °C. The two lasers, which
are chosen from the same wafer, are closely matched in their

dynamics between the two lasers allows us to represent, icharacteristics to be highly identical. The photodetectors are
Fig. 12, the bifurcation diagram obtained by recording thelnGaAs photodetectors with a 6-GHz bandwidth, and the
value ofS; =5, at the time whef$; goes through a maximum. amplifiers are Avantek SSF86 amplifiers with 0.4—-3 GHz

In this figure, we observe again that for small delays theébandpass characteristics. The laser intensities measured by
regions of the in-phase and antiphase dynamics between tlilee photodetectors are recorded with a Tektronix TDS 694C
lasers are interrupted by quasiperiodic or chaotic windowsligitizing sampling oscilloscope with a 3-GHz bandwidth
until they disappear for large values ®f The in-phase or and a sampling rate up t0X110*° samples/s. Power spectra
antiphase dynamics of the system is associated with alterna&re measured with an HP E4407B rf spectrum analyzer that
ing states of limit cycle, when the latter are ordered fromhas a spectral range from 9 kHz to 26.5 GHz. The mutual
small to large values of. By operating the system in the coupling strength and the coupling delay time can be ad-
first limit cycle (starting from the leftof Fig. 9 we obtain an justed by changing the attenuation on the coupled optical
antiphase dynamics between the two lasers, while at the sepower and the optical path length in the coupling channel,
ond limit cycle an in-phase dynamics is observed. Again, amespectively.
antiphase dynamics appears for the third limit cycle, an in- Figure 14 shows a sequence of three dynamical states
phase for the fourth one, and so on. which are regular pulsin@RP), two-frequency quasiperiodic

As a final example, we illustrate in Fig. 13 the route to pulsing(Q2), and chaotic pulsingC), respectively, obtained
chaos obtained from the numerical simulations when théy varying the coupling delay times arouiig=T,~ 15 ns.
coupling delay time is decreased. Temporal traces, powehlthough the coupling strength is experimentally difficult to
spectra, and return maps clearly indicate a quasiperiodimeasure, we estimate it to be between 0.5 and 1. For each
route to chaos that perfectly agrees with the theoreticatlynamical state, the time series, power spectrum, and return
analysis and is also experimentally confirmed in the follow-map from the system output at photodetector PD2 are plotted
ing section. In the first row, a perfectly periodic state is ob-as in the first, second, and third columns, respectively. The

served for a delay time ofF=840 ps, giving rise to a single output of the system from PD1 is similar to that from PD2
peak in the power spectrum near the ROF and a single spfor each dynamical state.

) 5 10°[(b) 25 [(c)
5 107! 20
w5 20 & 1072 ‘E 15
-3
10 5 10 10
£ 1074 5
0 e 0
E 100 -
d e 25 H(f T . S
30} () g 10-1 (e) 20 ()/, 1 FIG. 13. Numerically computed quasiperiodic
.20 3 10-2 z sl ( i route to chaos. Left column, time series; central
o » 10-2 o ol i column, power spectra; right column, return
10 g 107¢ 5 e S maps. From top to bottom the delay tineis
0 S 1078 0 840 ps, 800 ps, and 720 ps, respectively. The
30t (h) g 01| @ 25 coupling strength is,=0.5.
g 10-
5 ou2 20
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ws 20 & 10-3 R
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20— : T 20—, o : — : — : : FIG. 14. Experimental quasiperiodic pulsing
S | () ' 12 |@© | 1® b i o route to chaos when decreasing the coupling de-
£ E_40_ E 20 = lay time (from top to bottom for mutually
2 % =t L Q2 coupled lasers with the configuration shown in
5 a0 g 10 e o Fig. 1. RP, regular pulsing state; Q2, two-
R !g 60— &t . frequency quasiperiodic pulsing state; C, chaotic

& pulsing state. First column, time series; second

column, power spectra; third column, return
maps.

20 ! | !
0 10 20

Time (ns) Frequency (GHz) P(n) (mV)

In Figs. 14a-14(c), the system is in a regular pulsing In Figs. 14h)-14(j), when the delay is further decreased,
state. The time series in Fig. ® shows a train of regular the system enters into a chaotic pulsing state. From the time
pulses with a constant pulsing intensity and interval. Theseries, we find that both the pulse intensity and the pulsing
power spectrum in Fig.14) has only one fundamental puls- interval vary chaotically. At the same time, the power spec-
ing frequencyf,, which is about 1 GHz, close to the ROF. trum of the chaotic pulsing state is broadened with a much
The Poincaré map section in Fig.(&}is obtained by record- increased background, indicating the onset of chaos. The re-
ing a peak sequende®(n) at the local intensity maxima of a turn map shows a highly scattered distribution in a large
pulse train and further plotting(n) versusP(n+1), as was area. Therefore, the system is shown to enter a chaotic puls-
done for the numerical results. In the regular pulsing stateing state through a quasiperiodic route.
the output has a constant peak intensity, and the return map We have also experimentally observed that for the long-
shows only one spot. The fluctuations in the time series andlelay-time limit, the maximum of the cross-correlation func-
consequently, the scattering in the return map are mainljion appears to be located at+ T, as happens in the numeri-
caused by the noise in the system and the sampling errog@l analysis. Figure 15 shows experimental temporal traces
from the oscilloscope. When the coupling delay time is de-and the cross correlation between these two series. Although
creased, the system enters into a two-frequency quasiperiodiige correlation value is significantly lowgmainly due to
pulsing state with the pulsing intensity modulated at a fre-noise originated in the sampling proce$isan the one pre-
quency f, as shown in Figs. 1d)-14f). The time series dicted numerically~0.8 for this operation regimethe two
clearly shows the modulation of the peak intensity. In thelargest maxima still appear at the lagstT. These experi-
power spectrum, besides the pulsing frequehgyn incom-  mental results verify qualitatively the results obtained from
mensuratef, indicating the modulation of peak intensity the numerical simulations.
shows up. The appearance of two incommensurate frequen-
cies f; and f, is the indication o_f quasiperiodicity. In .the VI. CONCLUSIONS
return map, the data points are still scattered due to noise and
sampling errors. However, we can see that the distribution in In conclusion, we have extensively studied, mainly ana-
Fig. 14f) is more scattered than that in Fig.(é¢because of lytically and numerically, the stability diagrams of a system

the modulation on the pulse intensity. composed by two single-mode semiconductor lasers with bi-
T T 0.5 T T T T T
(@) Bt (b)
~ i Q
2 ji=]
Sl
pa! ,§ OW}M FIG. 15. Experimental temporal series and
; ] 3 their cross-correlation function in the long-delay-
2 5 time limit. The coupling delay time i§=15 ns.
Q
E o 3
8
0TI T T 20 30 0BT T 01020 30
Time (ns) Time Shift (ns)
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directional optoelectronic coupling. Our analysis provides ahe effect of including feedback loops in each one of the
clear understanding of the mechanisms leading to the diffetaser systems.

ent dynamical instabilities and the role played by the differ- An extensive and careful comparison between systems
ent parameters—namely, injection current, coupling strengthyith feedback and mutually coupled systems would be of
and delay time. The route to chaos, when varying the cougreat interest once the dynamics of mutually coupled system
pling delay time, has been identified as a quasiperiodic scas well understood.

nario with crisis events. The effect of the coupling delay time
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