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Dependence of Timing Jitter on Bias Level for
Single-Mode Semiconductor Lasers under
High Speed Operation

Claudio R. Mirasso, Pere Colet, and Maxi San Miguel

Abstract—The dependence on the bias level of some quantities
characterizing optical pulse statistics, such as the turn-on time,
pulsewidth, maximum output photon number, and average
output power, of single-mode semiconductor lasers are numer-
ically analyzed at frequencies in the GHz range. Periodic mod-
ulation and pseudorandom word modulation are considered. In
the former regime timing jitter is shown to be rather indepen-
dent of the bias current. In the latter regime timing jitter be-
comes larger when biasing above threshold than when biasing
below threshold. This large jitter is found to be associated with
a bimodal probability distribution of the turn-on time, which
yields undesirable pattern effects. A privileged bias, slightly be-
low threshold, suppresses these pattern effects making the laser
response almost independent of previous input bits. For such
bias value the probability distribution functions of the turn-on
time in the case of the periodic and pseudorandom word mod-
ulation coincide.

I. INTRODUCTION

HE effect of semiconductor laser noise in optical

communication systems was recently reviewed [1].
When the laser is directly modulated by varying the in-
jection current, a limiting factor of its performance, in
addition of intensity and phase fluctuations, is the timing
jitter in the emission of the optical pulse, as reviewed by
Spano et al. [2]. Timing jitter causes a degradation of
temporal resolution, also important in optical sampling.
Such fluctuations in the delay between the electrical and
optical pulses (turn-on delay) can result in a system tim-
ing error limiting the performance of communication sys-
tems working at GHz rate. An additional complication is
mode-partition noise leading to the occasional turn-on of
a side mode in nearly single-mode semiconductor lasers
[3]-[6]. The randomness of the turn-on time of the optical
pulse is originated by intrinsic spontaneous emission
noise. Nonlinear dynamics amplify the indeterminacy of
the turn-on time so that pulses of different height and
width occur [7]. The difference in pulse shapes manifests
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itself in statistical, transient intensity [8] and phase fluc-
tuations. In fact, characteristics of pulse statistics such as
the distribution of pulse height or chirp range are easily
related [9] to the statistics of the turn-on time. In intensity
modulation /direct detection optical communications, one
wishes to minimize the turn-on delay and timing jitter, but
it is also important to maximize the on-off ratio and to
avoid pattern effects. A compromise among these, some-
times contradictory, requirements has to be established to
determine the best possible operating conditions of the
laser. A small timing jitter is also important in some other
applications in which narrow, high-power pulses are re-
quired. In general, a central question concerning the op-
erating condition is the dependence of timing jitter on the
bias level, and a possible different dependence on the bias
when varying the modulation rate. Also such dependence
might be different in a situation of signal transmission
(pseudorandom word modulation) and in a strictly peri-
odic regime (periodic sequence of pulses).

Fluctuations in the turn-on delay have been studied by
a number of authors [2]-[5], [9]-[20] either experimen-
tally or by theoretical calculations including numerical
simulations of stochastic rate equations. Recently, atten-
tion has also been focused on transient mode-partition
noise effects [3]-[6], [17], [18] as well as in transient
fluctuations [8], [9], [19]. Most of these studies are based
on ensemble averages, that is the statistics is based on a
large number of essentially independent gain-switching
events in which the laser reaches a steady state fixed by
the bias level before each turn-on event. For this situa-
tion, and for single-mode lasers, the turn-on delay and
timing jitter are reduced biasing above threshold, while the
on-off ratio is improved biasing below threshold. A de-
tailed study of the dependence of timing jitter on bias level
was reported in [16]. However, there are clear indications
[11], [15] that timing jitter has an important dependence
on the modulation frequency which cannot be discussed
in terms of such ensemble averages. In addition, it has
been shown [20] that for pseudorandom word modulation,
the turn-on time probability distribution might become
double peaked when biasing below threshold, being sin-
gle peaked and essentially Gaussian when the bias is above
threshold, and being also single peaked for periodic mod-
ulation and bias either below or above threshold.
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In this paper we report a detailed theoretical study for
single-mode lasers of the combined dependence of timing
jitter and other statistical properties of optical pulses on
the bias level and on modulation frequency in the GHz
range. We also consider the different behavior under
strictly periodic modulation and the situation of signal
transmission, where pattern effects are more important due
to the nonperiodic sequence of pulses. We provide evi-
dence that, in general, timing jitter is not strongly reduced
by biasing above threshold when modulating in the GHz
range [21]. We also find that, by biasing slightly below
threshold, pulse statistics are grossly independent on the
modulation frequency, and they are the same in the peri-
odic and pseudorandom word modulation (signal trans-
mission) regimes. An explanation of the mechanism that
allows to identify such privileged bias level is given. We
also show that for pseudorandom word modulation the
probability distribution of the turn-on time is broad and
with two main peaks when biasing above threshold, so
that a large timing jitter is found due to pattern effects;
but it becomes single peaked with a small associated tim-
ing jitter for bias slightly below threshold. This appar-
ently contradicts the results of Shen [20] mentioned above,
which suggested the need of biasing above threshold for
high speed data transmission to avoid large timing jitter.
We show that, in agreement with his results, at a modu-
lation frequency of 1 GHz the turn-on time probability
distribution is double-peaked when biasing 10% below
threshold and becomes single peaked for bias 10% above
threshold. However, the situation changes at larger mod-
ulation speeds: The distribution is always single peaked
for bias around 2-3% below threshold, while for a given
bias above threshold the distribution becomes double
peaked for large enough modulation speed (except for
large bias, greater than 20-25% the threshold value). The
consequence is that to avoid timing jitter and pattern ef-
fects the bias should be changed from above to slightly
below threshold when increasing the modulation rate. Our
results are largely based on extensive numerical simula-
tions of stochastic rate equations. The advantage of this
method for this problem is that we can monitor the sto-
chastic evolution of the carrier number which allows to
identify the dominant mechanisms at play.

The outline of the paper is as follows. In Section II we
describe the stochastic rate equations and the statistical
quantities to be calculated. In Section III we study the
situation of a periodic modulation. In Section IV we ana-
lyze the response of the system to a pseudorandom word
modulation. In Section V a privileged bias level is dis-
cussed in detail. A summary and general conclusions are
given in Section VI.

II. StocHAsTIC RATE EQUATIONS

The description given here is based on noise driven rate
equations for a single-mode semiconductor laser. These
equations, for the number of photons I and the carrier

number N inside the active layer, are [22]:

g = (G — )1 + 4BN + VABNI£ () M
dN
7 = €O = v.N~-GI @

where G = g(N — Ny)/~(1 + sI). A gain-saturation fac-
tor of the form (1 + s/)~'/? is included [23]. The mean-
ing of the symbols and typical values [19] of the different
parameters involved in these equations are listed in Table
I. The random spontaneous emission process is modeled
by a Gaussian white noise term £(#) of zero mean and
correlation (£(H&E(t')) = 26(t — t'). The term 48N
yields the mean photon number emitted by spontaneous
emission, and the term V4BNI £ (¢) describes the fluctua-
tions of this mean photon number. We neglect the effect
of the radiative and nonradiative carrier generation and
recombination noise in the rate equation for N(r) since it
is negligible as compared with the fluctuations induced by
£(?) in the regime of pulse emission relevant here [1], [4].
The stochastic differential equations (1) and (2) are de-
fined in the Ito sense [24], [25].

Equations (1) and (2) predict that the laser threshold
occurs for

Cu = (1 + No>'Ye- 3)

8
For our parameter values, C,, = 3.76 x 10'¢s~! and N,
= Cy/v. = 7.51 x 10°. For C > C, the stationary off

solution I = 0 and N = C/~, becomes unstable and the
stable lasing solution is given by

2
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For our parameter values, and C = C,, = 1.4 X 10'7s7',
N, = 7.62 X 10" = 1.015N,, and I,, = 2.55 X 10°. The
difference between N,, and N, is due to gain saturation
effects.

We consider three different operating regimes accord-
ing with the time-dependence of the injection current C(¢):

Gain switching: At time ¢ = 0 the injection current is
changed from a value C = C, to a constant value above
threshold C(¢) = C,, during a time ¢,,. Forz > ¢,,, C
= C, and the laser relaxes to steady-state conditions.

Periodic modulation: The injection current C(r) fol-
lows a square-wave modulation of period T = ¢, + t,¢
taking values C,, during ¢,, and C, during t,4 in each
period. We allow for a finite rise and fall times of 12
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ps included in ¢, and #,¢, respectively. For very large
tor the gain-switching regime is recovered.

Pseudorandom word modulation: The response of the
system, when it is used for transmission of a signal in
the return to zero (RTZ) modulation scheme, can be
modeled considering the response to a random modu-
lated injection current composed of a stochastic se-
quence of *‘0’” and “‘1’’ bits. A bit “*1°” has an injected
current of C,, during t,, and C, during #,s. On the other
hand, a bit “‘0’” has an injected current C;, during the
full period T.

We are interested in the statistical properties of the light
pulses emitted in any of these three situations. Relevant
quantities are the mean turn-on time (), the mean
pulsewidth (w), the average maximum photon number
(Inax), and their respective mean square deviations o,,
o,, and o;, for modulation frequencies in the GHz range
and different bias levels. The turn-on time is defined as
the time, after C rises to C,,, at which the intensity 7
reaches 50% of its steady-state value for C = C,,. The
width of the pulse is also defined at this reference level.
I,y 1s defined as the instantaneous maximum value of the
photon number in each optical pulse. We will also con-
sider the average output power per pulse (per facet) P,
calculated as the temporal average, during a period of
modulation, P = 1/T { I P(s)ds, of the output power P(s).
For the value of the facet loss «,, and the wavelength A\
given in Table I, P(s) = [hcza,,,/(2p,g)\)]1(s) = 2.19 X
1073 I(s) mW [22], where c is the speed of light in vac-
uum and 4 is the Planck constant.

A typical time trace obtained from (1) and (2), under
periodic modulation, can be described as follows. For bias
below threshold [Fig. 1(a), (b)] and very large t.¢, at the
end of a period of modulation, the number of photons / is
very small and N is below its threshold value Ny =
Cin/ .- As C(2) raises to C,,, N grows linearly beyond
Ny, and it reaches a maximum as the laser turns on. The
randomness of this time is due to the spontaneous emis-
sion noise and causes timing jitter. After the pulse is orig-
inated, N diminishes and the pulse in the photon number
I develops. The later the pulse is emitted, the larger the
maximum value of N, and consequently the higher the
emitted pulse [9]. A typical time trace when biasing above
threshold is shown in Fig. 1(c), (d). The main difference
with the former case is that now the laser switches-on dur-
ing the off-semiperiod. Typical time traces for shorter .
are shown in Fig. 2. The shape of the time traces has a
strong dependence on #,4 since it determines the initial
conditions for the following pulse. It is clear that the
pulses are rather similar in Fig. 2 independently of C,,
while this is not the case for large 7. (Fig. 1). In fact, the
value of 7,5 has to be compared with two different times:

1) The relaxation time needed for N to reach its steady
state when C(f) = C,. For bias close to threshold
this time scale is given by v, ' = 2000 ps. For .4
< ;! differences in pulse statistics with respect to
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TABLE I
MEANINGS AND VALUES OF THE PARAMETERS IN (1) AND (2)
Parameter Meaning Value Units
g Gain parameter 5.6 x 10 57!
¥y Inverse photon lifetime 4 x 10" s™!
Ye Inverse carrier lifetime 5 x 10% s”!
] Spontaneous emission rate 1.1 x 10* s7!
s Gain-saturation factor 1.3 x 107® adimensional
Ny Carrier number at transparency 6.8 107 adimensional
Cp Threshold current 3.76 x 10'¢ s™!
. Facet loss 45 cm™!
A Operating wavelength 1.5 pm
e Group refractive index 4 adimensional
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Fig. 1. Fifteen time traces showing the evolution of the photon number (a)
and (c), and carrier number (b) and (d) for C, = 0.95C,, and C, = 1.1C,,,
respectively, with 7,, = 90 ps and large t,¢ (= 2000 ps). I has been nor-
malized to its steady-state value for C,, [(4) and (5)], while N has been
normalized to the threshold valuwe: i = I/I,, n = N/N,,. (d) Electrical
pulse, normalized to the threshold value ¢ = C/C,, for C, = 1.1C,,.
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the situation of gain switching should be generally
observed.

2) The turn-on time ¢ during the off-semiperiod for C,
> Cy. If t,q is chosen to be smaller than £, the fact
that C, is larger than C,, has no important effect in
the following pulse. For the values used here for C,,
and C,, we numerically find f = 500 ps. An ana-
lytical estimation of £ is given below.

III. PEriODIC MODULATION

From the previous discussion of typical time traces, it
is clear that the value of 7.5 is very important in determin-
ing the statistical properties of the pulses, since it deter-
mines the conditions for the beginning of the next pulse.
We first study such statistical properties as a function of
tog, in the regime of periodic modulation, for a fixed value
of t,,. A convenient pulsed operation of the laser is ob-
tained taking 7, such that C(¢) changes from C,, to C, at
a time intermediate between the pulse emission time and
the time at which N goes through its minimum value (see
Fig. 2). For a value of ¢,, such that C(f) reaches C, when
N has started to grow from its minimum value the pulse
becomes wider and a subsidiary pulse associated with re-
laxation oscillations could also occur. We have chosen ¢,
= 90 ps between these limits. In Fig. 3 we show, in the
regime of ¢, < f and for different C,, the dependence on
tog of (1), 0;, {W), 0,,, {imax”, and o;, as obtained from
numerical simulations of (1) and (2). The averages have
been taken over 10* optical pulses, after a periodic regime
is reached. We allow the system for 10* periods for reach-
ing this periodic regime. We have checked that for large
enough 7,4, gain-switching results are reproduced. These
results are indicated with arrows on the right side of Fig.
3. For such large ¢, there exists a strong dependence on
the bias current [14]-[19] with a significant reduction in
the jitter o, when changing the bias from C, = 0.95 C,
to C, = 1.1 C,,. However, in the regime considered here
(tog < 1) the value of N at the end of the period is quite
independent of the value of C,, as can be seen from Fig.
2. For this reason, the strong dependence on the bias cur-
rent obtained for large #,4 is drastically reduced, due to
the fact that neither 7 nor N has time enough to reach its
stationary value associated with C(f) = C,. As a conse-
quence, a plateau appears in most curves plotted in Fig.
3 for bias close to threshold and ¢, in between 100 and
200 ps (which correspond to modulation frequencies of
5.21 and 3.42 GHz, respectively). Our results for t,5 <
100 ps merit a separate comment. The turn-on time and
associated jitter are reduced because the number of pho-
tons remains at a relatively high value at the end of the
period of modulation. A faster turn-on reflects the fact
that the maximum value reached by the carrier number is
smaller. As a consequence, pulses are wider and with a
lower maximum, causing a degradation of the on-off ra-
tio. For smaller ¢, the possibility of pulse overlap is
greatly enhanced.

In order to check that ¢,, = 90 ps is a reasonably good
value, we have also studied the dependence of (1), g,
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Fig. 3. (a) Mean turn-on time. (b) Time jitter. (c) Mean and (d) standard
deviation of the pulsewidth. (¢) Mean and (f) standard deviation of the
maximum output photon number are plotted as a function of #.q, for differ-
ent C,. The modulation frequency fassociated with different 4 is indicated
at the top. Short dash corresponds to C, = 0.9C,; dot-dash to C, =
0.95C,;; three-dot-dash to C, = 1.0C,,; long dash to C, = 1.05C,, and
the solid line to C, = 1.1C,,.

(W), 0., {imax) and o; With 7., for a fixed value of 7,4 =
150 ps. Our results are shown in Fig. 4. It can be seen
that for ,, <90 ps the jitter increases while the width and
the maximum output photon number are strongly reduced
giving a very small output power. This reduction is due
to the fact that the injected current is turned-off to its bias
value before N has arrived to it natural maximum value,
causing an earlier turn-on of the laser, and giving also a
small on-off ratio. With that small output power it might
happen that the minimum value needed for the detection
of the signal is not reached causing an error in the trans-
mission. This situation of an early turn-on of the laser
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Fig. 4. The same statistical quantities as in Fig. 3 but plotted as a function
of #,,.

causes the anomalous behavior for C, = 0.9 C,, t,, =
90 ps and large t,; shown on the right side of Fig. 3,
where timing jitter is seen to be considerably larger than
for C, = C,,. We have checked that for larger values of
ton (90 ps < t,, < 150 ps) and a large t,4, corresponding
to a gain-switching condition, ¢, for C, = 0.90C, is
smaller than for C, = C; if t,, becomes even larger
(~ 150 ps), w becomes also larger and a secondary pulse
associated with relaxation oscillations appears in the time
trace of I and N, so that undesired pattern effects become
important. It can also be seen from Fig. 4 that (g,), (ipay)
and {o;) become almost constant and quite independent
on C, for 90 ps < ¢,, < 180 ps. For these reasons we fix
ton = 90 ps during the remaining of our analysis.
Possible source of errors in the transmission of a pulse
are a very large turn-on time or a very small output power
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Fig. 5. Probability distribution function for the turn-on time [(a) and (c)],
for C, = 0.95C,, and C, = 1.1 C,, respectively, and average output power
per pulse [(b) and (d)], for C, = 0.95C,, and C, = 1.1C,, respectively.

of the pulse. These events are not determined by the mean
values and variances of these quantities if their probabil-
ity distribution is not Gaussian. In fact, one is interested,
when looking for errors, in the tails of the probability dis-
tribution. We show in Fig. 5 the probability distributions
for the turn-on delay time and the average output power
for t,¢ = 150 ps. The distribution functions are here com-
pared with Gaussian distributions of the same mean value
and variance. The same comparison is given throughout
the paper with Gaussian distributions indicated in dashed
lines in the figures. The distributions look rather Gauss-
ian, except that, specially the distribution functions of the
turn-on time are rather asymmetric. The deviation from a
Gaussian distribution can be quantitatively characterized
through their skewness and kurtosis, which are 0 and 3,
respectively, for Gaussian distributions. For the turn-on
time (average power) probability distribution the skew-
ness is 0.88 (—0.01) and 0.82 (0.005) and the kurtosis
3.45 (2.9) and 3.3 (3.27) for C, = 0.95C, and C, =
1.1C,, respectively. This indicates a better Gaussian fit
for the average output power than for the turn-on time.
An important result of our analysis of pulse statistics
that can be extracted from Fig. 3 is that statistical quan-
tities for C, = 0.95 C,, in particular o,, {iy.) and o;, are
almost independent of 7.4, taking here the same value as
for the gain-switching conditions. There seems to exist a
bias value for C(r), which is below the threshold, for
which all the studied statistical quantities have a value
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almost independent of 7,5 Such a bias value should cor-
respond to a situation in which every pulse is grossly in-
dependent of the previous one in a way in which the in-
dependence is maintained when changing t,4. From Figs.
1 and 2 one can think that this particular bias value should
be associated with the minimum value N,, reached by N (),
which is found to depend upon C,, but to be rather inde-
pendent of C,. When C, is fixed to a value C, = y,N,,,
N (7) remains essentially constant at N(z) = N,, during the
off-semiperiod independently of the value of t,4. In this
way, the initial conditions that modifies the statistics of
turn-on time and pulse-shape become essentially the same
for any 7.4, including the very large #,; corresponding to
a gain-switching condition. This particular value C, can
be self-consistently estimated as follows. Given an initial
condition at the beginning of one period N(t = 0) = N,,
= Cy/7v. and I = 0, one imposes that this value of N(7)
= N,, is again obtained at the first minimum of N(#). From
the initial conditions, the maximum value of N, N,,, is
obtained solving (2) with / = O until the mean turn-on
delay time ()

Ny =08+ (N, — 8)e™ (6)
where § = C,,/v.. This maximum value is then used as
the initial value for half a period of a relaxation oscillation
with C(¢) = C,,:

Ny = Niy = (Ny — Ny)e/? @)
so that,

Nu(1 + e*F®/2)  §o kTR (g —7e() _ 1)

Ny = 1 + ¢ 1< +arTr/2 - ®

The damping constant ay is

.- = - 1 [451\4, gsly N, — N,
k 2| I, 2 (1 + sI)?
gl

+

*_F .
V1 + sl 'y]

and the period of the relaxation oscillation

4BN51 Nst - NO < s’sr('Ye - 43))
Yo + g0 (4p 4 Tat¥e T 20)
I, N 201 + sI,)

TR=27T|:

ve&ly 2]_]/2
—_— -«
V1 + s, K

where N, is the steady-state value for the carrier number
for C = C,,. For our parameters values, ag = —3.12 X
105", T = 99.34 ps and (1) = 65 ps. Then from (8)
N, = 0.983N,, so that we find C, = 0.98C,,. This ex-
plains the fact that for C, = 0.95C,, we have observed
that 0, {ina,> and o; are almost independent of 74.
Having estimated N,, we can also estimate the mean
turn-on time () for C, > C, during the off-semiperiod,
as follows. We assume that at the beginning of the off-
semiperiod N(f) = N,, and that N,, is independent of C,.
The regime of exponential amplification of N(z), starting

+

from the initial condition N,, = 0.983N,,, can be calcu-
lated integrating (2) with I = 0 and C(¢) = C,, until the
time 7 at which the carrier number reaches the threshold
value. This time is:

1 1 - C,/Cp

T=——In————.

Ye 0983 - Cb/C,,,
For C, = 1.1Cy, 7 = 300 ps. This agrees with the typical
time trace shown in Fig. 1. The turn-on time starting with
an initial condition / = 0, N = N,; can be calculated using
the same procedure than in [9]. The turn-on time is then
given by:

®

—l_l: 9 — i(_l_l] 10
Vg(C — v.Ny) \/50‘

where 8 = In [I%F /(| k(o) |? )], with I%T = I /2 being
the reference value used to define the turn-on time during
the off semiperiod, ¥ (1) is the digamma function [26] and
(| k(o) |?) is given by:

48 <'y > T
h) [y =2 4 28X+ Ny ) J—rT—
LA =27+ 485+ Mo )58 — v

The mean turn-on time during the off-semiperiod for a
bias above threshold, C = C, = 1.1C,, calculated from
(10) gives (#) = 500 ps which is consistent with the time
trace shown in Fig. 1(d). The overestimation of {f) is due
to the calculations in (10) which becomes more accurate
for C, far from C,. From the above discussion it should
be clear that f has a different physical meaning than the
relaxation oscillation period Tg. The time T} has different
values for either C = C,, or C = C, and it gives infor-
mation on damped small oscillations around steady state,
while 7 gives a time scale of a regime of exponential am-
plification with C = C, induced by the fact that the laser
has gone through the threshold. It is after this regime in
which N reaches its maximum value that relaxation oscil-
lations of N toward the steady state, fixed by C,, occur.
We note that even if the initial condition for N is rather
close to its final value, a relaxation oscillation does not
take place when threshold is crossed. The relevant char-
acteristic time when biasing above threshold is ¢ rather
than 7.

In summary, we have shown that for t, < f pulse sta-
tistics are rather independent of C, being above or below
threshold and for C, = C, < C, we have shown that
pulse statistics are rather independent of ..

Y =7+

IV. PSEUDORANDOM WORD MODULATION

We next consider the situation of pseudorandom word
modulation, described in Section II, with ¢,, = 90 ps and
t.g > 50 ps. It is interesting to note that a varying value
of ¢, in the situation of periodic modulation can be under-
stood as a periodic signal consisting of a *“1°’ bit followed
by a varying number of *‘0’" bits. As a consequence one
might already expect that for C, = C, pattern effects will
be greatly diminished since pulse statistics were shown to
be independent of #,4 for such bias. In our numerical cal-
culations for pseudorandom word modulation averages are
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taken over 2 X 10* periods of modulation, which on the
average correspond to 10* pulses associated with *“1° bits.

A. Statistical Averages

In Fig. 6 we show the dependence on t.s of (t), o,
{w), 0,, {inx’, and o;, for different C,. Strong differ-
ences with the periodic modulated regime can be seen by
comparing with Fig. 3. The ‘‘plateau’’ observed for the
periodic regime has disappeared in the pseudorandom
word modulation regime, except for C, = 0.95C,,. This
confirms the existence of a special value for the bias cur-
rent for which the statistical quantities should be inde-
pendent of #,5. On the other hand, timing jitter is now
considerably larger when biasing above threshold than
when biasing below threshold. An important increase of
g, 0,, and o; is observed, specially for 7,z > 80 ps and
C, = 1.1C,. This is a reason against biasing above
threshold in this frequency range of operation of the laser.

For very long .4 the statistics of a pulse should be in-
dependent on whether the preceding bit was ‘0’ or a
*“1°°, so the results pointed by arrows on the right side of
Fig. 3 should be also obtained in this case. This implies
that, for some #,5, the curves of Fig. 6 must cross. In
particular, and as opposed to what is seen in Fig. 6, the
curves of o, and o; for C, = 1.1 C,;, must be below those
for C, = 0.95C,, for large ;. This is shown in Fig. 7.
It can be clearly seen that, for our parameters, at f,4 ~
400-500 ps (~2 GHz) the two curves for o, and g; cross
each other. This value of ¢4 should be identified with the
time {f) discussed in Section III. For larger values of .4
the laser tums-on in the off-semiperiod, when biasing
above threshold, and as a consequence timing jitter be-
comes smaller. The result in Fig. 7 makes a preference
for biasing slightly below threshold for frequencies greater
than 2 GHz and above threshold for smaller frequencies.
That questions the suggestion in [20] of biasing above
threshold for frequencies larger than 1 GHz to reduce tim-
ing jitter and to avoid pattern effects. A discussion of this
seemingly contradiction in terms of turn-on probability
distributions is given below.

B. Probabilities Distributions Functions for the Turn-on
Time and Average Output Power

In order to better understand the behavior of the system
for bias above and below threshold, we analyze the dis-
tribution functions of the turn-on time and the average
output power for C, = 0.95 and 1.1 C,,. We will show
that the observed large timing jitter for C, = 1.1 C,;, orig-
inates from bimodal probability distribution associated
with pattern-dependent effects. In Fig. 8 the probability
distribution functions for the turn-on delay time for C, =
0.95C,, and 1.1 C,, are shown. The distribution function
for C, = 0.95C,, is very similar to the one shown in Fig.
5 for a periodic modulation. This fact confirms that for a
bias around this value the response of the system is almost
independent of t,4. The probability distribution function
for C, = 1.1C,, must be also compared with the one in
Fig. 5. It can be seen that strong differences, between
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Fig. 6. The same statistical quantities as for Fig. 3 but for a pseudorandom
word modulation.

periodic and pseudorandom word modulation, appear
when biasing above threshold. Under pseudorandom word
modulation we find a bimodal distribution which is very
different from the corresponding Gaussian. The two peaks
of the distribution yield the large jitter observed in Fig. 6
for t,¢ < 500 ps. There are clear indications that, at least
in a first approximation, there are two characteristic turn-
on times, which could be associated with a “‘1 1’7 se-
quence and a <‘0 1°” sequence. Moreover, each part of the
bimodal distribution has a width which is smaller than
that of the single peaked distribution for C, = 0.95C,,.
The probability distribution functions of the average out-
put power are also shown in Fig. 8. Again for C, =
1.1C,, a bimodal distribution appears, which could be
also associated with the sequences ‘“1 1’ and ‘0 1°’ al-
ready mentioned.
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The origin of the bimodal distributions for C, = 1.1C,,
can be understood as follows. As a first approximation the
two peaks can be associated with the two sequences
“1111---"and““0101 ---,” as has been already
suggested. However, these two sequences are not enough
for a proper quantitative description of Fig. 8. We have
calculated the probability distribution associated with the
last bit *‘1°” when the laser is periodically modulated with
the following eight sequences of four digits: ‘1 11 1,”
“0111,” “1011,” “0011,” ‘“0101,”
“1101,” 1001, and ““0 0 0 1.”’ The normalized
probability distribution functions associated with the eight
sequences are shown in Fig. 9. The normalized distribu-
tion function given by the superposition of the ones in
Fig. 9, each one with the same weight, is shown (dashed-
dotted line) in Fig. 8. A very good agreement with the
distribution function for the pseudorandom word modu-
lation can be observed. This means that the superposition
of the 8 independent sequences of 4 pulses can describe,
in a very good way, the response of the laser to a pseu-
dorandom word modulation. This can be understood as a
memory of the system, which only remembers a finite se-
quence of bits before a ‘1’ bit. For our laser parameters,
we can say that the system has a ‘“four bit memory,”” for
C, = 1.1C,. For C, = 0.95C,, the system has almost
““no memory.”’ There exists a precise value of C, for
which the system loses its memory, so that pattern effects
are avoided. We consider this special bias value in the
next section.

The problem of bimodal distributions has been also dis-
cussed previously by Shen [20]. For his laser parameters,
bias values about 10% far from the threshold value, and
frequencies of 1 GHz, a double-peaked probability distri-
bution function of the turn-on delay time appeared when
biasing below threshold, and a single peaked probability
distribution function when biasing above threshold. This
result indicates a change from single peaked to bimodal
distributions in an opposite direction than the one dis-
cussed above. The reason for this difference lies in the
change of qualitative behavior discussed in connection
with Fig. 7. If we consider larger values of 7,5 reducing
the frequency to 1 GHz the results by Shen are repro-
duced. This is explicitly shown in Fig. 10 for z,¢ = 850
ps and ¢,, = 150 ps (f = 1 GHz), where a bimodal dis-
tribution occurs for C, = 0.9 C;, and a single peaked dis-
tribution for C, = 1.1C,,. However, if C, approaches C,
< Gy the probability distribution function becomes single
peaked for f = 1 GHz and also for any other frequency.
For C, = 1.1C,, the probability distribution function be-
comes bimodal when going to f = 2 GHz. To avoid bi-
modal distributions at f = 2 GHz, when biasing above
threshold, the bias has to be increased further and further
beyond the 10% value above threshold used by Shen.

V. PATTERN-EFFECTS SUPPRESSION Bias

The response of the laser to an input bit (a “‘1’’ bit or
‘0’ bit chosen randomly) depends on previous bits for
almost all values of the bias current. Moreover, for a bias
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current above threshold we find, in a convenient range of
parameters, a bimodal distribution for the turn-on time
and for the average output power per pulse (and also for
w and iy,,). Such pattern dependent effect makes very dif-
ficult to predict the behavior of the output signal. How-
ever, a special value of the bias current, slightly below
threshold, seems to make the response of the laser to an
input bit, randomly chosen, independent of previous bits.
This special value is associated with the minimum value
N,, reached by the carrier number N during the first relax-
ation oscillation, from C = C,,, which we already dis-
cussed in Section III. When the bias current is set at the
value C, = N,,v,, aftera ““1°” bit, the system evolves with
I = 0and N = N, constant, independently of #,5. There-
fore, the initial conditions for the following input pulse
are exactly known. If the following input bit is a “‘0’’,
the system remains with I = 0 and N = N,, during the full
period, giving the same initial conditions for the follow-
ing input pulse, as if the input was a ‘‘1.”’ For our param-
eter values this minimum is N,, = 0.98 N,. Clear evi
dence to substantiate this idea is given in Fig. 11, where
the distribution functions for C, = C, = 0.98 C,, are
shown. The probability distribution functions obtained
under periodic or pseudorandom word modulation are su-
perimposed. As can be seen both distributions coincide to
a very good accuracy, which clearly shows that the laser
response is almost independent of previous input bits. In
this situation pattern effects are greatly suppressed.
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VI. SUMMARY AND CONCLUSION

We have studied the dynamical behavior of a single-
mode semiconductor laser under high speed modulation
of the injected current. We have analyzed pulse statistics
under two different type of modulations: periodic modu-
lation and pseudorandom word modulation. In the former
case the statistical quantities are quite independent of the
bias current, for a bias close to threshold, and frequencies
greater than 2 GHz. For smaller frequencies, the results
approach the ones obtained for gain switching, where the
statistical quantities (specially the jitter) strongly depend
on the bias current. In the latter case the system behaves
in a very different manner. For high frequencies, timing
jitter and the dispersion in the maximum output photon
number become larger when biasing above threshold than
when biasing below threshold. This large jitter appears as
a consequence of a bimodal distribution of the turn-on
time associated with pattern dependent effects. This fact
makes difficult to predict the response of the system to the
following input pulses. We have shown that there exists
a special value for the bias current, slightly below thresh-
old, for which the response of the system is almost inde-
pendent of previous bits. This special value is associated
with the minimum value reached by N in the first relaxa-
tion oscillation. It has been analytically estimated and its
value is, for our parameter values, C, =~ 0.983 C,,. For
such a bias value pulse statistics are independent of 7,4
and the probability distribution functions of the turn-on
time and average output power are single peaked both for
the periodic and pseudorandom word modulation re-
gimes. The strong suppression of pattern effects for this
bias value is made clear by showing the coincidence of
the probability distribution functions of turn-on time and
average output power in the case of both periodic and
pseudorandom word modulation.
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