PHYSICAL REVIEW E 69, 056226(2004)
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We investigate the detrimental effects of parameter mismatch on the synchronization of semiconductor lasers
with electro-optical feedback, whose intensity dynamics can display a hyperchaotic behavior. Analytical tech-
nigues are developed to study the statistical properties of the synchronization error as a function of the various
types of mismatches. The multiple mismatch case, which is of high experimental interest, is also studied and
some compensation conditions allowing the improvement of the synchronization are derived. The analytical
predictions are confirmed by numerical simulations and by some experimental measurements.
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I. INTRODUCTION Parameter mismatch is also relevant for chaos-shift key-

. . o . ing (CSK) schemes for encryption of binary signals in a cha-
Chaos encryption of data for optical communications is ;. .arrier [3]. Effectively, CSK relies on a sequential

nowadays a widely investigated toffit-3. This encryption  gitching of a given parameter between two values, the first
technique basically relies on the synchronization of twWoyne peing matched with the receivghereby ensuring syn-
semiconductor lasers operating in a chaotic regime, and ignronization, the second being slightly detuned from the
therefore performed at the physical layer of the network arfirst one (so that the receiver desynchronigesThe
chitecture. For practical implementations of these communisynchronization-desynchronization sequence at the receiver
cation schemes, it is crucial to achieve a very stable andnables the message decryption provided that intrinsic mis-
accurate synchronization between the transmitter and rematch noise allows the distinction between both states.
ceiver chaotic system$4]. Particularly important is the Within that frame, Ref[11] focused on the performance
double role of the mismatch between characteristics of botkomparison of the CSK encryption scheme for various
systems, which is unavoidable in the fabrication process. Ofswitched” mismatched parameters.

one hand, mismatch can degrade the synchronization quality The purpose of the present paper is to study from the
between the emitter and the receiver. Therefore, synchroninalytical, numerical, and experimental points of view the
zation should be robust enough to allow for the use ofParameter mismatch effects in the synchronization of electro-
slightly different devices. On the other hand, the lack of Syn_optical Ias_er chaos. We will first invc_astigate the effects of the
chronization due to mismatch is a key element for security@rious mismatches taken separaiely., when one of them
since it prevents the use by an eventual eavesdropper of § considered, all the others are set to zeand after that we
similar device to decode the message. will study the case of simultaneous parameter mismatches.

Despite its importance for practical applications, studied ©" the latter case, we will focus on how different parameter

on the effect of parameter mismatch in chaotic synchronizam'smatCheS can be compensated to improve the quality of

. . ; . the synchronization. This is of particular relevance since
E?fgc?rgf qlg:gr:ggf?n;grggﬁ:r:'tagéu;% dlir(]a dRZElgaHnti’c;TIe fc)rtypically some of the mismatches are very difficult to control
P y y 10 practice while others are easily tunable. We will also

nondelayed - low-dimensional chaotic systems. In highy e ity the validity of our analytical results through numerical

) ) &fmulation and some experimental measurements.

with optical feedback, there are some numerj&land ana- The paper is organized as follows. In Sec. Il, we present

Iytlcal [9] results. In delayed optoelectro_mc yvavelength 0S-the experimental setup and the dynamical model of the sys-
cillators the root-mean-square synchronization error amplitey ynder study. Sec. Il deals with the analysis of the vari-

tude induced by two simultaneous mismatches has beegy,s mismatch effects when they are taken individually, while

studied[10]. This is particularly important because success-gec. |v focuses on multiple mismatches and mismatch com-
ful decryption is not possible when the amplitude of the enyansation. Some experimental results are presented and dis

crypted message is smaller than the one of the residual 0gyssed in Sec. V. Finally, Sec. VI is devoted to concluding
cillations resulting from the parameter mismatch, the SOyemarks.

called “mismatch noise.”

Il. THE SYSTEM

The system under study corresponds to the experimental
*Corresponding author: Email address: ckyanne@imedea.uib.essetup represented in Fig. 1. The chaotic transmitter consists
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RECEIVER Oscilloscope The receiver parameters are labeled with a prime because
they generally differ from the transmitter ones. All additional
Zx ® attenuations in the receiver feedback loop are contained in

the coefficientA. For simplicity we have neglected the trans-

mission delay time between emitter and receiver. Therefore,

Power we have five control parameters in our model: the delay time

Divider T, the nonlinear feedback strengshthe off-set phase, the

low cutoff response tim@, and the high cutoff response time
FIG. 1. The experimental setup. T.

} ] . To derive analytical predictions, it is convenient to find an
of a closed-loop electro-optical feedback with the following approximate stationary integral form for these equations.
main components: a Mach-Zehnder modulaaithalf-wave  This has two advantages: first, it skips away the transient
voltageV, and bias voltag¥s) illuminated at 1550 nmby a gy namics which is incompatible with the statistical analysis
continuous-wave semiconductor laser source of pdwem and, second, it gives a useful pseudoexplicit mathematical

optical-fiber delay line of delay tim&, a fiber coupler in o o osion for the chaotic dynamic variab[&ss]. The first
order to insert the chaotic carrier into the fiber communica- . . S .
tion channel with transmission coefficient a photodiode step of this mathematical transformation is to introduce the
with gain g to convert the optical feedback signal into an variableu as
electrical one, and a radio-frequency amplifier with gaito t
drive the Mach-Zehnder modulation electrode. The overall u(t) =J x(s)ds, (4)
attenuation of this feedback loofelay line, connectors, fo
etc) is described in terms of the parameterThe electro-
optic modulator is driven by a voltage larger than its half-
wave voltage, and it operates in a highly nonlinear regim
[12].

The receiver is built symmetrical to the emitter, with the 1
difference that only the light coming from the emitter enters U+ i+ =u=pBcosx(t-T) + ¢]. (5)
in the delay loop(open-loop receiver The electronic band- 0
width of the feedback loop is considered, in first approxima—pe roots of the characteristic polynomial corresponding to
tion, to result from two cascaded linear first-order low-passye homogeneous solution are
and high-pass filters, with high and low cutoff frequendigs
andf, respectively. The emitter-receiver coupling is ensured 1 { T}

-1++/1-4-

so that Eq.(1) for the emitter dynamics can be formally
written as a linear second-order ordinary differential equa-
Sion for u with a chaotic external forcing

(6)

by a 2x 2 fiber coupler which inserts part of the emitter ri:2—
chaotic output into the transmission channel. The open port T

of the fiber coupler can be used to add at the end of theying 1o the very large bandwidth of the filter, typically
emitter delay Ic_)op a message wh|ch is then_ml_xed with the ;o 1075<1, the roots can be approximated as
chaotic dynamics and inserted in the transmission channel.

If we consider the variables andy as the dimensionless r,=-1/0, r_=-1Ir. (7)
voltages across the electric path in the emitter and receiver
feedback loops, respectively, their dynamics can be modelefihey can, respectively, stand for the low and high cutoff
by the following system of coupled differential-delayed angular frequencies of the band-pass filter. Using(Egthe
equationg12]: stationary solution fou can be formally expressed as
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t also be considered as a robustness indicator. We should no-
ut) =B f [0~ 5o x(s = T) + #lds.  (8) tice that the presence of the low cutoff integral term in Egs.
o (1) and (2) implies that the mean value oft) andy(t) is
Therefore, the stationary solution faris given by zero(otherwise the solutions would linearly diverge to infin-
ity). Therefore for our system El4) is equivalent to

t
x(t) =B ft U(s,t)cog[x(s—T) + ¢]ds, (9 X0y (t+9)

I'y\(8) = ————. (15
where ey )

(1 o (5116 In the following sections we address the effect of a mis-
Ust) = 2 TC (100 match in each of the system parameters individually.

is an evolution operator which only depends on the filter

parameter®) and 7. Similarly, one can obtain the following

integral expression for the receiver: The delay mismatch is met experimentally for a different
delay length of fiber between the emitter and receiver setup.

y(t) = B,f U’ (s,t)co[x(s—T') + ¢']ds (12) The global delay includes also the group delay of the rf com-
to

A. Delay-time mismatch (T)

ponents and also the eventual electric cables that might be
. . _ _ required in the setup.
with U’(s,t) being defined al(s,t) for the receiver param- Assuming B=8', ¢=¢', 6=¢', and 7=+ and defining
eters¢’ and 7. AT=T'-T, Eq. (11) can be written as

Ill. SINGLE-PARAMETER MISMATCH

t
t) = U(s,t)coS[x(s— T = AT) + ¢lds=x(t = AT
We define for each parameterthe instantaneous syn- yo =8 t (s,hcos{x( )+ ¢l ( )

chronization error as "
eap®) = Yp () = x5(0), (12) *B) U - ATIcodIXs - )+ ¢lds’, (16)
where Ap=p’-p is the parameter mismatch amg(t) and
Ypr(t) are the transmitter and receiver time traces obtaine
with the values of the parametprandp’, respectively. We
will use two indicators to characterize the effect of the pa-
rameter mismatch. y(t) = x(t— AT). 17)
The first one is the normalized root-mean-squared syn-
chronization error which is a quantitative indicator measur-The effect of theT mismatch is to shift the slave time trace
ing the time-averaged proximity of the emitter and receiverhack or forth depending on the sign and amplitudeAdt

heres’ =s—AT. Since the second integral term on the right-
and side exponentially decays to zero, one may simply ex-
pect in the stationary regime

time traces This comes from the fact that the receiver equation is a linear
5 differential equation externally forced by a nonlinear func-
Tap= <iA2Q, (13) tion of the chaotic variablg(t—T). Hence, thel mismatch is
(x5 a change of the time origin, which therefore does not quali-

where( ) stands for the time average. The evaluation of thistatlver affect the dynamics of the slave system. This is

hould b ¢ d int i " learly illustrated in Fig. 2 which shows the emitter and re-
average shou € periormed integrating over a ime MUCly;yer time traces for different values Af. The time traces

Ionger than any characteri;tic j[ime scales of t_he model, "ave been obtained integrating numerically Ed$.and(2)
particular longer thary, which is the slowest time scale. using a fourth-order predictor-corrector algorithm and a time

Furthermore, the integration timg should be Iong_ enough Sgtep of 10 ps. The time trace is shown after integrating for a
that the average reaches a stationary value, which typmallMme t,=106, large enough to ensure the decay of the tran-

takes place when the trajectory samples all the regions of thgent dynamics

chaotic attractoro can be used as an indicator of the sensi- An analytic approximation fowr,; and ' can be ob-
tivity as well as an indicator of threshold under which aNYtained as follows. First, we consi?jTer the IA:Eurier transform
encoded message cannot be recovered, namely, the minim%aw) of X(t) ' '
modulation index. '

The second indicator is the normalized cross-correlation 1 [+ ‘
function, defined as X(w)=—=| x(te'dt, (18

V27 -
D0 O 9 =y O o1 e since i is the Four
I — > 0 — (v, N which satisfiesX(w)=X (-w) since it is the Fourier trans-
VD0 = RONHLYpr (O = (ypr ()] form of a real variable. From Eq(l7) we have Y(w)
which is a qualitative indicator showing how the slave tra-=€7“*™X(w), where Y(w) is the Fourier transform of(t).
jectory is topologically distorted by the mismatch. It may Therefore in Fourier space, the synchronization error is

FAp(S) =
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FIG. 2. Transmittelsolid line) and receivedashed ling cha-
otic time traces. We have considerd@d20 ns, =5, ¢=0.1, 6
=2 us, andr=50 ps. These values will be used for all the numeri-
cal simulations throughout the whole pap@) (top) AT=0.2 ns,
the slave is delayed relatively to the masté; (centej AT=0, the
slave is isochronous to the mastér) (bottom) AT=-0.2 ns, the
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band-limited white-noise spectrum, the limits being those of
the band-pass filter, so that

X(w) =9 (21)

k0 otherwise,

where | is arbitrary (the value of|§ is not relevant here
because the synchronization error is normalized with the av-
erage intensity of the chaotic carnieve are therefore led to
the following expression for the synchronization error:

ef)

(22)

1/

1
[ intaordo=2
1/6

’7'_1 _ 0—1

0”§Tz

where sinc is the sine-cardinal function. The accuracy of this
result relies on the validity of the approximation when con-
sidering that the chaotic spectrum looks like a white noise
within a bandwidth defined by the cutoff timé&sand 7.

Figure 3a) displays the comparison between numerical
and analytical results for the synchronization error. Despite
the simplicity of the approximation, E¢22) gives a good
prediction although the numerical results show for small
mismatch values a larger synchronization error than theoreti-
cally predicted. Both analytical prediction and numerical re-
sults indicate a very high sensitivity to time-delay mismatch:
a 1% synchronization error is induced whaim=1 ps, that
is, for a relative error oAT/T=5X 107°. As indicated by
Eqg. (22), this high sensitivity comes from the large band-
width Af=1/277>1/T. Consequently, for a satisfying syn-
chronization quality, the length of the fiber delay lines should
practically be adjusted with a relative precision of the order
of 1076, In the case of a larger bandwidth filtas it would
ideally be the cagethis sensitivity would be increased pro-
portionally to the high cutoff frequency.

To determine analytically the cross-correlation function,
we can use a corollary of the Wiener-Khintchin theorem
which states that the cross-correlation function is the inverse

slave anticipates the master. The same initial conditions have bedrourier transform of the cross-power spectral density func-

considered for the three cases.

E(w) =[e"“*T - 1]X(w) = H(0)X(w), (19

whereH(w) is the transfer function frork(w) to X(w) for a

AT mismatch. Hence, the synchronization error can theoreti-

cally be derived through the Parseval theorem as

| I

OAT= (20)

f:: X(w)|?de

tion [15]. Hence, the expression &%yt as a function of its
lag-time argumens reads

f _+: X(w)Y (w)€“dw

H f ¥(w)Pde

Car(s) =

+0o0

\/ { f IX() Pde
zsim(er AT).

r
Figure 3b) displays the comparison between E2@3) and
the numerical results for the cross correlation at zero lag time

|

(23

As the integrals depend on the chaotic time trace they canngs=0) obtained integrating Eqgl) and(2). Again, despite

be explicitly determined analytically. However, in first ap-
proximation we can consider that(w) is a perfectly flat

its simplicity, Eqg.(23) is a quite good approximation of the
correlation function. The numerical calculations show that by
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tion to the left(AT < 0) or to the right(tAT>0) by an amount

AT. This analytical prediction is numerically confirmed in
Fig. 3(c). The influence of time-delay mismatch is in abso-
lute rather than relative value since the time traces and cor-
relation functions are shifted proportionally A0T.

OAT

B. Nonlinear feedback-strength mismatch(g)

] The B mismatch corresponds to a normalized gain in the
03 -02 -0 ' . _ _ experimental setup, which includes various physical param-
eters: the electronic feedback gain, the electro-optic sensitiv-
ity of the modulator(V,,), the detector sensitivity, the optical
te prrrrrr e e losses, and the cw laser optical power. The precise depen-
; ] dence on these parameters is given in @y. Only the mis-
match in the resultings is relevant and not in the individual
physical parameters, since, for example, a rf gain mismatch
can be compensated by an optical power mismatch.

Assuming ¢=¢', 6=6', =7, T=T', and definingAB
=p'-B one obtains from Eqgs(9) and (11) that x(t)
=Ry(t)/ B’. The receiver time trace is exactly the same as the
transmitter but with different amplitude. This can also be
obtained (1) directly and (2) by rescalingy with B/p'.
Therefore, this result is mathematically exact, independent of
the approximations we have done to obtain the stationary
integral form. Thene(t)=(AB/B)x(t), so that the average
synchronization error is

Tar

Tar

A
O-A,B:‘EB . (24)

Therefore the synchronization error depends on the relative
B mismatch. Thus, for example, a 148 mismatch induces

a 1% synchronization error. Sinceandy are strictly pro-
portional, the cross-correlation function at equal times is al-
ways perfect, namely’,5(0)=1.

FIG. 3. (a) (top) Average synchronization error aiid) (centey Figure 4 displays the synchronization error and the cross
cross correlation function at equal times for time-delay mismatchcorrelation at equal times. The analytical results coincide ex-
The analytical results are displayed in solid lines, while the numeri-actly with the numerical ones, as expected from the fact that
cal results obtained from integration of Eq4) and (2) are dis- no approximation was needed to obtain the analytical results.
played in symbols or dotted lines. The average synchronization er-
ror and the cross-correlation function as, respectively, defined by
Egs.(13) and(15) are dimensionless quantitigs) (bottom) cross-

correlation functionl’y7(s) for AT=0.2 ns(long-dashed ling AT The ¢ mismatch stems from a residual optical path differ-
=0 (continuous ling, andAT=-0.2 ns(short-dashed line Notice  ance jn the emitter and receiver Mach-Zehnder modulators,
that it is the same curve, shifted to the right or to the left by thebut it can be experimentally compensated while changing the
delay time mismatchaT. dc bias of the electro-optic voltage.

increasing the delay time mismatch, the correlation decays, TO obtain an analytical approximation for the effects of
in fact, slightly faster than the analytical predictic8). The  this mismatch, we rewrite Eq9) as

oscillations that appear in the theoretical curve come from

-0.2 E

(¢} Lag Time (ns)

C. Off-set phase mismatch(¢)

the vertical cutoff we have considered for the hyperchaotic t t

spectrunX(w) was approximated as a rectangular function ~ X() = 5 U(st)ds+ 5 U(s,t)cog2x(s = T) + 2¢]ds.
They could be eliminated by approximatiXgw) as a func- fo fo

tion with a smooth decay to zero, which would be a more (25

realistic approximation for the spectra of the chaotic time

trace. However, this would be made at the cost of a highefhe first integral term exponentially decays to zero, which

complexity for the calculations. physically comes from the dc filtering property of the band-
Equation(23) also indicates that, as we may expect frompass filter. Therefore the stationary solutionxéf) and y(t)

Eq. (17), the effect ofAT is to shift the autocorrelation func- can be written as
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0.6 T T T T T t 2
(g = stinz(A¢)<l f Q(s,t,q&)dS} >=4sir?(A¢)<x2>.
] to
0.4 f . (29)
& ] Finally, the average synchronization error is given by
021 ] Tap=2lSiN(AQ)|. (30)
] oa4 does not depend on the value of the off-set phase
0 L L . L L itself, which is a consequence of our assumption, therefore
06 -04 -02 0 02 04 08 there is no “optimal” value ofs. Equation(30) also indicates
(@) AR/ the extreme sensitivity of this parameter; for example, if we
11 : : : : : consider a small ¢ mismatch of 0.0X¢ is a ratio between
two voltage$, the induced synchronization error is 2%,
I ] which is quite important.
N According to Eq.(26) the numerator of the cross correla-
- - 1 tion at equal times is given by
= : : BZ t 2 EZ
09 ] (xy) = ZCOS(ZAqﬁ) J Q(st,p)ds| )- zsin(ZAab)
A : 0
L ] t t ar
8 PRSP T (U S T U WU T U S T SN S U RSN —_
%06 04 02 0 02 04 06 x o Qs ¢)ds fto Q<S’t’¢ 4)ds 8D
(b) ABIB

We here assume that the hyperchaotic behavior induced by

FIG. 4. (a) (top) Average synchronization error aio) (bottom) the electro-optical oscillator is ergodic, so that we can equate
cross-correlation at equal times fermismatch. The analytical re- the average over time to an average over the attractor in
sults are in solid lines and the numerical ones are in symbols.  phase space. Although we cannot prove this hypothesis, it is
consistent with the fact that time averages are performed

B[ over long times so that they reach a stationary value as dis-
x(t) = > U(s,t)cog2x(s—T) + 2¢]ds, cussed after Eq13). Furthermore, the results we obtain are
to in quite good agreement with numerical simulations as we

will show below. The ergodic assumption implies that the
. last average of Eq31) vanishes since it involves the product
y(t) = B U’(s,t)cod2x(s—T') + 2¢']ds. (26) of a symmetric with an antisymmetric function. Therefore

o (xy) = cog2A $)(x?). (32

For the sake of compactness, let us introduce We also have

) _,8_2 J‘t 2
Qs t,¢) = U(s,H)cog 2x(s— T) + 245]. 27) =7 <[ ; QAsté+ M’)dsl >
BZ t 2
AssumingB=p', 0=0', =7, T=T', and definingA¢=¢’ =7 [f Q(S,tyﬁb)ds} =(x%, (33
- ¢, the instantaneous synchronization error may be ex- o
pressed as where we have again assumed that the time-average proper-

ties of the chaotic attractor are independent of the off-set
phase delay. Therefore the cross correlation is given by

- as t A¢_m
e(t) =— B sin(A¢) ft O Q(Syt, ¢+ 4)0'5- (28 I'34(0) = cog2A ). (34)

Logically it turns out that the cross correlation and the syn-
Starting from here, we assume that for long enough delaghronization error arer periodic as the nonlinear feedback
times, the average properties of the chaotic attractor are irfunction. Also from Eq.(34) for A¢==+m/2, T ,(0)=-1, so
dependent of the off-set phase. This statistical phase invarthat the receiver time trace is in exact phase opposition with
ance hypothesis is supported by the results from the numeriespect to the emitter onghat is why the corresponding
cal computation of the Lyapunov exponents of the systensynchronization error value is exactly 2 in that gase
[13], and also by previous investigations led by Rf4] Figure 5 displays the average synchronization error and
which show that wheiB andT are large enough, the number the cross correlation at equal times. Equati@d) shows an
and values of the positive Lyapunov exponents are practiexcellent agreement with the numerical results, which indi-
cally independent of the off-set phase. Therefore cates the validity of the assumptions we have made. How-
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f i |E(w)|?dw

ai 6= T (40)
- X(w)Pdw
; |
The numerator can be written as
I ] +o0 +o0
. f |E(w)|?dw =[cog2A¢) — 1]2f IX(w)|?dw
-3.14 -157 0 1.57 3.14 o o
(a) Ad o
. : . + SinF(2A ¢) J |A(w)|*dw — [cog2A¢)
+o0
- 1]Xsin(2A ¢) f [X(w)A"(w)
= + X ()A(w)]do. (41)
The integral/*>X(w)A"(w)dw can be written as
) L | L B +oo +0oo +0o0 t
314  -157 0 157 3.4 ZJ f f f U(s,t)cog2x(s—T) + 2¢]ds
(b) Ad I S
t’ S
FIG. 5. (a) (top) Average synchronization error aiio) (bottom) X lj U(s,t")sin2x(s—-T) + 2¢]ds} et dtdt dw
cross correlation at equal times for off-set phase mismatch. Analyti- to

cal approximations are shown in solid lines and numerical results in . S
symbols which corresponds to the average appearing in the last term

of EQ. (31). Therefore the last term of E¢41) vanishes. On

the other hand, the functiof(w) obtained from Eq(37) for

ever, one may nhot expect such a good concordance in th . . : :
case of small values oB or T, where, for example, the i off-set phase is preciselyX(w) for an off-set phases

statistical off-set phase invariance cannot be guaranteed. — /4. Therefore under the assumption that the average prop-

The above results can also be obtained in the Fourie(rames of the chaotic attractor are independent of the off-set

space as follows. From E@26) we have phase, we are going to consider that

Y(w) = 2V (w) + €22V (- w), (35) f i f(w)|A(w)|2dw = f_mf(w)|x(w)2dw (42)

whereV(w) is defined as
for any functionf(w). Then the average synchronization er-

— -l i i ror is given b
V(w) = '8 f f U(S,t)eZI[X(S_T)+¢e_thdS dt (36) IS glIv y
R

4 V’ET

044=[Cco2A¢— 1) + sirP(2A ¢) = 4siri(A¢), (43)

We can writeV(w)=3[X(w) +iA(w)], where exactly as obtained before. The cross correlation can be de-
o rt termined as in Sec. Ill A. We have

Alw) = i—f f U(s,t)sin2x(s—T) + 2¢Je "“!ds dt - -

2v2md = Jio f X(@)Y' (0)€“*dw=cog2A ¢) J X(w)[?€“*dw

(37)
Then usingX(e)=X (~w) and A(w)=A’(-w) (which come _ sin2A4) f XA () do.
from the fact that they are Fourier transforms of real func- -
tions), (44)
Y(w) = cog2A ) X(w) = SiN(2A p)A(w). (38)  Here, and later on in Sec. IV, we have to evaluate integrals of

the form " f(w)X(w)A"(w)dw, wheref(w) =fr(w) +if (o) is

a complex function such that the real pggtw) is symmetric

E(w) = [cog2A¢) — 1]X(w) - SIN2AH)A(w).  (39) in w and the imagi*nary_ parft,(w).is antisymmetrig. As dis-
cussed abovE(w)A (w) is an antisymmetric function, there-

The average synchronization error can be obtained througlore the symmetridg(w) does not contribute to the integral.
the Parseval theorem To evaluate the contribution from(w) we assume the band-

The synchronization error is
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pass filter approximation of the chaotic spectrum given in 0.004
Eqg. (21), so that
oo 1r 0.003
J f(w)X(w)A'(w)dew = — 2|S2J fl(w)dw. (45)
e 10 & 0.002
Finally we obtain
in(2A6 + 57 ~ sin2A ¢+ st o
sin +877) —Si +s
Fag(s) = , 46
AqS( ) S(T_l— 0_1) ( ) o
which, in the limits— 0, reduces to Eq(34). The Fourier (@)
approach just discussed will be used later on when discuss-
ing the effect of simultaneous mismatch on different param- T ' ' ' ' ' ]
eters. A ]
i ]
D. Low cutoff response time mismatch(6) - 3 1
<
[

The low and high cutoff response times are practically - ]
determined by the rf amplifier and by the photodiode band- 0.8 - 7
width. In practice, it is very difficult to tune them, and the I ]
components involved in the setup are ordered to be matched

by the suppliers. P06 04 w02 o0 02 o4 06
Assuming all the other parameters are equal, we have (b) A0/0
from Egs.(1) and(2)
1 t A ¢ FIG. 6. (a) (top) Average synchronization error aio) (bottom)
e+ e+ _J e(s)ds=———— | x(s)ds, (47 cross correlation at equal times fémismatch. Analytical approxi-
0+A0 o 00+ A0) t mations are shown in solid lines and numerical results in symbols.

which in Fourier domain gives L . ) )
synchronization error indicates that the emitter and receiver

Ao time traces are very similar, therefore we can assume that the
equal time cross correlation is practically perfect, yielding
E(w) = - : X(w). 48 =1.
) a0+ AL +iwn ) (48 Ta0=1
Asin Sech. Il A, we approximat&(w) by a rectangular func- E. High cutoff frequency mismatch (7)
tion, so that .
Assuming all the other parameters are equal, from Egs.
(A_B)Z (1) and(2) we have fore(t),
_\ 0 fllf dow 1t
YT 1y [1- 0?0+ AP+ X0+ A0 et (T+Ane+ —f e(s)ds= - A7, (51)
B -
(49) which in the Fourier domain gives
At first order in7/ 6, we have w’0A T
' Blw) = 1-w?0(r+A7) + iw@X(w)' (52
B \/; A6 a — 2arctaigl + A6/ 6)
T80~ \ gl 2(1+A616) - (50 ApproximatingX(w) by a rectangular function we obtain
For typical parameter values, this synchronization error is > _ (A7)? (Y7 w*
very small(of the order 10% hence, we can conclude that Oar= 1 1)y [1-w20(r+AD2+ wzezd“" (53
even a large mismatch fd does not significantly affect the 279
quality of the synchronization. Physically this comes from T
the fact that the low cutoff frequency is of the order of tensgq that, at first order in/ 6,
of kilohertz, while the chaotic oscillations are typically
within the gigahertz range. Therefore, any mismatch at such AT arctarfl + A7/ 7)
a low frequency range cannot really destabilize the synchro- Tar= | A 1- T ieAd (54)
nization manifold. Figure 6 displays the average synchroni-
zation error. The analytical approximati¢sO) shows a very The cross correlation can be calculated in a similar way as

good agreement with the numerical results obtained integratn Sec. 11l A. ApproximatingX(w) by a rectangular function,
ing Egs.(1) and(2) specially for small mismatch. The small at first order in7/ 6, we have

056226-8



EFFECT OF PARAMETER MISMATCH ON THE. PHYSICAL REVIEW E 69, 056226(2004)

0.6 t
1 1 1 T T i 1
y+7y+ ;f y(s)ds=p" cod2x(t=T") +2¢'], (57)
+ ] i1
o4r ", ] wheret; is such thatf%x(s)ds:,b’e. We introduce two com-
& N+ 1 plex variablesu, v, such that
N + 7
0.2 \\\++ +’-§:/,/ | ) 1 t =Ty d]
4 L ] v+m+=| v(s)ds=Be? , (58)
0 L |\\t\+\|/+’ /,I ] ] ’ "
06 -04 02 0 02 04 06 L
(a) Atlt WH P W+ = W(S)dS: IBIeZi[X(t_T')ﬂﬁ’], (59)
11 T T T T T 0 tl
. so R¢v]=x and Réw]=y. Then, in the Fourier space,
T[T, ] X(0) = V(w) + V(- w),
L - m
. Fo.
09 - Y(w) =W(w) +W (- w). (60)
We know that the effect of the delay time mismatch in the
Y P stationary state is to shift in time the chaotic trajectory.
.06 -04 02 0 02 04 06 Therefore we introducav,(t)=w(t+At). Assuming that in
(b) Ath the stationary staté{;_AATTwl(s)dsz Jtwi(s)ds then

FIG. 7. (a) (top) Average synchronization error axio) (bottom) 1 [t
cross correlation at equal times fomismatch. Analytical approxi- Wy + 7w+ ;f w;(s)ds= B'EZi[X(t-T>+¢’]_ (61)

mations are shown in solid lines and numerical results in symbols. ty

From Egs.(58) and(61) we have
AT AT AT
l+—+—arctanl+— t
T T o1 B e
(55) v+ttt — U(S)dS:E W1+TW1
t

r
AT AT AT\’ 0Jy,
1+— l1+—arctanl+—
T T T

Equation(54) implies that for typical parameter values there Therefore
is a relatively high sensitivity of the synchronization mani- '
fold to the high cutoff frequency, since a 1% errornin-

I'y(0)=

1t !
+—,f wl(s)ds}e‘“‘f’. (62
o),

in the Fourier space W;(w)
=(B8'1 B?**F(w)V(w), where

duces approximately a 0.5% synchronization error. o

Figure 7 displays the synchronization error and the cross — -’70 +iwl
correlation at equal times. The analytical approximations Flw) = S— (63)
show a quite satisfactory agreement with the numerical re- 1-0?7 0 +iwt

sults, mainly for small parameter mismatches. o AT
From the definition ofw; we haveW(w)=¢€"**'W,(w), SO

that
IV. THE MULTIPLE-PARAMETER MISMATCH CASE g
W(w) = =€ “ATe? 2 () V(). (64)
We now focus on the general and important case where all B
the mismatches are simultaneously taken into account. Thigpo,
would first enable us to study the synchronization quality in

situations that are closer to the experimental ones, and sec- B it _
ond to understand the interplay between the various mis- Y(®) = —€"“*'F(0)[coq2A¢)X(w) = SIN2A p)A(w)],
B
matches.
We first rewrite Eq(1) and(2) as (65)

whereA(w) is the Fourier transform of the imaginary part of
1t v and where X(0)=X'(-0), Alw)=A"(-w), and F(w)
X+ 7X + —f x(s)ds= B cog2x(t—-T) +2¢], (56) =F (-w) have been assumed. Therefore, the synchronization
0Jy, error is given by
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As one could have priori expected, the parameters which

B

E(w) = Ee_inF(w)[COS(ZA@X(w) = sin2A¢)A(w)] individually most influence the cross correlation are still in-
fluent.
—X(w). (66) With these results, one can investigate what the effect of

The average synchronization error can be obtained througrrr]1ult|ple-par<';1meter mismatch is relative to the case of single-

. . parameter mismatches. For this purpose, we make the dis-
the Parseyal theorem, EG0). Qalculatlng the integrals as tinction between two cases: in the first one, only one mis-
discussed in Sec. Il C we obtain

match can be adjusted while all the others are fixed, while in

1 AB\2 (Y AB the second case all the mismatches can simultaneously be
e = <1+_> f |F(w)|2dw—2(1+—> tuned.
T 0 B/ Jue B
y [cos(ZAqﬁ) Lr RN (o) Jdo A. One-parameter optimization
e This particular case of a single tunable parameter is of
Ur _ great experimental importance. For example, in our experi-
+sin(2A ¢) Im[e"‘““F(w)]dw}}. (67  mental setup8 (which is proportional to the laser output
e powen and ¢ (which is the ratio of two voltaggsare much

Therefore, the squared synchronization error is a quadrati@Ore Qasily tunablg than the length of thg dglay que or the
function of AB, and a sinusoidal function af¢. bandwidth of the filter. Therefore, the point is to find for

Evaluating the integrals up to the second order in param\_/vhich value of the tunable mismatch minimizes the synchro-

eter mismatch, we obtain the following expression for thenization error i.s reduced_. . .
synchronization error: Let us consider that, is the tunable mismatch while all

the others; are fixed. In that case, the synchronization error

2 1<AT>2 (A,B)Z KA (1 W)(AT>2 - becomes a one-variable function which is minimized when
== — | +[—=] + +l1-=]l—] +
3 5 ) [ o .
—=0 71
AT ABA ATA k
- In(2)JAd—- 2(1—%)—3—7—2(1—9——7 9%
’ , BT T that is, for
A A6 0 Ao
+§[§<—B+7> —4In(2—>Ad)7} (68) 5 My,
P i 2=-2 -k (72)
At the order7/ 6 (last block, only the terms containing i=1 Kk
the A9 mismatch have been kept since this mismatch does 17k

not appear at zero.ord.er iy 6. .For the qther mismatches \wnen someM,, are different from zero, the optimal mis-
there are also contributions at first orderify but they can  maich is also different from zero. Hence, this equation can be
be neglected as compared to the zero-order contributiongsidered as a kind of compensation formula.

The synchronization error can be rewritten as the square root | ¢t s take. for example, the case where the master and

of a positive-definite quadratic form slave band-pass filters are mismatched. We have shown that

5 the low cutoff mismatch is not influent. Hence, we will focus

_ o T on the high cut off mismatcA =, which induces according to
=N i,jgzl M;jzz = V2 Mz, (69) Eq. (68) a synchronization error of1—/4|A7/7 when all
the other mismatches are uniformly set to 0. If we tune the

where z is the five-dimensional vector Ag mismatch, we find that synchronization error is mini-
(AT/7,ABIB,Ap,A0I6,A7I7), while M is the symmetric mized whenAg is given by
characteristic matrix of the quadratic form. Its components
M;; can directly be determined from E¢68). The diagonal AB_ (1 Tf)A_T (73
terms ofM correspond to the results we have obtained while B 4 '

7_
considering the mismatches separately, and the nondiagonal ) . )
terms indicate the various interactions between the differenficcording to Eq(68), for this optimal value ofA3 the syn-

mismatches. chronization error is
ar o
1-5 = \/j , 74
4) 4 OAr ( )

On the other hand, the Wiener-Khintchin formula yields
with a satisfying precision the following expression for the UTB”AT: E(
s+ AT which is a 12% reduction in the synchronization error. We
) therefore reach the quite counterintuitive conclusion that un-
der certain conditions, the multiple-parameter mismatch can
improve the quality of the synchronization, since it can lead
(70) to a smaller value of.

A7

T

cross-correlation function:

s+ AT

) - sin<2A¢ +
(s+AT(F1-67h

sin(2A¢+
I'(s)=
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0.1 B. Multiple-parameter optimization
Here, we treat the case where all the mismatches can be
N tuned simultaneously. We are now looking for the optimal
4 manifold in the five-dimensional parameter-mismatch space
ﬁ 0.05 which leads to the smallest synchronization error growth
= rate. The first step is to diagonaliké as
\6 5
M =2 Ay, (75)
0 PR S SR [T T ST N S [T S TR S (S T S k:].
-0.1 -0.05 0 0.05 0.1
(a) AB/B where theA are the real and positive eigenvaluedvbfand
the g, are the related orthonormal eigenvectors. Hence, the
008 P ' ' ] optimal manifold is the eigendirection corresponding to the
<, *, A smallest eigenvalud ®, which is in fact the square of the
F %, ey smallest growth rate. On the other hand, the highest eigen-
002 N +++x><x ] value A is related to the eigendirection leading to the
© [ Xx:+ ++Xxx ] strongest error growth rate.
oot b X<y +)+<x" ] To illustrate this approach, let us take the case of a double
Xy v ] and simultaneoushtunableAB and A7 mismatch. The cor-
X%z* *gx ] responding characteristic matrix is
0 P M- ( 1 - K)
0.0 -0.025 0 0.025 0.5 M = , (76)
(b) At -K K
0.05 ] with K=1-7/4, and the corresponding eigenvalues are
[ + + ]
et S L A® = %[1 +K+\(1+K)2-4K(1-K)], (77
003 Fx  + ]
o FL X+ +ox ] that is, A‘”=0.160 andA"'=1.054. Consequently, the opti-
002F * x + oy : x mal mismatch combination geometrically corresponds to the
s XXt X% ] eigendirection ofA”), which is defined by
0.01 F Xy Ty * ] 5
i ¥+ +% -A"
ot 1 X * X 1 ] E = 1-A A_lg . (78)
0.0  -0.025 0 0.025 005 T K B
(c) Global Mismatch

This mismatch combination leads within that eigendirection

FIG. 8. (a) (top) Synchronization error as a function afg/g 10 @ growth rate ol A™=0.40, while this growth rate is 1
when the mismatctA7/ 7 is fixed to 2%[the solid line shows the for pure Ag mismatch(60% reduction ofo), and V1-/4
analytical approximations and the symbéts the numerical re- =0.46 for pureAr mismatch(14% reduction In Fig. 8c)
sultg and —5%[dashed line for analytical approximatior{s;) for we show the numerical results for the synchronization error
numerical resulfs (b) (centej Results obtained from numerical in these three cases. Once again, a combination of mis-
simulation for the synchronization error as a functiomef rwhen ~ matches improves the quality of the synchronization. In Fig.
the mismatchAB/B=0 (+) and whenAg/ 3 is optimally tuned 9, the analytical and numerical contour lines are depicted,
accordingly to Eq.(52) (X). (c) (bottom) Evaluation of o from and illustrate the eigendirection analysis. This kind of con-
numerical simulation forg-only mismatch(+), monly mismatch  tour line patterns have yet been used in R&@] in the case
(X), and for a multiple mismatch within the eigendirectiof8)  of the wavelength hyperchaos model. It was found numeri-
determined analytically*). cally that theA 8 and A ¢ mismatches were almost “orthogo-
nal,” as it is also the case for the electro-optical model con-
'sidered here sincé1,3=0. However, sinceAB and At do
precisely interact here at a quadratic approximatitiys
#0), the optimal manifold is an oblique line as shown in
Fig. 9.

This analysis is confirmed by the numerical simulations
In Fig. §@a), it clearly appears that the minimum error does
not occur whemA\B=0, but rather wher\ 3 is shifted by an
amount in good concordance with E@3). In Fig. §b), the
numerical simulation also shows that when t)@ mismatch
is optimally tuned the synchronization error is smaller, by an
amount close to the 12% we have predicted.

It is important to note that even though a off-set phase
mismatchA¢ is also easily tunable, it cannot significantly  For the experimental verification of our theory, the
help to compensate for a filter mismatch becaldg,  electro-optical modulators were pigtailed LiNp@tegrated
=M35=0 (however, it can, for example, compensate for aMach-Zenhder modulators with a dc value \6f 4.=4.0 V,
AT mismatch sincéviz; # 0). and a rf value(at 1 GH2 of V, ;=4.2 V for A=1550 nm.

V. EXPERIMENTAL RESULTS
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FIG. 9. (a) (top) Analytical level-curve pattern in the parameter- g
mismatch subspace &f3/B and A/ 7. The optimal eigendirection g
which induces the slowest synchronization error growth rate is in- 3
dicated by the solid double arrob) (bottom) Corresponding nu- o
merical level-curve pattern. One can notice that the eigendirection
obtained analytically approximately indicates the optimal direction -1 L L 1

of slowest error growth rate. -10 -5 0 5 10

(c) Modulator bias voltage (V)

One should note that it is the dc value \éf that is used in

Eg. (3) to define the off-set phase parametgr However, FIG. 10. (a) (top) Experimental hyperchaotic carrier at large
only the rf value is relevant for the hyperchaotic generatorscale, withP=7.60 mW andvg=1.05 V (b) (centej Experimental
The Mach-Zenhder modulators had a electrical bandwidth oFourier spectrum of the hyperchaotic carrign (bottom) Experi-

10 GHz. The coherent optical feeders of these modulator&ental transfer-function curves for the Mach-Zenhder modulators.
were InGa;_,AsP distributed feedback semiconductor lasersSolid line for the emitter and dashed line for the receiver.

with a polarization maintaining pigtail, designed for 10 Gb/s

digital system equipments. The delay lines were 7 m longhe difference between the bias voltages of the two modula-
single-mode optical fibers yielding an overall time delay oftors while matching experimentally thg parameter for syn-

30 ns(taking into account the signal speed reduction in elecchronization.

trical connections We also used a matched pair of photode- We have first studied the effect of a time-delay mismatch.
tectors with a gain of 2V/mW. The amplification within the For that purpose, we have varied the valueTéfaroundT
nonlinear feedback loops was performed by a pair of rf amusing a variable delay line, and the results are presented in
plifiers with a power gain of 18 dB and a bandwidth rangingFig. 11. It can be seen that as theoretically predicted, the

from 30 kHz to 6.5 GHz. slave time trace is shifted back and forth according to the
The experimental time traces and Fourier spectrum of th@alue of AT. This is of great experimental importance, since
hyperchaotic carrier are depicted in Figs(d0and 1@b), in reality, the receiver should synchronize to the emitter ir-

respectively. The bandwidth of the carrier is found to berespective of the coupling delagr “flying” time) T,.. There-
approximately equal to 7 GHz, thereby allowing for chaos-fore, for this hyperchaotic communication scheme, all the
encoded communications at bit-rates of several gigabits pdime delays(flying time, time delays due to the electrical
second. We have also represented in Figcilthe transfer connections, and response times of the optoelectronic de-
functions of the Mach-Zenhder modulators, and one can obvices play exactly the same role as the receiver time delay.
serve that, experimentally, they are shifted one with respect We now focus on the parameters whose mismatch can be
to the other by an amount of 0.7 V. This shift corresponds teeasily tuned in our system, namely, the nonlinear feedback
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FIG. 12. The symbols show the experimental results of the syn-
chronization error when one parameter is changed while keeping all
the others constanta) (top) Synchronization error as function Bf

° obtained withP=2.88 mW,Vg=1.25 V,Vé=0.55 V. The solid line

E corresponds to a function of the form=\a,P’?+a;P’+a,. The

f_El parameters; have been fitted to adjust the resuigs) (bottom)

< synchronization error as function &f obtained withP=5.0 mW,
P’'=2.94 mW,Vg=3.49 V. The solid line corresponds to a function
of the form o=\by+bycognVg/V,)+b,sin(mVy/V,) predicted
theoretically. The parameters have been fitted to adjust the
results.

(c) Time (ns)

cordance with the theory, this experimental curve follows a
the square root of a quadratic forisolid ling). On the other
hand, Fig. 1) displays the variations of as the receiver
bias voltageVy is varied. The measured values f@rfollow

the square root of a sinusoidal function in agreement with the
theoretical prediction67). The periodicity is given by the
receiver modulator bias voltage and the minima are clearly
strength and the off-set phase. Experiment@llyand¢’ can  sharper than the maxima, as theoretically predicted.

be tuned through the receiver laser output poeand the As far as the filter mismatches are concerned, it is very
receiver modulator bias voltagé;, respectively. To achieve difficult to perform any experimental verification. The reason
our theoretical study, we initially set all the mismatches to 0,is that the bandwidth of the experimental system results from
and then we studied their influence one by one. Experimerthe combination of the various bandwidths attached to differ-
tally, this is obviously impossible. Therefore, the experimen-ent elements of the electro-optical feedback lod@mmplifi-

tal study is intrinsically related to the situation we analyzeders, photodetectors, Mach-Zehnder modulator). éitiere-

in the multiple-mismatches section. The available electronidore, the bandwidth of the experimental setup is neither
equipment allowed a matching accuracy down to a few pertunable nor characterized by only two time scales. Hence,
cent, except for the delay which could be tuned within a 2even though the fundamental features of the system are cap-
X 1073 7 accuracy. Hence, we principally explored the valid- tured by the linear first-order band-pass filter, the model has
ity of our theoretical results in the large mismatch case. to be theoretically improved at that level.

Figure 12a) displays the variations of as the receiver
output power P’ is increased. Starting fronP’=0 mW
(whereo=1), the synchronization error decreases to a mini- We have developed an analytical approximation to predict
mum (aroundP’=2 mW) and then increases again. In con- the effect of mismatch for the different parameters of our

FIG. 11. Experimental chaotic time traces, witln continuous
lines andy in dashed lines. The parameters &e7.60 mW, Vg
=1.05 V (emitte), and P’=3.91 mW, V5=0.34 V (receivej (a)
(top) AT=0.15 ns, the slave is delayed relatively to the magt®r;
(centej AT=0, the slave is isochronous to the mastey;(bottom)
AT=-0.15 ns, the slave anticipates the master.

VI. CONCLUSION
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electro-optical system. The predictions give exact results in It may be interesting to extend our theory to other laser
the case of mismatch in the nonlinear feedback amplitudehaos synchronization schemes. For example, the Fourier
term, excellent results for the off-set phase mismatch, angpectrum of semiconductor lasers with a short external cavity
good results in the case of the time-delay mismatch and fogan also in first approximation be assimilated to a band-
the mismatch in the filter characteristic time scales. As thQimited white-noise Spectrur(the relaxation oscillation fre-
receiver is described by a linear differential equation Withquency of the So|itary laser is smaller than the external-
external forcing, the time-delay mismatch does not distorgayity-mode spacing frequency, so that the spectrum is not
the receiver time trace, it just shifts it in time. However, if peaky. Therefore, it isa priori possible to apply our results

this time shift is not compensated, it becomes the most Critity he study of parameter mismatch for that particular con-
cal mismatch for the synchronization error. The mismagch tlext
Jext.

can be compensated by rescaling the variables. If this resc
ing is not done, the synchronization error grows linearly with

the mismatch and a 1% synchronization error is originate he experimental level. This is by far the most complicated
by a 1% mismatch. We have also found that the high- Xper Vel. NS 1s Dy Pl

frequency cutoff of the filterr is relatively importan{0.5% task: for ex"%mp'ev even though some of the key components
mismatch induces a 1% synchronization erravhile the of the materials use_d f(_)r the experiments ha_ve been_c_arefully
low cutoff frequency of the filtes has a very minor effect on Matchedat the fabrication levelvith a very high precision,
the synchronization errofeven a 50% mismatch induces @nd even though the experimental time traces evidence a
On|y about a 0.3% synchronization en'_oFina”y' the phase very Strong correlation in F|g 11, the indicator shows that
mismatch plays also an important role, since a mismatch omuch is still to be done to attain the final objective of a few
about 0.005 rad originates a 1% synchronization error.  percent synchronization error. In that spirit, the high sensi-
In the case of multiple-parameter mismatch, we haveility of these devices functioning at multi-gigahertz fre-
given an analytic insight into a quite counterintuitive phe-quencies requires to design the emitter and the receiver as
nomenon: multiple-parameter mismatch can sometimes imintegrated circuits. At last, the influence of component and
prove the quality of the synchronization. We have also ob-environmental fluctuations are issues that are still to be in-
tained an approximation for the combined effects of all thevestigated, both theoretically and experimentally.
mismatches taken simultaneously, showing how it is possible
to improve the synchronization quality by compensating the
mismatch in a given parameter with an added mismatch in
another one. In practice, the interest of this multiple mis- This work has been funded by the European Commission
match optimization would be at least to identify the condi-through the research project OCCUIContract No. IST-
tions under whichr does not grow drastically in the case of 2000-29683 Y.C.K and P.C. acknowledge also financial
multiple mismatches between the emitter and the receivesupport from the MCyT(Spairn) and FEDER under Projects
We have also experimentally verified some of the conseNos. BFM2000-1108 CONOCBE, BFM2001-0341-C02-02
quences of our analysis. Particularly, we have verified ou(SINFIBIO), and TIC2001-4572-E. Y.C.K. also acknowl-
theory for the so called easily tunable mismatches, and eviedges financial support from tHeireccié General de Re-
denced the possibility of anticipated, isochronous, and deeerca, Desenvolupament Técnologic i Innovaaidhe Gov-
layed synchronization. ern de les llles Balears

For our own setup, a priority direction for future investi-
ations is the improvement of the synchronization quality at

ACKNOWLEDGMENTS

[1] See special issue on optical chaos and applications to cryptog-  Electron. 32, 953 (1996); 33, 1449(199%; C. Juang, T. M.

raphy, IEEE J. Quantum Electro88 (9) (2002, edited by S. Hwang, J. Juang, and W.-W. Liihid. 36, 300(2000; C. R.

Donati and C. R. Mirasso, and references therein. Mirasso, J. Mulet, and C. Masoller, IEEE Photonics Technol.
[2] P. Colet and R. Roy, Opt. Lett19, 2056 (1994; C. R. Lett. 14, 456 (2002.

Mirasso, P. Colet, and P. Garcia-Fernandez, IEEE Photonics[4] Y. Chembo Kouomou and P. Woafo, Phys. Rev6E 026214

Technol. Lett.8, 299(1996); F. Rogister, A. Locquet, D. Pier- (2003; Phys. Lett. A 308 381 (2003; Opt. Commun.223

oux, M. Sciamanna, O. Deparis, P. Megret, and M. Blondel, 283(2003.
Phys. Rev. E58, 1486 (19998; J.-P. Goedgebuer, L. Larger, [5] R. Brown, N. F. Rulkov, and N. B. Tuffilaro, Phys. Rev.3®,

and H. Porte, Phys. Rev. Let80, 2249(1998); G. Van Wig- 4488(1994).

geren and R. Royibid. 81, 3547(1998; S. Sivaprakasam and [6] G. A. Johnson, D. J. Mar, T. L. Carroll, and L. M. Pecora,
K. A. Shore, Opt. Lett.24, 1200(1999; |. Fisher, Y. Liu, and Phys. Rev. Lett.80, 3956(1998).

P. Davis, Phys. Rev. /62, 011801(2000; H. D. I. Abarbanel, [71 L. M. Pecora and T. L. Carroll, Phys. Rev. Letg4, 821

M. B. Kennel, L. llling, S. Tang, H. F. Chen, and J. M. Liu, (1990; Phys. Rev. A44, 2374(199]); M. A. Matias and J.
IEEE J. Quantum Electror87, 1301(2001); S. Tang and J. M. GUémez, Phys. Lett. 209 48 (1995.

Liu, Opt. Lett. 26, 1843(200J); K. Kusumoto and J. Ohtsubo, [8] A. Sanchez-Diaz, C. R. Mirasso, P. Colet, and P. Garcia-
ibid. 27, 989(2002; D. Kanakidis, A. Argyris, and D. Syvri- Fernandez, IEEE J. Quantum Electrdb, 292 (1999.

dis, J. Lightwave Technol21, 750(2003. [9] J. Revuelta, C. R. Mirasso, P. Colet, and L. Pesquera, |IEEE

[3] V. Annovazzi-Lodi, S. Donati, and A. Scire, IEEE J. Quantum Photonics Technol. Lettl4, 140(2002.

056226-14



EFFECT OF PARAMETER MISMATCH ON THE. PHYSICAL REVIEW E 69, 056226(2004)

[10] L. Larger, J.-P. Goedgebuer, and F. Delorme, Phys. Réy7,E 4986 452(2003.

6618(1998. [14] B. Dorizzi, B. Grammaticos, M. Le Berre, Y. Pomeau, E. Res-
[11] J.-B. Cuenot, L. Larger, J.-P. Goedgebuer, and W. T. Rhodes,  sayre, and A. Tallet, Phys. Rev. 85, 328(1987.

IEEE J. Quantum Electron37, 849(2001). [15] M. Schwartz, Information, Transmission, Modulation and
[12] J.-P. Goedgebuer, P. Levy, L. Larger, C.-C. Chen, and W. T. Noise 4th ed.(McGraw-Hill, New York, 1990; R. N. McDon-

Rhodes, IEEE J. Quantum Electro88, 1178(2002. ough and A. D. WhalerDetection of Signals in Nois@nd ed.

[13] R. Vicente, J. Daudén, P. Colet, and R. Toral, Proc. SPIE (Academic Press, New York, 1995

056226-15



