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The dynamical behavior of two mutually coupled semiconductor lasers is studied. An optoelectronic cou-
pling including a time delay in the propagation of the signals between the two lasers is considered. Starting
from the appropriate rate equations for the photon and carrier densities, we investigate the stability of the fixed
points and limit cycles of the system as a function of the coupling strength and the propagation time. From this
analysis, a quasiperiodic route to chaos with boundary crisis events is identified as the responsible mechanism
leading the system from regular to complex behavior. Several interesting phenomena are predicted for this
system. Our analytical and numerical results are supported by experiments which are in good agreement with
our predictions.
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I. INTRODUCTION

Neurons, chemical oscillators, Josephson junctions, or
semiconductor lasers are just a few examples of nonlinear
systems in which the interaction of many similar parts can
lead to very rich and unexpected behaviors[1]. Their impor-
tance, in both theoretical and practical applications, has at-
tracted the attention of researchers for a long time. While the
dynamics of coupled oscillators has been extensively stud-
ied, only recently have the effects of finite connection time,
which naturally arise from the finite propagation speed of the
signals between the subsystems, been taken into account. In
mutually interacting subsystems, the delay time not only in-
troduces an infinite-dimensional phase space[2] but also
provides a new source of possible instabilities. For their po-
tential implications in physics, medicine, biology, and chem-
istry, mutually coupled nonlinear oscillators have received
much attention.

Semiconductor lasers are ideal candidates for the study of
coupled systems since their dynamics is well understood,
both theoretically and experimentally, in different situations.
Semiconductor lasers subject to optoelectronic feedback
have been extensively studied for many years[3–8]. Opto-
electronically linked semiconductor lasers[9–12] have been
used in unidirectionally coupled schemes with applications
to encoded communications[13–15]. However, mutually in-
teracting semiconductor lasers have been only considered, to
the best of our knowledge, assuming a coherent optical cou-
pling [16–21]. In all these studies interesting dynamical re-
gimes, including anticipated and retarded synchronization,
leader-laggard dynamics, etc., have been reported.

In this paper, we investigate the dynamical properties of
two semiconductor lasers subject to a bidirectional optoelec-
tronic coupling. The lasers exhibit continuous wave(cw) op-
eration when they are decoupled. We focus on the instabili-
ties arising from the delayed interaction and the entrainment
properties of these instabilities when the coupling strength is
enhanced. Although the study we perform here is under the
degenerate condition of identical lasers, we remark that this

type of system is relevant because of its role as organizing
center of the dynamics. This configuration allows us to study
the relative dynamics between the two lasers and its depen-
dence on several easily adjustable parameters, an investiga-
tion with no counterpart in the case of a single laser subject
to delayed optoelectronic feedback. Moreover, the mutual
entrainment or synchronization phenomena between the two
semiconductor lasers are topics under current research
[17–19,21,22] with significant implications in such subjects
as optical cryptography and injection locking between lasers.

The choice of the optoelectronic coupling between the
lasers allows for a better understanding of the general phe-
nomena in this kind of delayed coupled systems. Moreover,
optoelectronic coupling avoids the complexity introduced by
the phase of the electric field that otherwise plays a crucial
role when considering the optical coupling[17,20,21]. An-
other advantage of the study of this system comes from the
fact that we do not need to restrict ourselves to investigate
weak- or moderate-coupling coefficients in order to avoid
multiple delayed terms, as happens in the mutual coherent
optical interaction, which allows us to explore both the
weak- and strong-coupling regimes with a simple set of rate
equations. However, we must point out that at a very large
coupling strength additional terms that address the saturation
effects in photodetectors and amplifiers have to be included
in the model.

Our work is organized as follows. In Sec. II we present
the model of the system that is developed at the level of
modified rate equations. After some general considerations,
we present in Secs. III and IV the analytical and numerical
results. These are mainly devoted to stability charts, the full
explanation of the route to chaos followed by the system, and
the study of the mutual entrainment between the two lasers.
In Sec. V experimental results that validate our theoretical
and numerical studies are presented. Concluding remarks are
given in Sec. VI.

II. MODEL

We consider the system depicted in Fig. 1, where the op-
tical output power emerging from each laser is converted
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into photocurrent and, after an amplification process, is
added to the bias current of the other laser.

We consider each solitary laser described by the usual
single-mode semiconductor laser rate equations. The bidirec-
tional optoelectronic coupling is accounted for by adding, in
the carrier rate equations, the delayed photocurrent generated
by a laser into the injection current of its counterpart. The
optical phase does not play any role due to the insensitivity
of the photodetectors to the phase of the electrical field.
Hence, the rate equations for the evolution of the photon and
carrier densities in both lasers read[8]

dS1

dt
= sGg1 − gc1

dS1, s1d

dN1

dt
=

J1

ed
+ jc1S2st − T2d − gs1

N1 − g1S1, s2d

dS2

dt
= sGg2 − gc2

dS2, s3d

dN2

dt
=

J2

ed
+ jc2S1st − T1d − gs2

N2 − g2S2, s4d

whereS1,2 is the intracavity photon density,N1,2 is the carrier
density, and g1,2 is the material gain. The subindices 1,2 dis-
tinguish between the two lasers.jc1,2 stand for the coupling
strengths that are proportional to the responsivity of the pho-
todetectors and the amplification factor of the respective am-
plifiers. Our definition for the coupling coefficient is the one
typically used when modeling coupled systems. However,
this definition is slightly different from the one used in pre-
vious papers[8,14] which is easier to determine experimen-
tally. T1,2 are the coupling delay times. Other parameters
appearing in the rate equations are the bias current densityJ,
the cavity decay rategc, the spontaneous carrier relaxation
rategs, the confinement factor of the laser waveguideG, the
electron chargee, and the active layer thicknessd. For sim-
plicity, spontaneous emission noise sources have been ne-
glected. It is also important to note that an infinite-bandwith
photodetector-amplifier response is assumed.

Numerical calculations and experimental measurements
show that, in a wide operation range, the material gain has a
linear dependence on both the carrier and photon densities.
Therefore, gsN,Sd is expanded as

g < g0 + gnsN − N0d + gpsS− S0d, s5d

where g0=gc/G is the material gain at the solitary threshold,
gn=]g/]N.0 is the differential gain parameter, gp
=]g/]S,0 is the nonlinear gain parameter,N0 is the carrier
density at threshold, andS0 is the free-running intracavity
photon density when the lasers are decoupled. The param-
eters gn and gp are taken to be approximately constants.

After introducing Eq.(5) into Eqs. (1)–(4) and defining
the dimensionless variabless̃;sS−S0d /S0, ñ;sN−N0d /N0,

J̃=sJ/ed−gsN0d /gsN0, and kc;jcG /gc, the rate equations
read

ds̃1

dt
=

gc1
gn1

gs1
J̃1

ñ1ss̃1 + 1d − gp1
s̃1ss̃1 + 1d, s6d

dñ1

dt
=

gs1
gp1

gc1

J̃1s̃1s1 + s̃1d + gs1
kc1

J̃1f1 + s̃2st − T1dg − gs1
ñ1

− gs1
J̃1s̃1 − gn1

ñ1s1 + s̃1d, s7d

ds̃2

dt
=

gc2
gn2

gs2
J̃2

ñ2ss̃2 + 1d − gp2
s̃2ss̃2 + 1d, s8d

dñ2

dt
=

gs2
gp2

gc2

J̃2s̃2s1 + s̃2d + gs2
kc2

J̃2f1 + s̃1st − T2dg − gs2
ñ2

− gs2
J̃2s̃2 − gn2

ñ2s1 + s̃2d, s9d

where the differential and nonlinear carrier relaxation rates
are defined asgn;gnS0 and gp;−GgpS0, respectively. It is

worth noting that sinceS0= J̃gsN0G /gc, both gn and gp are
related to the bias current. The values of the parameters are
those used in Ref.[8]—i.e., gc=2.431011 s−1, gs=1.458

3109 s−1, gn=3J̃3109 s−1, and gp=3.6J̃3109 s−1. The re-
laxation oscillation frequency is calculated asf r =s1/2pd
3sgcgn+gpgsd1/2, and the dimensionless coupling strength
reads

kc = a
hcamG

2nggc
hext, s10d

a being the amplifier multiplication factor,h the quantum
efficiency of the photodetector,hext a parameter that takes
into account additional external losses,c the speed of light in
vacuum,am the laser facet losses, andng the group refractive
index. For a typical case(h=0.5, hext=1, am=48 cm−1, ng
=3.5,gc=0.24 ps−1, andG=0.3), kc is of the order of,0.1,
whena is fixed to 1. Then, the magnitude ofkc can be easily
modified just by changing the amplification factor. In addi-
tion, the sign ofkc can be reversed by subtracting the gen-
erated photocurrent from the bias instead of adding it. In this

FIG. 1. Scheme of two lasers with optoelectronic bidirectional
coupling.
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paper, we consider both positive and negative values for the
coupling strength.

III. FIXED POINTS AND STABILITY ANALYSIS

The fixed points of the system of equations(6)–(9) are
obtained by imposing the conditions̃1std= s̃1st, s̃2std= s̃2st,
ñ1std= ñ1st, and ñ2std= ñ2st. In order to simplify the algebraic
manipulations and reduce the number of free parameters, we
establish that, hereafter, all the computations are under the
assumptions that the same bias current is applied to both

lasers (i.e., J̃1= J̃2; J̃), a symmetric couplingskc1=kc2

;kcd is considered, and identical internal parameters are
taken for both lasers. Nevertheless, it is worth mentioning
that even though that reduction is performed, there are still

four free control parametersJ̃, kc, T1, andT2. The search of
equilibria in the system reveals the existence of four fixed

points. The first solution(FP1) s̃1st=−1, ñ1st= J̃, s̃2st=−1, and

ñ2st= J̃ defines the off state of both lasers. It loses its stability
as soon as the bias current crosses the threshold value. The
other three fixed points are

s̃1st s2std = 0 s− 1d,

ñ1st s2std = 0 „s1 + kcdJ̃…,

s̃2st s1std = − 1 s0d,

ñ2st s1std = s1 + kcdJ̃ s0d, s11d

s̃1st=
kc

s1 − kcd +
gpgs

gcgn

,

ñ1st= J̃
gpgs

gcgn
s̃1st,

s̃2st= s̃1st,

ñ2st= ñ1st. s12d

The two fixed points(FP2 and FP3) given by Eqs.(11) cor-
respond to the case in which one laser is emitting while the
other is switched off, thus constituting the only asymmetric
steady-state solutions. Unlike the case of mutually optically
coupled lasers, no other nontrivial asymmetric fixed points
are found[19,20,22,23]. Finally, Eq.(12) defines theon state
of both lasers(FP4). Note that when both lasers are lasing
simultaneously there is no threshold reduction since the cou-
pling interaction is of incoherent nature.

We now proceed to study the stability of fixed points and
limit cycles of the system of equations(6)–(9). This study
has been partly carried out analytically and partly using the
Matlab packageDDE-BIFTOOL [24] which allows for the com-
puting, continuation, and stability analysis of steady states

and periodic solutions of delay differential equations
(DDE’s) with both constant and state-dependent delays.

The study of the linear stability of these fixed points is
achieved, as is usual for delayed differential equations, by
investigating the roots distribution of the following transcen-
dental equation:

detS− lI + U ]f

]x
U

xst

+ U ]f

]xT1

U
xst

exps− lT1d

+ U ]f

]xT2

U
xst

exps− lT2dD = 0, s13d

wherex;ss̃1,ñ1, s̃2,ñ2d†, f is the flow defined on the right-
hand sides of Eqs.(6)–(9), and the notationxT stands for
xst−Td. Consequently, in the following we will focus on the
study of the eigenvalues of Eq.(13) and the Floquet multi-
pliers of the existing limit cycles. From these computations,
the route to chaos will be traced out in our system.

For the configuration we are analyzing, the coupling be-
tween the two lasers introduces a delay in their interaction
which allows for a variety of dynamical behaviors. The iden-
tification of these dynamical states and their domains in a
given parameter space is one of the purposes of bifurcation
theory. Since any local bifurcation of fixed points is associ-
ated with a change of sign in the real part of the rootl of the
characteristic equation[Eq. (13)], it is useful to separately
study the cases in which this change occurs either when the
root is real or when it is a complex conjugate pair.

A. Real eigenvalues

In the case of a reall, it is simple to see thatl=0 is a
solution of Eq.(13) for the steady states FP2, FP3, and FP4
whenever the coupling strength reaches the critical value

kc
* = − 1 −

gpgs

gcgn
. s14d

The study of the complete set of eigenvalues of FP2 and
FP3, together with the assumption that no other instability
perturbs the state determined by FP4(we will see later how
Hopf bifurcations are forbidden for delay times short
enough), allows us to identify that at the critical coupling
given by Eq.(14) the three fixed points experience a simul-
taneous change of stability. Hence, the aforementioned
asymmetric fixed points FP2 and FP3 become stable for
kc,kc

* . However, we must realize that typical changes in the
stability of fixed points involve collisions between steady
states. The collisions between the fixed points FP2, FP3, and
FP4 are strictly forbidden for the symmetric situation we are
considering. It has to be noticed that only at the critical cou-
pling strength do the stationary conditions of our system of
equations(6)–(9) allow for an extra solution consisting of a
continuum of fixed points(CFP), lying on the line s̃1+ s̃2
=−1, that connects the other three fixed points involved in
the stability flip. In Fig. 2, we represent the paths and stabil-
ity of FP2, FP3, and FP4 as a function of the coupling
strength. Figure 2 is generated by assuming a coupling delay
time short enough(smaller than,20 ps) so that we can
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avoid the presence of Hopf bifurcations. As we will show in
the next subsection(see Fig. 5 below) the latter are forbidden
for small delay times. It is observed how decreasing the cou-
pling beyond the critical value, the symmetric FP4 becomes
unstable while simultaneously FP2 and FP3 become stable
nodes.

In summary, we observe that there exists a sudden transi-
tion that occurs when varying the coupling strength, from the
operating regime in which both lasers are in theon state to
one in which one of the lasers switches off while the other
remains lasing. If we break the symmetric scenario by, e.g.,
allowing different coupling strengths between the two lasers,
we observe that the mechanism leading to the stability flip
between fixed points is again a transcritical bifurcation that
this time only involves FP4 and FP2. As an example, in Fig.

3, we follow the fixed points of the system when we have
fixed kc1=0.5 andkc2 is varied. As in Fig. 2, a short enough
T is assumed to avoid Hopf instabilities.

B. Complex eigenvalues

The other possibility is to consider thatl is an imaginary
number. In this case the transition across the imaginary axis
only occurs for the fixed point FP4 which represents the two
lasers operating in theon state. Under the conditions we are
imposing—i.e., at the symmetric fixed points̃1st= s̃2st= s̃ and
ñ1st= ñ2st= ñ—the associated characteristic equation reads

exps− 2lTdfkcgcgns1 + s̃dg2

= Fgpsgs + lds1 + 2s̃d + lsgn + gs + l + gns̃d

+
gcgn

gsJ̃
f− lñ + gssJ̃ − ñ + J̃s̃dgG2

, s15d

after definingT;sT1+T2d /2. We notice that the delay times
(T1 andT2) appear in the above equation only through their
sum; thus, the actual value of each of them is not important
provided their sum remains constant. The Hopf bifurcation
points are obtained by substitutingl= iv, with vÞ0, in Eq.
(15) and separating into real and imaginary parts on both
sides of the equation. In this way the delay time can be
eliminated, reducing the characteristic equation to the biqua-
dratic form

v4 + bv2 + c = 0, s16d

where the coefficientsb andc are given by

FIG. 2. Paths of the fixed points in thes̃1− s̃2 phase space pro-
jection as a function of the coupling strengthkc. Solid and dashed
lines indicate of the stable and unstable character of the fixed
points, respectively. Different fixed points continuations are labeled
as FP1–FP4. The continuum of fixed points(CFP) only exists for
the critical coupling strength at which the stability flip ocurs.

FIG. 3. Paths of the fixed points in thes̃1− s̃2 phase space pro-
jection as a function of the coupling strengthkc2. kc1 has been fixed
to 0.5. Solid and dashed lines indicate of the stable and unstable
character of the fixed points, respectively. Different fixed points
continuations are labeled as FP1–FP4.

FIG. 4. Stability diagram in the coupling strength vs injection

current planeskc− J̃d according to the signs ofD, b, andc. Solid,
dashed, and dotted lines represent the zero-level contours forD, b,
andc, respectively. DISR: delay-independent stable region. DIUR:
delay-independent unstable region. DDSR: delay-dependent stable
region.
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b = Sgcgnñ

gsJ̃
D2

+ fgs
2 + gn

2s1 + s̃d2 + sgp + 2gps̃d2 + 2gns1 + s̃dsgp + gs + 2gps̃dg,

−
2gcgn

gsJ̃
fgsJ̃s1 + s̃d + ñsgn + gp + gns̃+ 2gps̃dg

c =
fgpgsJ̃s1 + 2s̃d + gcgnsJ̃ − ñ + J̃s̃dg2 − fJ̃kcgcgns1 + s̃dg2

J̃2
.

The solutions of Eq.(16) are

v = ±
1
Î2

Î− b ± Îb2 − 4c, s17d

which depend on the internal parameters and the operating conditions. Once the values ofv have been obtained, the critical
delay time can be calculated from

T * svd =
1

v
arctanF− SvhgsJ̃sgp + gs + 2gps̃d + gnf− gcñ + gsJ̃s1 + s̃dgj

gshgcgnsJ̃ − ñ + J̃s̃d + J̃f− v2 + gpsgs + 2gss̃dgj
DG . s18d

A simple inspection of Eq.(15) reveals that its pure
imaginary solutions are periodic inT due to the term
exps−2ivTd. It is now evident that ifT* is a critical delay
time (i.e., a delay for which an eigenvalue is crossing the
imaginary axis), then any delay of the formT=T* + mp /v
∀mPZ will also be a critical delay time. From Eq.(17) it
turns out that a necessary and sufficient condition for the
existence of a critical delay time can be obtained whenever
the quantity −b± sb2−4cd1/2 provides a real and positive
number. Since the coefficientsb and c only depend on the
current
injection J̃ and coupling strengthkc, for a given set of inter-
nal parameters, we can obtain the regions in the coupling
strength versus current plane where at least one real solution
for v exists. Consequently a critical delay time associated
with this value ofv will always exist. Since the expression
for Tsvd is invariant under the transformationv°−v, we
only distinguish two branches of solutions depending on the
sign that is chosen inside the square root:v1=hf−b+sb2

−4cd1/2g /2j1/2 and v2=hf−b−sb2−4cd1/2g /2j1/2. From in-
spection of Eq.(17), it is observed that the region in the
coupling strength-current injection parameter space for
which an instability may arise(i.e., a real solution forv
exists) is delimited by the conditions D;b2

−4c.0ù fb,0ø sb.0ùc,0dg. In that area, we can be
assured that there is a value for the delay time, given by
expression Eq.(18), beyond which at least one pair of com-
plex conjugate eigenvalues have a positive real part. Note
that the caseb=0 has not been considered since it violates
the conditionDù0 unlessc=0 in which case bothv1 andv2
are equal to zero.

C. Stability diagrams

In this section, we provide a complete overview of the
dependence of the stability with respect to variations of the

injection current, coupling strength, and time delay. We start
our investigations by looking at the injection current versus
coupling strength parameter space. In Fig. 4, we show the
stability diagram of FP4 according to the conditionsl being
zero or a purely imaginary number. We can identify three
different regions: the delay-independent stable region
(DISR), the delay-independent unstable region(DIUR), and
two delay-dependent stable regions(DDSR). In the DISR
zone, no matter the delay times we chose, the system will
remain operating in its symmetric steady state given by FP4.
In the DIUR zone, independently of the delay times the FP4
is unstable, while the FP2 and FP3 become stable. Finally, in
the DDSR zone the stability of the symmetric fixed point is
not only determined by the injection current and the coupling

FIG. 5. Hopf curvesT* sv1,2d with m=0, 1, 2, 3, 4, and 5 in the
coupling strength vs time delay plane. Solid and dashed lines dis-
tinguish between the sequences associated withv1 andv2, respec-
tively. The Hopf curve associated toT* sv2d with m=0 has not been
considered here, since it appears at negative couping delay times.
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strength but also by the exact value of the coupling delay
time. The size of each of these former regions may strongly
depend on the nonlinear carrier relaxation rate parametergp.
For instance, we have observed that an increase of the satu-
ration yields a reduction of the size of DDSR island corre-
sponding to positive couplings. Hence, the nonlinear gain
parameter, besides introducing an essential nonlinearity in
the system, becomes an important laser parameter that tends
to stabilize the dynamics by reducing the areas where insta-
bilities may appear. Another remarkable feature of these sta-
bility diagrams is the fact that it is easier to destabilize the
system through inhibitory couplings than through excitatory
ones. This can be understood by noting that the damping of
the relaxation oscillations decreases for negative coupling
since the effective injection current is reduced. It is also
worth noting the existence, for any fixed coupling, of a maxi-
mum bias beyond which any dynamical instability is strictly
forbidden. Only for the DIUR zone can stability flip be in-
duced below the critical coupling for an arbitrarily large cur-
rent.

In order to better understand the effect of the time delay
on the stability properties, we fix the value of the bias current
to J̃=1/3. From Fig. 4, it can be seen that the minimum
positive coupling which can lead to an instability iskc
,0.25, while for negative couplings the minimum iskc
,−0.23. To construct the stability diagram in the coupling
strength versus time delay plane we have to compute the
critical delay times given by Eq.(18) for different values of
m, taking into account that the real solutions forv come in
pairs of different signs. This allows us to distinguish among
only two positive eigenfrequenciesv1 and v2, and conse-
quently two families of curves forT* svd are obtained. Fig-
ure 5 shows the critical delay time curves corresponding to
both eigenfrequencies, for values ofm ranging from 0 to 5.

Besides the information provided by the critical delay
time curves, we also need to check where the crossing of the
eigenvalues is from the left to the right half-plane of the
complex plane, in order to construct the stability diagram.
This is achieved by evaluating the derivative of the eigenval-
ues when they cross the imaginary axis. The implicit deriva-
tive of Eq. (15) with respect toT leads to the expression

dl

dT
=

− l exps− 2lTd

hsld
]h

]l
+ T exps− 2lTd

, s19d

wherehsld denotes the function

hsld = fkcgcgnsgcgn + gpgsdg−1hs1 − 2kcdgc
2gn

2 + 2gcgngpgs

+ gp
2gs

2 + l2fgcgns1 − kcd + gpgsg + lfgpgssgn + gp

+ gsd + gcgnsgn + gp + gs − kcgsdgj. s20d

We have numerically evaluatedd Resld /dTul=iv1,2
from Eq.

(19) as function ofm for several coupling constants. The
results show that for all the values ofkc andm investigated,
d Resld /dTul=iv1

.0, while d Resld /dTul=iv2
,0. This indi-

cates that the destabilization of the eigenvalues occurs at the
critical delay lines associated with the eigenfrequencyv1
while stabilizations occur at the lines associated withv2.

This result, together with the fact thatp /v1,p /v2, demon-
strates that the rate at which the eigenvalues become unstable
at v1 is larger than the rate they become stable atv2. Con-
sequently, an arbitrarily large number of unstable eigenval-
ues can be achieved for sufficiently long delay times. At this
point, we can now guarantee the absence of stability islands
inside the external borders of the curves plotted in Fig. 5.
The resulting stability diagram for FP4 is shown in Fig. 6.
We further continue our study by looking at the periodic
solutions and the route to chaos the system can undergo.

IV. PERIODIC SOLUTIONS AND THE ROUTE TO
CHAOS

In the preceding section we showed that the system can be
destabilized through a Hopf bifurcation at frequencyv1,2,
leading to the appearance of oscillations at the same fre-
quency. Now, we study the evolution of the eigenfrequencies
v1,2 as a function of the coupling strength, and we compare
these values with the relaxation oscillation frequency(ROF)
computed using the effective injection current(bias plus pho-
tocurrent). Figure 7 illustrates that the transition of the sys-
tem from stable to pulsating behavior occurs at a nearly con-
stant frequency that is close to the free-running ROF
s2.47 GHzd when negative coupling is considered. For posi-
tive values,f1 grows above the ROF of the coupled system
until it reaches a maximum aroundkc,0.98. Concerning the
frequency f2, it is observed that when stabilization of the
output of the lasers occurs, it is through an inverse Hopf
bifurcation at a frequency almost identical to the free-
running ROF for positive couplings values and at a lower
frequency for negative ones.

Next, we analyze the structure and stability of the limit
cycles embedded in the phase space in the route to chaos
followed by the system. In particular, we are interested in
understanding how a typical bifurcation diagram, like that
shown in Fig. 8 for the normalized photon densitys̃1, devel-
ops in terms of the periodic solutions and their interactions.
We will see how the main features of Fig. 8—namely,(a) the
sudden transitions from chaossCd to periodic behaviorsPd,
(b) the increasing size of the quasiperiodic and chaotic re-
gions (Q and C, respectively), and (c) the clear repetitive

FIG. 6. Stability diagram of the FP4 in the coupling strength vs
time delay plane obtained from margins of the critical lines in
Fig. 5 and the critical linekc

* =−1−gpgs/gcgn.
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structure of this diagram—are nothing else but the signature
of the properties of the limit cycles on the dynamics of the
system. In Fig. 8 one can also observe that the route to chaos
traced by our mutually interacting lasers resembles the one
followed by a single laser subject to optoelectronic feedback
[8].

The top panel of Fig. 9 shows the stability diagram for the
limit cycles as a function of the coupling delay time. We
typically observe an unstable Hopf pointsAd [25–27] giving
rise to a limit cycle, which undergoes a stabilizing fold bi-
furcation sBd. This fold bifurcation is followed by a
Neimark-SackersCd bifurcation. At this point the limit cycle
in which the system is operating developes into a torus and a
quasiperiodic dynamical state emerges. When further de-
creasing the time delay, a torus breakdown is generally ob-
served, leading to fully developed chaos. Besides the nu-
merical evidence of this torus breakdown, a parametric
representation of the system defined by Eqs.(6)–(9) can be
used to continue the quasiperiodic solutions when a param-
eter is varied, as has been done in Refs.[19,25,28]. This

route to chaos is rigorously checked through the computation
of the Floquet multipliers(i.e., the eigenvalues of the mono-
dromic equation for limit cycles which give information
about their stability) at the appropriate points as is illustrated
in the bottom panel of Fig. 9. At the point labeled assBd, we
observe how a real Floquet multiplier is entering into the unit
circle through the(1, 0) coordinate, while for the pointsCd
two complex conjugate Floquet multipliers are leaving the
unit circle, giving rise to a toroidal structure. For even
shorter delays, the sudden disappearance of the chaotic be-
havior observed in Fig. 8 might be induced by a boundary
crisis sDd that occurs when another unstable limit cycle col-
lides with the chaotic attractor that was born around the
torus. Finally, the amplitude of the periodic solution goes to
zerosEd. Since the limit cycle is bornsAd and annihilatedsEd
on FP4, the periodic orbit connects different points on the
continuation path of FP4. Similar periodic orbit bridges but
between different steady states have been reported in the
literature of semiconductor lasers subject to optical feedback
[26,27,29].

FIG. 7. Eigenfrequenciesf1,2 (solid lines) and ROF (dashed
line) as a function of the coupling strength.

FIG. 8. Bifurcation diagram fors̃1 as a function of the coupling
delay time. The coupling strength has been fixed tokc=0.5. Only
maxima of time series were recorded to plot the bifurcation dia-
gram. The labelsP, Q, andC on the top of the diagram identificate
the dynamical states as periodic, quasiperiodic, and chaotic,
respectively.

FIG. 9. Top panel: stability diagram for limit cycles as a func-
tion of the coupling delay time. The coupling strength has been
fixed to kc=0.5. Solid and dashed lines indicate stability and insta-
bility, respectively. Bottom panel: Floquet multipliers at the points
labeled as “B” and “C” in the top panel.
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The above explanation was given for the limit cycle that
covers the delay times in the range,440–720 ps. Now,
taken into account that any other limit cycle in Fig. 9 has
similar properties to the one we described, we can easily
understand that(a) all the sudden transitions from complex
to regular behavior are probably induced by crisis events,(b)
the size of the islands of quasiperiodic or chaotic behavior
amounts to the distance between pointsC and D which in-
creases for longer delay times, and(c) the qualitatively re-
petitive structure found in Fig. 8 comes from the fact that
new periodic solutions with similar properties arise as the
delay is increased.

Once the different dynamical states have been character-
ized and the transition from regular to complex behavior is
understood, it is interesting to know whether the lasers are
able to mutual entrain their dynamics or not. To study this,
we computed the maximum of the cross-correlation function
srmaxd between the two outputs as a function of the coupling
strength, for a shorts1 nsd and a longs15 nsd delay time.
Only values ofkc*0.25 are considered since the system
operates in a stable regime for smaller values. In Fig. 10, it
can be seen that for shortT a large correlation coefficient is
obtained for almost any value of the coupling coefficient we
have considered. However, for most of the coupling coeffi-
cients both lasers operate in a periodic regime exhibiting
synchronous(zero-lagged) pulsations. However, we noticed
that changing the time delay around,1 ns, antiphase oscil-
lations can also be observed for almost any coupling coeffi-
cient. Only for kc around,0.5 do the lasers operate in a
quasiperiodic or chaotic regime, and in these cases the maxi-
mum of the cross-correlation coefficient drops to around
,0.7. When increasing the delay time up to 15 ns, we ob-
serve that for almost any coupling coefficient both lasers
enter into a quasiperiodic regime or even into a chaotic pul-
sating state for intermediate couplings. In this case, the maxi-
mum of the cross-correlation coefficient remains close to 1
except for intermediate-coupling values at which it decays to
,0.8. Now, the time lag at which this maximum is found
always corresponds to,±T. Contrary to the previous case,

now changing the delay time(within the long-delay-time
limit ), the lag at which the maximum of the correlation ap-
pears continues to be located at,±T and no zero-lagged
solutions are found. When reversing the sign of the coupling
coefficient, in order to take into account negative coupling
values, we found that the cross-correlation function decays to
much smaller values than for its positive coupling counter-
parts, revealing that mutual entrainment is more difficult to
achieve in the case that inhibitory couplings are considered.

In order to further study the relative dynamics between
the two lasers and its dependence on the coupling delay time,
the maximum of the cross-correlation function and the time
lag of this maximum are investigated. The results are pre-
sented in Fig. 11 for a fixed coupling strength ofkc=0.5.
Figure 11(a) shows the maximum correlation between the
two laser outputs. It can be clearly seen that the correlation
decreases from a value near 1, for shortT, to a value around
0.8 for a largeT. We also observed that the high correlation
is only obtained when the system operates in a limit cycle
while it decreases when the system operates in a chaotic
regime. In Fig. 11(b) we plot the absolute value of the lag at
which the maximum of the correlation appears. We have to
stress that in all cases the cross correlation is a symmetric
function of the lag, which indicates that no leader-laggard
dynamics takes place. For shortT some windows of in-phase
and antiphase dynamics, corresponding to the operation of
both lasers in several limit cycles, are observed. There are
also some windows where the lag between series is larger
than the coupling delay timeT. These regimes mainly corre-
spond to situations where both lasers operate in a quasiperi-
odic orbit. After these windows the lag between the two out-
puts tends to the coupling delay timeT for large values ofT,
where the system operates in a chaotic regime. The relative

FIG. 10. Maximum of the cross-correlation functionsrmaxd as a
function of the coupling strength for(a) T=1 ns and(b) T=15 ns.

FIG. 11. (a) Maximum of the cross correlationsrmaxd as a func-
tion of the coupling delay timeT. (b) Absolute value of the lag at
which the maximum of the cross-correlation function occurs. In
both cases the coupling strength has been fixed tokc=0.5.
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dynamics between the two lasers allows us to represent, in
Fig. 12, the bifurcation diagram obtained by recording the
value ofs̃1− s̃2 at the time whens̃1 goes through a maximum.
In this figure, we observe again that for small delays the
regions of the in-phase and antiphase dynamics between the
lasers are interrupted by quasiperiodic or chaotic windows
until they disappear for large values ofT. The in-phase or
antiphase dynamics of the system is associated with alternat-
ing states of limit cycle, when the latter are ordered from
small to large values ofT. By operating the system in the
first limit cycle (starting from the left) of Fig. 9 we obtain an
antiphase dynamics between the two lasers, while at the sec-
ond limit cycle an in-phase dynamics is observed. Again, an
antiphase dynamics appears for the third limit cycle, an in-
phase for the fourth one, and so on.

As a final example, we illustrate in Fig. 13 the route to
chaos obtained from the numerical simulations when the
coupling delay time is decreased. Temporal traces, power
spectra, and return maps clearly indicate a quasiperiodic
route to chaos that perfectly agrees with the theoretical
analysis and is also experimentally confirmed in the follow-
ing section. In the first row, a perfectly periodic state is ob-
served for a delay time ofT=840 ps, giving rise to a single
peak in the power spectrum near the ROF and a single spot

in the return map plot. Decreasing the delay down toT
=800 ps, the quasiperiodic state is revealed by the power
spectrum. There, a slow frequency corresponding to the en-
velop frequency, a fast frequency coinciding with the pulsat-
ing frequency, and several harmonics and beatings between
the fast and slow frequencies are clearly observed. The
annular-shaped return map also confirms the quasiperiodic
behavior. Finally, for a delay ofT=720 ps, a chaotically pul-
sating sequence is obtained. In this case, a broader spectrum
and return map are expected as can be checked in the figure.

V. EXPERIMENTAL RESULTS

In the experiments, the lasers are In-Ga-As-P/ InP single-
mode DFB lasers both operating at 1.299mm wavelength
and temperature stabilized at 21 °C. The two lasers, which
are chosen from the same wafer, are closely matched in their
characteristics to be highly identical. The photodetectors are
InGaAs photodetectors with a 6-GHz bandwidth, and the
amplifiers are Avantek SSF86 amplifiers with 0.4–3 GHz
bandpass characteristics. The laser intensities measured by
the photodetectors are recorded with a Tektronix TDS 694C
digitizing sampling oscilloscope with a 3-GHz bandwidth
and a sampling rate up to 131010 samples/s. Power spectra
are measured with an HP E4407B rf spectrum analyzer that
has a spectral range from 9 kHz to 26.5 GHz. The mutual
coupling strength and the coupling delay time can be ad-
justed by changing the attenuation on the coupled optical
power and the optical path length in the coupling channel,
respectively.

Figure 14 shows a sequence of three dynamical states
which are regular pulsing(RP), two-frequency quasiperiodic
pulsing(Q2), and chaotic pulsing(C), respectively, obtained
by varying the coupling delay times aroundT1=T2,15 ns.
Although the coupling strength is experimentally difficult to
measure, we estimate it to be between 0.5 and 1. For each
dynamical state, the time series, power spectrum, and return
map from the system output at photodetector PD2 are plotted
as in the first, second, and third columns, respectively. The
output of the system from PD1 is similar to that from PD2
for each dynamical state.

FIG. 12. Bifurcation diagram ofs̃1− s̃2 at the maxima ofs̃1,
when the coupling delay timeT is varied. The coupling strength has
been fixed tokc=0.5.

FIG. 13. Numerically computed quasiperiodic
route to chaos. Left column, time series; central
column, power spectra; right column, return
maps. From top to bottom the delay timeT is
840 ps, 800 ps, and 720 ps, respectively. The
coupling strength iskc=0.5.
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In Figs. 14(a)–14(c), the system is in a regular pulsing
state. The time series in Fig. 14(a) shows a train of regular
pulses with a constant pulsing intensity and interval. The
power spectrum in Fig.14(a) has only one fundamental puls-
ing frequencyf1, which is about 1 GHz, close to the ROF.
The Poincaré map section in Fig. 14(c) is obtained by record-
ing a peak sequencePsnd at the local intensity maxima of a
pulse train and further plottingPsnd versusPsn+1d, as was
done for the numerical results. In the regular pulsing state,
the output has a constant peak intensity, and the return map
shows only one spot. The fluctuations in the time series and,
consequently, the scattering in the return map are mainly
caused by the noise in the system and the sampling errors
from the oscilloscope. When the coupling delay time is de-
creased, the system enters into a two-frequency quasiperiodic
pulsing state with the pulsing intensity modulated at a fre-
quency f2 as shown in Figs. 14(d)–14(f). The time series
clearly shows the modulation of the peak intensity. In the
power spectrum, besides the pulsing frequencyf1, an incom-
mensuratef2 indicating the modulation of peak intensity
shows up. The appearance of two incommensurate frequen-
cies f1 and f2 is the indication of quasiperiodicity. In the
return map, the data points are still scattered due to noise and
sampling errors. However, we can see that the distribution in
Fig. 14(f) is more scattered than that in Fig. 14(c) because of
the modulation on the pulse intensity.

In Figs. 14(h)–14(j), when the delay is further decreased,
the system enters into a chaotic pulsing state. From the time
series, we find that both the pulse intensity and the pulsing
interval vary chaotically. At the same time, the power spec-
trum of the chaotic pulsing state is broadened with a much
increased background, indicating the onset of chaos. The re-
turn map shows a highly scattered distribution in a large
area. Therefore, the system is shown to enter a chaotic puls-
ing state through a quasiperiodic route.

We have also experimentally observed that for the long-
delay-time limit, the maximum of the cross-correlation func-
tion appears to be located at,±T, as happens in the numeri-
cal analysis. Figure 15 shows experimental temporal traces
and the cross correlation between these two series. Although
the correlation value is significantly lower(mainly due to
noise originated in the sampling process) than the one pre-
dicted numerically(,0.8 for this operation regime), the two
largest maxima still appear at the lags,±T. These experi-
mental results verify qualitatively the results obtained from
the numerical simulations.

VI. CONCLUSIONS

In conclusion, we have extensively studied, mainly ana-
lytically and numerically, the stability diagrams of a system
composed by two single-mode semiconductor lasers with bi-

FIG. 14. Experimental quasiperiodic pulsing
route to chaos when decreasing the coupling de-
lay time (from top to bottom) for mutually
coupled lasers with the configuration shown in
Fig. 1. RP, regular pulsing state; Q2, two-
frequency quasiperiodic pulsing state; C, chaotic
pulsing state. First column, time series; second
column, power spectra; third column, return
maps.

FIG. 15. Experimental temporal series and
their cross-correlation function in the long-delay-
time limit. The coupling delay time isT=15 ns.
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directional optoelectronic coupling. Our analysis provides a
clear understanding of the mechanisms leading to the differ-
ent dynamical instabilities and the role played by the differ-
ent parameters—namely, injection current, coupling strength,
and delay time. The route to chaos, when varying the cou-
pling delay time, has been identified as a quasiperiodic sce-
nario with crisis events. The effect of the coupling delay time
on the mutual entrainment properties between the lasers has
also been analyzed. Our experimental results qualitatively
agree with the analytical and numerical analysis and confirm
the predicted route to chaos followed by the system. It is
worth remarking that the validity of the fixed-point stability
analysis, performed in this paper for the optoelectronic cou-
pling case, is maintained when the interaction between lasers
is replaced by one of incoherent optical nature[30]. This
comes from the fact that the characteristic equation[Eq.
(15)], once linearized on the corresponding fixed points,
leads to the same expression as that obtained in the optoelec-
tronic case with negative coupling, after the substitution
jc,inco°−jc,opto is performed. Numerical simulations suggest
that the same route to chaos and nonlinear phenomena is also
shared by these two schemes. As future directions, we find
interesting the study of the effect of having different delay
times in each one of the coupling directions(i.e., T1ÞT2) in
the mutual entrainment properties, as well as to investigate

the effect of including feedback loops in each one of the
laser systems.

An extensive and careful comparison between systems
with feedback and mutually coupled systems would be of
great interest once the dynamics of mutually coupled system
is well understood.
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