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We investigate the detrimental effects of parameter mismatch on the synchronization of semiconductor lasers
with electro-optical feedback, whose intensity dynamics can display a hyperchaotic behavior. Analytical tech-
niques are developed to study the statistical properties of the synchronization error as a function of the various
types of mismatches. The multiple mismatch case, which is of high experimental interest, is also studied and
some compensation conditions allowing the improvement of the synchronization are derived. The analytical
predictions are confirmed by numerical simulations and by some experimental measurements.
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I. INTRODUCTION

Chaos encryption of data for optical communications is
nowadays a widely investigated topic[1–3]. This encryption
technique basically relies on the synchronization of two
semiconductor lasers operating in a chaotic regime, and is
therefore performed at the physical layer of the network ar-
chitecture. For practical implementations of these communi-
cation schemes, it is crucial to achieve a very stable and
accurate synchronization between the transmitter and re-
ceiver chaotic systems[4]. Particularly important is the
double role of the mismatch between characteristics of both
systems, which is unavoidable in the fabrication process. On
one hand, mismatch can degrade the synchronization quality
between the emitter and the receiver. Therefore, synchroni-
zation should be robust enough to allow for the use of
slightly different devices. On the other hand, the lack of syn-
chronization due to mismatch is a key element for security
since it prevents the use by an eventual eavesdropper of a
similar device to decode the message.

Despite its importance for practical applications, studies
on the effect of parameter mismatch in chaotic synchroniza-
tion are quite scarce in the literature. In Refs.[5–7], the
effect of parameter mismatch was studied analytically for
nondelayed low-dimensional chaotic systems. In high-
dimensional chaotic systems, such as semiconductor lasers
with optical feedback, there are some numerical[8] and ana-
lytical [9] results. In delayed optoelectronic wavelength os-
cillators the root-mean-square synchronization error ampli-
tude induced by two simultaneous mismatches has been
studied[10]. This is particularly important because success-
ful decryption is not possible when the amplitude of the en-
crypted message is smaller than the one of the residual os-
cillations resulting from the parameter mismatch, the so-
called “mismatch noise.”

Parameter mismatch is also relevant for chaos-shift key-
ing (CSK) schemes for encryption of binary signals in a cha-
otic carrier [3]. Effectively, CSK relies on a sequential
switching of a given parameter between two values, the first
one being matched with the receiver(thereby ensuring syn-
chronization), the second being slightly detuned from the
first one (so that the receiver desynchronizes). The
synchronization-desynchronization sequence at the receiver
enables the message decryption provided that intrinsic mis-
match noise allows the distinction between both states.
Within that frame, Ref.[11] focused on the performance
comparison of the CSK encryption scheme for various
“switched” mismatched parameters.

The purpose of the present paper is to study from the
analytical, numerical, and experimental points of view the
parameter mismatch effects in the synchronization of electro-
optical laser chaos. We will first investigate the effects of the
various mismatches taken separately(i.e., when one of them
is considered, all the others are set to zero), and after that we
will study the case of simultaneous parameter mismatches.
For the latter case, we will focus on how different parameter
mismatches can be compensated to improve the quality of
the synchronization. This is of particular relevance since
typically some of the mismatches are very difficult to control
in practice while others are easily tunable. We will also
verify the validity of our analytical results through numerical
simulation and some experimental measurements.

The paper is organized as follows. In Sec. II, we present
the experimental setup and the dynamical model of the sys-
tem under study. Sec. III deals with the analysis of the vari-
ous mismatch effects when they are taken individually, while
Sec. IV focuses on multiple mismatches and mismatch com-
pensation. Some experimental results are presented and dis-
cussed in Sec. V. Finally, Sec. VI is devoted to concluding
remarks.

II. THE SYSTEM

The system under study corresponds to the experimental
setup represented in Fig. 1. The chaotic transmitter consists*Corresponding author: Email address: ckyanne@imedea.uib.es

PHYSICAL REVIEW E 69, 056226(2004)

1539-3755/2004/69(5)/056226(15)/$22.50 ©2004 The American Physical Society69 056226-1



of a closed-loop electro-optical feedback with the following
main components: a Mach-Zehnder modulator(of half-wave
voltageVp and bias voltageVB) illuminated at 1550 nm by a
continuous-wave semiconductor laser source of powerP, an
optical-fiber delay line of delay timeT, a fiber coupler in
order to insert the chaotic carrier into the fiber communica-
tion channel with transmission coefficienta, a photodiode
with gain g to convert the optical feedback signal into an
electrical one, and a radio-frequency amplifier with gainG to
drive the Mach-Zehnder modulation electrode. The overall
attenuation of this feedback loop(delay line, connectors,
etc.) is described in terms of the parameterg. The electro-
optic modulator is driven by a voltage larger than its half-
wave voltage, and it operates in a highly nonlinear regime
[12].

The receiver is built symmetrical to the emitter, with the
difference that only the light coming from the emitter enters
in the delay loop(open-loop receiver). The electronic band-
width of the feedback loop is considered, in first approxima-
tion, to result from two cascaded linear first-order low-pass
and high-pass filters, with high and low cutoff frequenciesfH
and fL, respectively. The emitter-receiver coupling is ensured
by a 232 fiber coupler which inserts part of the emitter
chaotic output into the transmission channel. The open port
of the fiber coupler can be used to add at the end of the
emitter delay loop a message which is then mixed with the
chaotic dynamics and inserted in the transmission channel.

If we consider the variablesx andy as the dimensionless
voltages across the electric path in the emitter and receiver
feedback loops, respectively, their dynamics can be modeled
by the following system of coupled differential-delayed
equations[12]:

x + tẋ +
1

u
E

t0

t

xssdds= b cos2fxst − Td + fg, s1d

y + t8ẏ +
1

u8
E

t0

t

yssdds= b8 cos2fxst − T8d + f8g, s2d

where

b = paggGP/2Vp, f = pVB/2Vp,

u = 1/2pfL, t = 1/2pfH,

b8 = pAg8g8G8P8/2Vp8 , f8 = pVB8/2Vp8 ,

u8 = 1/2pfL8, t8 = 1/2pfH8 . s3d

The receiver parameters are labeled with a prime because
they generally differ from the transmitter ones. All additional
attenuations in the receiver feedback loop are contained in
the coefficientA. For simplicity we have neglected the trans-
mission delay time between emitter and receiver. Therefore,
we have five control parameters in our model: the delay time
T, the nonlinear feedback strengthb, the off-set phasef, the
low cutoff response timeu, and the high cutoff response time
t.

To derive analytical predictions, it is convenient to find an
approximate stationary integral form for these equations.
This has two advantages: first, it skips away the transient
dynamics which is incompatible with the statistical analysis
and, second, it gives a useful pseudoexplicit mathematical
expression for the chaotic dynamic variables[5,6]. The first
step of this mathematical transformation is to introduce the
variableu as

ustd =E
t0

t

xssdds, s4d

so that Eq.(1) for the emitter dynamics can be formally
written as a linear second-order ordinary differential equa-
tion for u with a chaotic external forcing

u̇ + tü +
1

u
u = b cos2fxst − Td + fg. s5d

The roots of the characteristic polynomial corresponding to
the homogeneous solution are

r± =
1

2t
F− 1 ±Î1 − 4

t

u
G . s6d

Owing to the very large bandwidth of the filter, typically
t /u,10−5!1, the roots can be approximated as

r+ . − 1/u, r− . − 1/t. s7d

They can, respectively, stand for the low and high cutoff
angular frequencies of the band-pass filter. Using Eq.(7) the
stationary solution foru can be formally expressed as

FIG. 1. The experimental setup.
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ustd = bE
t0

t

fess−td/u − ess−td/tgcos2fxss− Td + fgds. s8d

Therefore, the stationary solution forx is given by

xstd = bE
t0

t

Uss,tdcos2fxss− Td + fgds, s9d

where

Uss,td = S1

t
ess−td/t −

1

u
ess−td/uD s10d

is an evolution operator which only depends on the filter
parametersu andt. Similarly, one can obtain the following
integral expression for the receiver:

ystd = b8E
t0

t

U8ss,tdcos2fxss− T8d + f8gds, s11d

with U8ss,td being defined asUss,td for the receiver param-
etersu8 andt8.

III. SINGLE-PARAMETER MISMATCH

We define for each parameterp the instantaneous syn-
chronization error as

eDpstd = yp8std − xpstd, s12d

where Dp=p8−p is the parameter mismatch andxpstd and
yp8std are the transmitter and receiver time traces obtained
with the values of the parameterp and p8, respectively. We
will use two indicators to characterize the effect of the pa-
rameter mismatch.

The first one is the normalized root-mean-squared syn-
chronization error which is a quantitative indicator measur-
ing the time-averaged proximity of the emitter and receiver
time traces

sDp =ÎkeDp
2 l

kxp
2l

, s13d

wherek l stands for the time average. The evaluation of this
average should be performed integrating over a time much
longer than any characteristic time scales of the model, in
particular longer thanu, which is the slowest time scale.
Furthermore, the integration time should be long enough so
that the average reaches a stationary value, which typically
takes place when the trajectory samples all the regions of the
chaotic attractor.s can be used as an indicator of the sensi-
tivity as well as an indicator of threshold under which any
encoded message cannot be recovered, namely, the minimum
modulation index.

The second indicator is the normalized cross-correlation
function, defined as

GDpssd =
kfxpstd − kxpstdlgfyp8st + sd − kyp8stdlgl
Îkfxpstd − kxpstdlg2lkfyp8std − kyp8stdlg

2l
, s14d

which is a qualitative indicator showing how the slave tra-
jectory is topologically distorted by the mismatch. It may

also be considered as a robustness indicator. We should no-
tice that the presence of the low cutoff integral term in Eqs.
(1) and (2) implies that the mean value ofxstd and ystd is
zero(otherwise the solutions would linearly diverge to infin-
ity). Therefore for our system Eq.(14) is equivalent to

GDpssd =
kxpstdyp8st + sdl

Îkxp
2stdlkyp8

2 stdl
. s15d

In the following sections we address the effect of a mis-
match in each of the system parameters individually.

A. Delay-time mismatch „T…

The delay mismatch is met experimentally for a different
delay length of fiber between the emitter and receiver setup.
The global delay includes also the group delay of the rf com-
ponents and also the eventual electric cables that might be
required in the setup.

Assuming b=b8, f=f8, u=u8, and t=t8 and defining
DT=T8−T, Eq. (11) can be written as

ystd = bE
t0

t

Uss,tdcos2fxss− T − DTd + fgds=xst − DTd

+ bE
t0−DT

t0
Uss8,t − DTdcos2fxss8 − Td + fgds8, s16d

wheres8=s−DT. Since the second integral term on the right-
hand side exponentially decays to zero, one may simply ex-
pect in the stationary regime

ystd = xst − DTd. s17d

The effect of theT mismatch is to shift the slave time trace
back or forth depending on the sign and amplitude ofDT.
This comes from the fact that the receiver equation is a linear
differential equation externally forced by a nonlinear func-
tion of the chaotic variablexst−Td. Hence, theT mismatch is
a change of the time origin, which therefore does not quali-
tatively affect the dynamics of the slave system. This is
clearly illustrated in Fig. 2 which shows the emitter and re-
ceiver time traces for different values ofDT. The time traces
have been obtained integrating numerically Eqs.(1) and (2)
using a fourth-order predictor-corrector algorithm and a time
step of 10 ps. The time trace is shown after integrating for a
time t0=10u, large enough to ensure the decay of the tran-
sient dynamics.

An analytic approximation forsDT and GDT can be ob-
tained as follows. First, we consider the Fourier transform
Xsvd of xstd,

Xsvd =
1

Î2p
E

−`

+`

xstde−ivtdt, s18d

which satisfiesXsvd=X*s−vd since it is the Fourier trans-
form of a real variable. From Eq.(17) we have Ysvd
=e−ivDTXsvd, whereYsvd is the Fourier transform ofystd.
Therefore in Fourier space, the synchronization error is
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Esvd = fe−ivDT − 1gXsvd = HTsvdXsvd, s19d

whereHTsvd is the transfer function fromEsvd to Xsvd for a
DT mismatch. Hence, the synchronization error can theoreti-
cally be derived through the Parseval theorem as

sDT
2 =

E
−`

+`

uHTsvdu2uXsvdu2dv

E
−`

+`

uXsvdu2dv

. s20d

As the integrals depend on the chaotic time trace they cannot
be explicitly determined analytically. However, in first ap-
proximation we can consider thatXsvd is a perfectly flat

band-limited white-noise spectrum, the limits being those of
the band-pass filter, so that

Xsvd =5S* if v P F−
1

t
,−

1

u
G

S if v P F1

u
,
1

t
G

0 otherwise,

s21d

where uSu is arbitrary (the value ofuSu is not relevant here
because the synchronization error is normalized with the av-
erage intensity of the chaotic carrier). We are therefore led to
the following expression for the synchronization error:

sDT
2 <

1

t−1 − u−1E
1/u

1/t

uHTsvdu2dv<2F1 − sincSDT

t
DG ,

s22d

where sinc is the sine-cardinal function. The accuracy of this
result relies on the validity of the approximation when con-
sidering that the chaotic spectrum looks like a white noise
within a bandwidth defined by the cutoff timesu andt.

Figure 3(a) displays the comparison between numerical
and analytical results for the synchronization error. Despite
the simplicity of the approximation, Eq.(22) gives a good
prediction although the numerical results show for small
mismatch values a larger synchronization error than theoreti-
cally predicted. Both analytical prediction and numerical re-
sults indicate a very high sensitivity to time-delay mismatch:
a 1% synchronization error is induced whenDT=1 ps, that
is, for a relative error ofDT/T.5310−5. As indicated by
Eq. (22), this high sensitivity comes from the large band-
width Df .1/2pt@1/T. Consequently, for a satisfying syn-
chronization quality, the length of the fiber delay lines should
practically be adjusted with a relative precision of the order
of 10−6. In the case of a larger bandwidth filter(as it would
ideally be the case), this sensitivity would be increased pro-
portionally to the high cutoff frequency.

To determine analytically the cross-correlation function,
we can use a corollary of the Wiener-Khintchin theorem
which states that the cross-correlation function is the inverse
Fourier transform of the cross-power spectral density func-
tion [15]. Hence, the expression ofGDT as a function of its
lag-time arguments reads

GDTssd =

E
−`

+`

XsvdY*svdeivsdv

ÎFE
−`

+`

uXsvdu2dvGFE
−`

+`

uYsvdu2dvG
.sincSs+ DT

t
D . s23d

Figure 3(b) displays the comparison between Eq.(23) and
the numerical results for the cross correlation at zero lag time
ss=0d obtained integrating Eqs.(1) and (2). Again, despite
its simplicity, Eq.(23) is a quite good approximation of the
correlation function. The numerical calculations show that by

FIG. 2. Transmitter(solid line) and receiver(dashed line) cha-
otic time traces. We have consideredT=20 ns, b=5, f=0.1, u
=2 ms, andt=50 ps. These values will be used for all the numeri-
cal simulations throughout the whole paper.(a) (top) DT=0.2 ns,
the slave is delayed relatively to the master;(b) (center) DT=0, the
slave is isochronous to the master;(c) (bottom) DT=−0.2 ns, the
slave anticipates the master. The same initial conditions have been
considered for the three cases.
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increasing the delay time mismatch, the correlation decays,
in fact, slightly faster than the analytical prediction(23). The
oscillations that appear in the theoretical curve come from
the vertical cutoff we have considered for the hyperchaotic
spectrum[Xsvd was approximated as a rectangular function].
They could be eliminated by approximatingXsvd as a func-
tion with a smooth decay to zero, which would be a more
realistic approximation for the spectra of the chaotic time
trace. However, this would be made at the cost of a higher
complexity for the calculations.

Equation(23) also indicates that, as we may expect from
Eq. (17), the effect ofDT is to shift the autocorrelation func-

tion to the leftsDT,0d or to the rightsDT.0d by an amount
DT. This analytical prediction is numerically confirmed in
Fig. 3(c). The influence of time-delay mismatch is in abso-
lute rather than relative value since the time traces and cor-
relation functions are shifted proportionally toDT.

B. Nonlinear feedback-strength mismatch„b…

The b mismatch corresponds to a normalized gain in the
experimental setup, which includes various physical param-
eters: the electronic feedback gain, the electro-optic sensitiv-
ity of the modulatorsVpd, the detector sensitivity, the optical
losses, and the cw laser optical power. The precise depen-
dence on these parameters is given in Eq.(3). Only the mis-
match in the resultingb is relevant and not in the individual
physical parameters, since, for example, a rf gain mismatch
can be compensated by an optical power mismatch.

Assumingf=f8, u=u8, t=t8, T=T8, and definingDb
=b8−b one obtains from Eqs.(9) and (11) that xstd
=bystd /b8. The receiver time trace is exactly the same as the
transmitter but with different amplitude. This can also be
obtained (1) directly and (2) by rescalingy with b /b8.
Therefore, this result is mathematically exact, independent of
the approximations we have done to obtain the stationary
integral form. Thenestd=sDb /bdxstd, so that the average
synchronization error is

sDb = UDb

b
U . s24d

Therefore the synchronization error depends on the relative
b mismatch. Thus, for example, a 1%Db mismatch induces
a 1% synchronization error. Sincex and y are strictly pro-
portional, the cross-correlation function at equal times is al-
ways perfect, namely,GDbs0d=1.

Figure 4 displays the synchronization error and the cross
correlation at equal times. The analytical results coincide ex-
actly with the numerical ones, as expected from the fact that
no approximation was needed to obtain the analytical results.

C. Off-set phase mismatch„f…

Thef mismatch stems from a residual optical path differ-
ence in the emitter and receiver Mach-Zehnder modulators,
but it can be experimentally compensated while changing the
dc bias of the electro-optic voltage.

To obtain an analytical approximation for the effects of
this mismatch, we rewrite Eq.(9) as

xstd =
b

2
E

t0

t

Uss,tdds+
b

2
E

t0

t

Uss,tdcosf2xss− Td + 2fgds.

s25d

The first integral term exponentially decays to zero, which
physically comes from the dc filtering property of the band-
pass filter. Therefore the stationary solution ofxstd and ystd
can be written as

FIG. 3. (a) (top) Average synchronization error and(b) (center)
cross correlation function at equal times for time-delay mismatch.
The analytical results are displayed in solid lines, while the numeri-
cal results obtained from integration of Eqs.(1) and (2) are dis-
played in symbols or dotted lines. The average synchronization er-
ror and the cross-correlation function as, respectively, defined by
Eqs.(13) and(15) are dimensionless quantities.(c) (bottom) cross-
correlation functionGDTssd for DT=0.2 ns(long-dashed line), DT
=0 (continuous line), andDT=−0.2 ns(short-dashed line). Notice
that it is the same curve, shifted to the right or to the left by the
delay time mismatch,DT.
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xstd =
b

2
E

t0

t

Uss,tdcosf2xss− Td + 2fgds,

ystd =
b

2
E

t0

t

U8ss,tdcosf2xss− T8d + 2f8gds. s26d

For the sake of compactness, let us introduce

Qss,t,fd = Uss,tdcosf2xss− Td + 2fg. s27d

Assumingb=b8, u=u8, t=t8, T=T8, and definingDf=f8
−f, the instantaneous synchronization error may be ex-
pressed as

estd = − b sinsDfdE
t0

t

QSs,t,f +
Df

2
−

p

4
Dds. s28d

Starting from here, we assume that for long enough delay
times, the average properties of the chaotic attractor are in-
dependent of the off-set phase. This statistical phase invari-
ance hypothesis is supported by the results from the numeri-
cal computation of the Lyapunov exponents of the system
[13], and also by previous investigations led by Ref.[14]
which show that whenb andT are large enough, the number
and values of the positive Lyapunov exponents are practi-
cally independent of the off-set phase. Therefore

keDf
2 l < b2sin2sDfdKFE

t0

t

Qss,t,fddsG2L=4sin2sDfdkx2l.

s29d

Finally, the average synchronization error is given by

sDf = 2usinsDfdu. s30d

sDf does not depend on the value of the off-set phasef
itself, which is a consequence of our assumption, therefore
there is no “optimal” value off. Equation(30) also indicates
the extreme sensitivity of this parameter; for example, if we
consider a smallDf mismatch of 0.01(f is a ratio between
two voltages), the induced synchronization error is 2%,
which is quite important.

According to Eq.(26) the numerator of the cross correla-
tion at equal times is given by

kxyl =
b2

4
coss2DfdKFE

t0

t

Qss,t,fddsG2L−
b2

4
sins2Dfd

3KFE
t0

t

Qss,t,fddsGFE
t0

t

QSs,t,f −
p

4
DdsGL . s31d

We here assume that the hyperchaotic behavior induced by
the electro-optical oscillator is ergodic, so that we can equate
the average over time to an average over the attractor in
phase space. Although we cannot prove this hypothesis, it is
consistent with the fact that time averages are performed
over long times so that they reach a stationary value as dis-
cussed after Eq.(13). Furthermore, the results we obtain are
in quite good agreement with numerical simulations as we
will show below. The ergodic assumption implies that the
last average of Eq.(31) vanishes since it involves the product
of a symmetric with an antisymmetric function. Therefore

kxyl < coss2Dfdkx2l. s32d

We also have

ky2l =
b2

4 KFEt0

t

Qss,t,f + DfddsG2L
.

b2

4 KFEt0

t

Qss,t,fddsG2L = kx2l, s33d

where we have again assumed that the time-average proper-
ties of the chaotic attractor are independent of the off-set
phase delay. Therefore the cross correlation is given by

GDfs0d = coss2Dfd. s34d

Logically it turns out that the cross correlation and the syn-
chronization error arep periodic as the nonlinear feedback
function. Also from Eq.(34) for Df= ±p /2, Gfs0d=−1, so
that the receiver time trace is in exact phase opposition with
respect to the emitter one(that is why the corresponding
synchronization error value is exactly 2 in that case).

Figure 5 displays the average synchronization error and
the cross correlation at equal times. Equation(34) shows an
excellent agreement with the numerical results, which indi-
cates the validity of the assumptions we have made. How-

FIG. 4. (a) (top) Average synchronization error and(b) (bottom)
cross-correlation at equal times forb mismatch. The analytical re-
sults are in solid lines and the numerical ones are in symbols.
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ever, one may not expect such a good concordance in the
case of small values ofb or T, where, for example, the
statistical off-set phase invariance cannot be guaranteed.

The above results can also be obtained in the Fourier
space as follows. From Eq.(26) we have

Ysvd = e2iDfVsvd + e−2iDfV*s− vd, s35d

whereVsvd is defined as

Vsvd =
b

4Î2p
E

−`

+` E
t0

t

Uss,tde2ifxss−Td+fe−ivtds dt, s36d

We can writeVsvd= 1
2fXsvd+ iAsvdg, where

Asvd =
b

2Î2p
E

−`

+` E
t0

t

Uss,tdsinf2xss− Td + 2fge−ivtds dt.

s37d

Then usingXsvd=X*s−vd and Asvd=A*s−vd (which come
from the fact that they are Fourier transforms of real func-
tions),

Ysvd = coss2DfdXsvd − sins2DfdAsvd. s38d

The synchronization error is

Esvd = fcoss2Dfd − 1gXsvd − sins2DfdAsvd. s39d

The average synchronization error can be obtained through
the Parseval theorem

sDf
2 =

E
−`

+`

uEsvdu2dv

E
−`

+`

uXsvdu2dv

. s40d

The numerator can be written as

E
−`

+`

uEsvdu2dv = fcoss2Dfd − 1g2E
−`

+`

uXsvdu2dv

+ sin2s2DfdE
−`

+`

uAsvdu2dv − fcoss2Dfd

− 1g3sins2DfdE
−`

+`

fXsvdA*svd

+ X*svdAsvdgdv. s41d

The integrale−`
+`XsvdA*svddv can be written as

b

4
E

−`

+` E
−`

+` E
−`

+` FE
t0

t

Uss,tdcosf2xss− Td + 2fgdsG
3FE

t0

t8
Uss,t8dsinf2xss− Td + 2fgdsGeivst8−tddtdt8dv

which corresponds to the average appearing in the last term
of Eq. (31). Therefore the last term of Eq.(41) vanishes. On
the other hand, the functionAsvd obtained from Eq.(37) for
an off-set phasef is preciselyXsvd for an off-set phasef
−p /4. Therefore under the assumption that the average prop-
erties of the chaotic attractor are independent of the off-set
phase, we are going to consider that

E
−`

+`

fsvduAsvdu2dv =E
−`

+`

fsvduXsvdu2dv s42d

for any functionfsvd. Then the average synchronization er-
ror is given by

sDf
2 = fcoss2Df − 1dg2 + sin2s2Dfd = 4sin2sDfd, s43d

exactly as obtained before. The cross correlation can be de-
termined as in Sec. III A. We have

E
−`

+`

XsvdY*svdeivsdv=coss2DfdE
−`

+`

uXsvdu2eivsdv

− sins2DfdE
−`

+`

XsvdA*svdeivsdv.

s44d

Here, and later on in Sec. IV, we have to evaluate integrals of
the forme−`

+`fsvdXsvdA*svddv, wherefsvd= fRsvd+ i f Isvd is
a complex function such that the real partfRsvd is symmetric
in v and the imaginary partf Isvd is antisymmetric. As dis-
cussed aboveXsvdA*svd is an antisymmetric function, there-
fore the symmetricfRsvd does not contribute to the integral.
To evaluate the contribution fromf Isvd we assume the band-

FIG. 5. (a) (top) Average synchronization error and(b) (bottom)
cross correlation at equal times for off-set phase mismatch. Analyti-
cal approximations are shown in solid lines and numerical results in
symbols.
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pass filter approximation of the chaotic spectrum given in
Eq. (21), so that

E
−`

+`

fsvdXsvdA*svddv = − 2uSu2E
1/u

1/t

f Isvddv. s45d

Finally we obtain

GDfssd =
sins2Df + st−1d − sins2Df + su−1d

sst−1 − u−1d
, s46d

which, in the limit s→0, reduces to Eq.(34). The Fourier
approach just discussed will be used later on when discuss-
ing the effect of simultaneous mismatch on different param-
eters.

D. Low cutoff response time mismatch„u…

The low and high cutoff response times are practically
determined by the rf amplifier and by the photodiode band-
width. In practice, it is very difficult to tune them, and the
components involved in the setup are ordered to be matched
by the suppliers.

Assuming all the other parameters are equal, we have
from Eqs.(1) and (2)

e + tė +
1

u + Du
E

t0

t

essdds=
Du

usu + Dud
E

t0

t

xssdds, s47d

which in Fourier domain gives

Esvd =

Du

u

1 + ivsu + Duds1 + ivtd
Xsvd. s48d

As in Sec. III A, we approximateXsvd by a rectangular func-
tion, so that

sDu
2 =

SDu

u
D2

1

t
−

1

u

E
1/u

1/t dv

f1 − v2tsu + Dudg2 + v2su + Dud2 .

s49d

At first order int /u, we have

sDu =Ît

u
UDu

u
UÎp − 2arctans1 + Du/ud

2s1 + Du/ud
. s50d

For typical parameter values, this synchronization error is
very small (of the order 10−3) hence, we can conclude that
even a large mismatch foru does not significantly affect the
quality of the synchronization. Physically this comes from
the fact that the low cutoff frequency is of the order of tens
of kilohertz, while the chaotic oscillations are typically
within the gigahertz range. Therefore, any mismatch at such
a low frequency range cannot really destabilize the synchro-
nization manifold. Figure 6 displays the average synchroni-
zation error. The analytical approximation(50) shows a very
good agreement with the numerical results obtained integrat-
ing Eqs.(1) and(2) specially for small mismatch. The small

synchronization error indicates that the emitter and receiver
time traces are very similar, therefore we can assume that the
equal time cross correlation is practically perfect, yielding
GDus0d=1.

E. High cutoff frequency mismatch „t…

Assuming all the other parameters are equal, from Eqs.
(1) and (2) we have forestd,

e + st + Dtdė +
1

u
E

t0

t

essdds= − Dtẋ, s51d

which in the Fourier domain gives

Esvd =
v2uDt

1 − v2ust + Dtd + ivu
Xsvd. s52d

ApproximatingXsvd by a rectangular function we obtain

sDt
2 =

sDtd2

1

t
−

1

u

E
1/u

1/t v4u2

f1 − v2ust + Dtdg2 + v2u2dv, s53d

so that, at first order int /u,

sDt = U Dt

t + Dt
UÎ1 −

arctans1 + Dt/td
1 + Dt/t

. s54d

The cross correlation can be calculated in a similar way as
in Sec. III A. ApproximatingXsvd by a rectangular function,
at first order int /u, we have

FIG. 6. (a) (top) Average synchronization error and(b) (bottom)
cross correlation at equal times foru mismatch. Analytical approxi-
mations are shown in solid lines and numerical results in symbols.
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GDts0d =

1 +
Dt

t
+

Dt

t
arctanS1 +

Dt

t
D

S1 +
Dt

t
DÎ1 +

Dt

t
arctanS1 +

Dt

t
D . s55d

Equation(54) implies that for typical parameter values there
is a relatively high sensitivity of the synchronization mani-
fold to the high cutoff frequency, since a 1% error int in-
duces approximately a 0.5% synchronization error.

Figure 7 displays the synchronization error and the cross
correlation at equal times. The analytical approximations
show a quite satisfactory agreement with the numerical re-
sults, mainly for small parameter mismatches.

IV. THE MULTIPLE-PARAMETER MISMATCH CASE

We now focus on the general and important case where all
the mismatches are simultaneously taken into account. This
would first enable us to study the synchronization quality in
situations that are closer to the experimental ones, and sec-
ond to understand the interplay between the various mis-
matches.

We first rewrite Eq.(1) and (2) as

x + tẋ +
1

u
E

t1

t

xssdds= b cosf2xst − Td + 2fg, s56d

y + t8ẏ +
1

u8
E

t1

t

yssdds= b8 cosf2xst − T8d + 2f8g, s57d

wheret1 is such thatet0
t1xssdds=bu. We introduce two com-

plex variablesu, v, such that

v + tv̇ +
1

u
E

t1

t

vssdds= be2ifxst−Td+fg, s58d

w + t8ẇ +
1

u8
E

t1

t

wssdds= b8e2ifxst−T8d+f8g, s59d

so Refvg=x and Refwg=y. Then, in the Fourier space,

Xsvd = Vsvd + V*s− vd,

Ysvd = Wsvd + W*s− vd. s60d

We know that the effect of the delay time mismatch in the
stationary state is to shift in time the chaotic trajectory.
Therefore we introducew1std=wst+Dtd. Assuming that in
the stationary stateet1−DT

t−DT w1ssdds=et1
t w1ssdds, then

w1 + t8ẇ1 +
1

u8
E

t1

t

w1ssdds= b8e2ifxst−Td+f8g. s61d

From Eqs.(58) and (61) we have

v + tv̇ +
1

u
E

t1

t

vssdds=
b

b8Fw1 + t8ẇ1

+
1

u8
E

t1

t

w1ssddsGe−2iDf. s62d

Therefore, in the Fourier space W1svd
=sb8 /bde2iDfFsvdVsvd, where

Fsvd =

u8

u
− v2tu8 + ivu8

1 − v2t8u8 + ivu8
. s63d

From the definition ofw1 we haveWsvd=e−ivDTW1svd, so
that

Wsvd =
b8

b
e−ivDTe2iDfFsvdVsvd. s64d

Then

Ysvd =
b8

b
e−ivDTFsvdfcoss2DfdXsvd − sins2DfdAsvdg,

s65d

whereAsvd is the Fourier transform of the imaginary part of
v and where Xsvd=X*s−vd, Asvd=A*s−vd, and Fsvd
=F*s−vd have been assumed. Therefore, the synchronization
error is given by

FIG. 7. (a) (top) Average synchronization error and(b) (bottom)
cross correlation at equal times fort mismatch. Analytical approxi-
mations are shown in solid lines and numerical results in symbols.
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Esvd =
b8

b
e−ivDTFsvdfcoss2DfdXsvd − sins2DfdAsvdg

− Xsvd. s66d

The average synchronization error can be obtained through
the Parseval theorem, Eq.(40). Calculating the integrals as
discussed in Sec. III C we obtain

s2 =
1

t−1 − u−1HS1 +
Db

b
D2E

1/u

1/t

uFsvdu2dv − 2S1 +
Db

b
D

3Fcoss2DfdE
1/u

1/t

Refe−ivDTFsvdgdv

+ sins2DfdE
1/u

1/t

Imfe−ivDTFsvdgdvGJ . s67d

Therefore, the squared synchronization error is a quadratic
function of Db, and a sinusoidal function ofDf.

Evaluating the integrals up to the second order in param-
eter mismatch, we obtain the following expression for the
synchronization error:

s2 =
1

3
SDT

t
D2

+ SDb

b
D2

+ 4sDfd2+ S1 −
p

4
DSDt

t
D2

+ 2f1

− lns2dgDf
DT

t
− 2S1 −

p

4
DDb

b

Dt

t
− 2S1 −

p

4
DDT

t

Dt

t

+
t

u
Fp

4
SDb

b
+

Du

u
D2

− 4 lnS u

2t
DDf

Du

u
G . s68d

At the ordert /u (last block), only the terms containing
the Du mismatch have been kept since this mismatch does
not appear at zero order int /u. For the other mismatches
there are also contributions at first order int /u but they can
be neglected as compared to the zero-order contributions.
The synchronization error can be rewritten as the square root
of a positive-definite quadratic form

s =Îo
i,j=1

5

Mijzizj = ÎzTMz , s69d

where z is the five-dimensional vector
sDT/t ,Db /b ,Df ,Du /u ,Dt /td, while M is the symmetric
characteristic matrix of the quadratic form. Its components
Mij can directly be determined from Eq.(68). The diagonal
terms ofM correspond to the results we have obtained while
considering the mismatches separately, and the nondiagonal
terms indicate the various interactions between the different
mismatches.

On the other hand, the Wiener-Khintchin formula yields
with a satisfying precision the following expression for the
cross-correlation function:

Gssd =

sinS2Df +
s+ DT

t
D − sinS2Df +

s+ DT

u
D

ss+ DTdst−1 − u−1d
.

s70d

As one could havea priori expected, the parameters which
individually most influence the cross correlation are still in-
fluent.

With these results, one can investigate what the effect of
multiple-parameter mismatch is relative to the case of single-
parameter mismatches. For this purpose, we make the dis-
tinction between two cases: in the first one, only one mis-
match can be adjusted while all the others are fixed, while in
the second case all the mismatches can simultaneously be
tuned.

A. One-parameter optimization

This particular case of a single tunable parameter is of
great experimental importance. For example, in our experi-
mental setup,b (which is proportional to the laser output
power) andf (which is the ratio of two voltages) are much
more easily tunable than the length of the delay line or the
bandwidth of the filter. Therefore, the point is to find for
which value of the tunable mismatch minimizes the synchro-
nization error is reduced.

Let us consider thatzk is the tunable mismatch while all
the otherszi are fixed. In that case, the synchronization error
becomes a one-variable function which is minimized when

] s

] zk
= 0, s71d

that is, for

zk = − o
i=1

iÞk

5
Mik

Mkk
zi . s72d

When someMik are different from zero, the optimal mis-
match is also different from zero. Hence, this equation can be
considered as a kind of compensation formula.

Let us take, for example, the case where the master and
slave band-pass filters are mismatched. We have shown that
the low cutoff mismatch is not influent. Hence, we will focus
on the high cut off mismatchDt, which induces according to
Eq. (68) a synchronization error ofÎ1−p /4uDt /tu when all
the other mismatches are uniformly set to 0. If we tune the
Db mismatch, we find that synchronization error is mini-
mized whenDb is given by

Db

b
= S1 −

p

4
DDt

t
. s73d

According to Eq.(68), for this optimal value ofDb the syn-
chronization error is

sDb,Dt
min =Îp

4
S1 −

p

4
DUDt

t
U =Îp

4
sDt, s74d

which is a 12% reduction in the synchronization error. We
therefore reach the quite counterintuitive conclusion that un-
der certain conditions, the multiple-parameter mismatch can
improve the quality of the synchronization, since it can lead
to a smaller value ofs.
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This analysis is confirmed by the numerical simulations.
In Fig. 8(a), it clearly appears that the minimum error does
not occur whenDb=0, but rather whenDb is shifted by an
amount in good concordance with Eq.(73). In Fig. 8(b), the
numerical simulation also shows that when theDb mismatch
is optimally tuned the synchronization error is smaller, by an
amount close to the 12% we have predicted.

It is important to note that even though a off-set phase
mismatchDf is also easily tunable, it cannot significantly
help to compensate for a filter mismatch becauseM34
.M35.0 (however, it can, for example, compensate for a
DT mismatch sinceM31Þ0).

B. Multiple-parameter optimization

Here, we treat the case where all the mismatches can be
tuned simultaneously. We are now looking for the optimal
manifold in the five-dimensional parameter-mismatch space
which leads to the smallest synchronization error growth
rate. The first step is to diagonalizeM as

M = o
k=1

5

Lkqkqk
T , s75d

where theLk are the real and positive eigenvalues ofM and
the qk are the related orthonormal eigenvectors. Hence, the
optimal manifold is the eigendirection corresponding to the
smallest eigenvalueLs−d, which is in fact the square of the
smallest growth rate. On the other hand, the highest eigen-
value Ls+d is related to the eigendirection leading to the
strongest error growth rate.

To illustrate this approach, let us take the case of a double
and simultaneouslytunableDb and Dt mismatch. The cor-
responding characteristic matrix is

M = S 1 − K

− K K
D , s76d

with K=1−p /4, and the corresponding eigenvalues are

Ls±d =
1

2
f1 + K ± Îs1 + Kd2 − 4Ks1 − Kdg, s77d

that is,Ls−d=0.160 andLs+d=1.054. Consequently, the opti-
mal mismatch combination geometrically corresponds to the
eigendirection ofLs−d, which is defined by

Dt

t
=

1 − Ls−d

K

Db

b
. s78d

This mismatch combination leads within that eigendirection
to a growth rate ofÎLs−d=0.40, while this growth rate is 1
for pure Db mismatch(60% reduction ofs), andÎ1−p /4
=0.46 for pureDt mismatch(14% reduction). In Fig. 8(c)
we show the numerical results for the synchronization error
in these three cases. Once again, a combination of mis-
matches improves the quality of the synchronization. In Fig.
9, the analytical and numerical contour lines are depicted,
and illustrate the eigendirection analysis. This kind of con-
tour line patterns have yet been used in Ref.[10] in the case
of the wavelength hyperchaos model. It was found numeri-
cally that theDb andDf mismatches were almost “orthogo-
nal,” as it is also the case for the electro-optical model con-
sidered here sinceM23=0. However, sinceDb and Dt do
precisely interact here at a quadratic approximationsM25

Þ0d, the optimal manifold is an oblique line as shown in
Fig. 9.

V. EXPERIMENTAL RESULTS

For the experimental verification of our theory, the
electro-optical modulators were pigtailed LiNbO3 integrated
Mach-Zenhder modulators with a dc value ofVp,dc=4.0 V,
and a rf value(at 1 GHz) of Vp,rf =4.2 V for l=1550 nm.

FIG. 8. (a) (top) Synchronization error as a function ofDb /b
when the mismatchDt /t is fixed to 2%[the solid line shows the
analytical approximations and the symbolss+d the numerical re-
sults] and −5%[dashed line for analytical approximations,s3d for
numerical results]. (b) (center) Results obtained from numerical
simulation for the synchronization error as a function ofDt /t when
the mismatchDb /b=0 s+d and whenDb /b is optimally tuned
accordingly to Eq.(52) s3d. (c) (bottom) Evaluation ofs from
numerical simulation forb-only mismatchs+d, t-only mismatch
s3d, and for a multiple mismatch within the eigendirection(78)
determined analyticallys* d.
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One should note that it is the dc value ofVp that is used in
Eq. (3) to define the off-set phase parameterf. However,
only the rf value is relevant for the hyperchaotic generator.
The Mach-Zenhder modulators had a electrical bandwidth of
10 GHz. The coherent optical feeders of these modulators
were InxGa1−xAsP distributed feedback semiconductor lasers
with a polarization maintaining pigtail, designed for 10 Gb/s
digital system equipments. The delay lines were 7 m long
single-mode optical fibers yielding an overall time delay of
30 ns(taking into account the signal speed reduction in elec-
trical connections). We also used a matched pair of photode-
tectors with a gain of 2V/mW. The amplification within the
nonlinear feedback loops was performed by a pair of rf am-
plifiers with a power gain of 18 dB and a bandwidth ranging
from 30 kHz to 6.5 GHz.

The experimental time traces and Fourier spectrum of the
hyperchaotic carrier are depicted in Figs. 10(a) and 10(b),
respectively. The bandwidth of the carrier is found to be
approximately equal to 7 GHz, thereby allowing for chaos-
encoded communications at bit-rates of several gigabits per
second. We have also represented in Fig. 10(c) the transfer
functions of the Mach-Zenhder modulators, and one can ob-
serve that, experimentally, they are shifted one with respect
to the other by an amount of 0.7 V. This shift corresponds to

the difference between the bias voltages of the two modula-
tors while matching experimentally thef parameter for syn-
chronization.

We have first studied the effect of a time-delay mismatch.
For that purpose, we have varied the value ofT8 aroundT
using a variable delay line, and the results are presented in
Fig. 11. It can be seen that as theoretically predicted, the
slave time trace is shifted back and forth according to the
value ofDT. This is of great experimental importance, since
in reality, the receiver should synchronize to the emitter ir-
respective of the coupling delay(or “flying” time) Tc. There-
fore, for this hyperchaotic communication scheme, all the
time delays(flying time, time delays due to the electrical
connections, and response times of the optoelectronic de-
vices) play exactly the same role as the receiver time delay.

We now focus on the parameters whose mismatch can be
easily tuned in our system, namely, the nonlinear feedback

FIG. 9. (a) (top) Analytical level-curve pattern in the parameter-
mismatch subspace ofDb /b andDt /t. The optimal eigendirection
which induces the slowest synchronization error growth rate is in-
dicated by the solid double arrow.(b) (bottom) Corresponding nu-
merical level-curve pattern. One can notice that the eigendirection
obtained analytically approximately indicates the optimal direction
of slowest error growth rate.

FIG. 10. (a) (top) Experimental hyperchaotic carrier at large
scale, withP=7.60 mW andVB=1.05 V (b) (center) Experimental
Fourier spectrum of the hyperchaotic carrier.(c) (bottom) Experi-
mental transfer-function curves for the Mach-Zenhder modulators.
Solid line for the emitter and dashed line for the receiver.

KOUOMOU et al. PHYSICAL REVIEW E 69, 056226(2004)

056226-12



strength and the off-set phase. Experimentally,b8 andf8 can
be tuned through the receiver laser output powerP8 and the
receiver modulator bias voltageVB8, respectively. To achieve
our theoretical study, we initially set all the mismatches to 0,
and then we studied their influence one by one. Experimen-
tally, this is obviously impossible. Therefore, the experimen-
tal study is intrinsically related to the situation we analyzed
in the multiple-mismatches section. The available electronic
equipment allowed a matching accuracy down to a few per-
cent, except for the delay which could be tuned within a 2
310−3 t accuracy. Hence, we principally explored the valid-
ity of our theoretical results in the large mismatch case.

Figure 12(a) displays the variations ofs as the receiver
output power P8 is increased. Starting fromP8=0 mW
(wheres=1), the synchronization error decreases to a mini-
mum (aroundP8=2 mW) and then increases again. In con-

cordance with the theory, this experimental curve follows a
the square root of a quadratic form(solid line). On the other
hand, Fig. 12(b) displays the variations ofs as the receiver
bias voltageVB8 is varied. The measured values fors follow
the square root of a sinusoidal function in agreement with the
theoretical prediction(67). The periodicity is given by the
receiver modulator bias voltage and the minima are clearly
sharper than the maxima, as theoretically predicted.

As far as the filter mismatches are concerned, it is very
difficult to perform any experimental verification. The reason
is that the bandwidth of the experimental system results from
the combination of the various bandwidths attached to differ-
ent elements of the electro-optical feedback loop(rf amplifi-
ers, photodetectors, Mach-Zehnder modulator, etc). There-
fore, the bandwidth of the experimental setup is neither
tunable nor characterized by only two time scales. Hence,
even though the fundamental features of the system are cap-
tured by the linear first-order band-pass filter, the model has
to be theoretically improved at that level.

VI. CONCLUSION

We have developed an analytical approximation to predict
the effect of mismatch for the different parameters of our

FIG. 11. Experimental chaotic time traces, withx in continuous
lines andy in dashed lines. The parameters areP=7.60 mW,VB

=1.05 V (emitter), and P8=3.91 mW, VB8 =0.34 V (receiver) (a)
(top) DT=0.15 ns, the slave is delayed relatively to the master;(b)
(center) DT=0, the slave is isochronous to the master;(c) (bottom)
DT=−0.15 ns, the slave anticipates the master.

FIG. 12. The symbols show the experimental results of the syn-
chronization error when one parameter is changed while keeping all
the others constant.(a) (top) Synchronization error as function ofP8
obtained withP=2.88 mW,VB=1.25 V,VB8 =0.55 V. The solid line
corresponds to a function of the forms=Îa2P82+a1P8+a0. The
parametersai have been fitted to adjust the results.(b) (bottom)
synchronization error as function ofVB8 obtained withP=5.0 mW,
P8=2.94 mW,VB=3.49 V. The solid line corresponds to a function
of the form s=Îb0+b1cosspVB8 /Vpd+b2sinspVB8 /Vpd predicted
theoretically. The parametersbi have been fitted to adjust the
results.
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electro-optical system. The predictions give exact results in
the case of mismatch in the nonlinear feedback amplitude
term, excellent results for the off-set phase mismatch, and
good results in the case of the time-delay mismatch and for
the mismatch in the filter characteristic time scales. As the
receiver is described by a linear differential equation with
external forcing, the time-delay mismatch does not distort
the receiver time trace, it just shifts it in time. However, if
this time shift is not compensated, it becomes the most criti-
cal mismatch for the synchronization error. The mismatchb
can be compensated by rescaling the variables. If this rescal-
ing is not done, the synchronization error grows linearly with
the mismatch and a 1% synchronization error is originated
by a 1% mismatch. We have also found that the high-
frequency cutoff of the filtert is relatively important(0.5%
mismatch induces a 1% synchronization error), while the
low cutoff frequency of the filteru has a very minor effect on
the synchronization error(even a 50% mismatch induces
only about a 0.3% synchronization error). Finally, the phase
mismatch plays also an important role, since a mismatch of
about 0.005 rad originates a 1% synchronization error.

In the case of multiple-parameter mismatch, we have
given an analytic insight into a quite counterintuitive phe-
nomenon: multiple-parameter mismatch can sometimes im-
prove the quality of the synchronization. We have also ob-
tained an approximation for the combined effects of all the
mismatches taken simultaneously, showing how it is possible
to improve the synchronization quality by compensating the
mismatch in a given parameter with an added mismatch in
another one. In practice, the interest of this multiple mis-
match optimization would be at least to identify the condi-
tions under whichs does not grow drastically in the case of
multiple mismatches between the emitter and the receiver.
We have also experimentally verified some of the conse-
quences of our analysis. Particularly, we have verified our
theory for the so called easily tunable mismatches, and evi-
denced the possibility of anticipated, isochronous, and de-
layed synchronization.

It may be interesting to extend our theory to other laser
chaos synchronization schemes. For example, the Fourier
spectrum of semiconductor lasers with a short external cavity
can also in first approximation be assimilated to a band-
limited white-noise spectrum(the relaxation oscillation fre-
quency of the solitary laser is smaller than the external-
cavity-mode spacing frequency, so that the spectrum is not
peaky). Therefore, it isa priori possible to apply our results
to the study of parameter mismatch for that particular con-
text.

For our own setup, a priority direction for future investi-
gations is the improvement of the synchronization quality at
the experimental level. This is by far the most complicated
task: for example, even though some of the key components
of the materials used for the experiments have been carefully
matchedat the fabrication levelwith a very high precision,
and even though the experimental time traces evidence a
very strong correlation in Fig. 11, thes indicator shows that
much is still to be done to attain the final objective of a few
percent synchronization error. In that spirit, the high sensi-
bility of these devices functioning at multi-gigahertz fre-
quencies requires to design the emitter and the receiver as
integrated circuits. At last, the influence of component and
environmental fluctuations are issues that are still to be in-
vestigated, both theoretically and experimentally.
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