PHYSICAL REVIEW E 69, 036205 (2004

Secondary bifurcations of hexagonal patterns in a nonlinear optical system:
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Secondary bifurcations of hexagonal patterns are analyzed in a model of a single-mirror arrangement with an
alkali metal vapor as the nonlinear medium. A stability analysis of the hexagonal structures is performed
numerically. Different instabilities are predicted in dependency on the wave number of the hexagons. Some of
the instabilities take place at a finite wave number and result in the formation of structures with 12 spatial
modes. These structures are compared with those observed experimentally.
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I. INTRODUCTION results are compared with the experimental findings. Finally,
in Sec. VII we give some concluding remarks.
Stripes, rhombi, squares, and hexagons are typical peri-

odic patterns widely studied in two-dimensional dissipative Il. EXPERIMENTAL SETUP AND MODEL
systems[1]. Periodic patterns with more than six spatial
modes have been the subject of considerable theoretical i?—
terest[2—6]. They have been observed experimentally in €
parametrically excited hydrodynamical systefRaraday in-
stability [7—11]) and in nonlinear optical systems, first with
an externally imposed discrete rotational symmetiy],

The system under studgee Fig. 1is based on aingle
edback mirror arrangemenivhich is an archetypal system
for optical pattern formatiof18—20. A thin nonlinear opti-
cal medium is irradiated by a laser beam which is homoge-
neous in amplitude and phase. The transmitted beam is ret-
) . . ) oreflected into the medium by a plane high-reflectivity
and, more recently, in a system with continuous rotational ;... placed at a distanagbehind the medium. During the
symmetry[13,14. _ propagation of the light field to the mirror and back, different

In the latter system, these structures appear via a Secorc‘ﬁbints in the transverse plane are coupled by diffraction.

ary bifurcation from a primary hexagonal structure in a broad spatial instability might arise, because a fluctuation of
range of parametefd 3,14. Generic secondary bifurcations tnhe refractive index inside the medium causes a phase modu-
of spatial periodic structures have been classified rather conation of the transmitted wave. Due to diffraction, this phase
pletely in one spatial dimensidi5,16. In two-dimensional  modulation is—at least partially—converted to an amplitude
systems they have been analyzed mainly with a symmetrymodulation. Under suitable conditions this amplitude modu-
based approacf?,3,5,17. Here, we address the problem of lation can reinforce the original fluctuation of the refractive
secondary bifurcations of hexagonal patterns performing nuindex, which is assumed to be intensity dependent. Thus a
merically a stability analysis of hexagonal structures in amacroscopic modulation—a pattern—can develop in the
model of a nonlinear optical system showing such bifurcatransverse cross section of the laser beam as well as in the
tions[13,14]. transverse distribution of the refractive index within the me-

Our analysis predicts several possible instabilities of thedium [18—-20.

hexagonal patterns versus different subharmonic wave num- In the system we are going to discuss, sodium vapor in a
bers. The linear and nonlinear stages of the evolution of thaitrogen buffer gas atmosphere is used as the nonlinear me-
instabilities are investigated. The resulting patterns can bgium. The input light field is circularly polarized and its
either hexagons with a different wave number and/or a diffrequency is tuned to the vicinity of th2, line. The nonlin-
ferent orientation or superlattice patterns consisting of 12arity stems from optical pumping between Zeeman sublev-
wave vectors. The superlattice patterns are compared witels of the ground statg21,22,2Q. If the system is suitably

the ones found in the experiment. prepared, it is possible to describe the light-matter interaction
The paper is organized as follows. In Sec. Il the experi-

mental scheme and the microscopic model are introduced. In Na+N mirror R

Sec. Il a linear stability analysis of the homogeneous solu- laser z

tion is performed. In Sec. IV we find the stationary hexago- —_— X<_._._>

nal pattern solutions of the model. Then, in Sec. V, we per- beam QW

form a linear stability analysis of the hexagonal patterns and

discuss their different instabilities. In Sec. VI the theoretical > L

4+—d—r

FIG. 1. Scheme of the investigated nonlinear optical system. See
*http://www.imedea.uib.es/PhysDept. text.
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in the framework of a simple two-level model with degen- 0T T T T ;
eracy (J=1/2—J’ =1/2-transition [22,20,23. Then the de- 6.0 U 3
cisive dynamical variable is the orientationwhich is the E ]
normalized population difference between the two Zeeman ~ 50F E
sublevels of the ground stdt22,20,23. Thez axis is chosen 'n 40F 3
to be parallel to the direction of the wave vector of the input ) £ 3
light field. x, y denote the coordinates transverse to the di- < 3.0¢ E
rection of propagation. Then a longitudinally averaged orien- @ 20F 3
tation ¢ is introduced by definingsee also Ref[24]) 2 3
1.0F =
1 (L Obiiiiis, [ Levivinys Levivenyys E
¢(X,y,t)=[f w(x,y,zt)dz. (o 10 20 30 40 50
0 k (mm™)
Here L denotes the length of the medium zrdirection. In FIG. 2. The solid lines indicate the values of the puRfpfor

the following, we will discuss a modified system in which which a periodic perturbation of wave numbebecomes unstable.
there is an additional polarization changing element—arhe dashed line indicates the wave number with maximum growth
quarter-wave plate—in the feedback loop. This system has t@te. Herey=1.5s", D=0.0003563 s ™*, La;=2.595, R
rather low threshol@23,25 and displays interesting second- =0.915, d/ky=8.258< 10° m?, and A=4.0. For these values of
ary bifurcations of hexagor{£6,13,14. the parameters the instability threshold ig4t=1.31x 10° s~ ! and
The dynamics ofp is governed by the partial differential the critical wave number ik,=22.8 mn1*.
equation[22,20,23
A linear stability analysis of the homogeneous solution
with respect to spatially periodic perturbations yields the dis-

1
=—(y—DV?2 S ersion relation
dup=—(y=DV?) ot 5 - p
X[(1— e 2taol=4))pO_ (1 — g~2Lao(l+4))pOR A(K) = — y—Dk?— e~ 2L@o(1~ ¢ p0
% |e—i(d/kO)VZG—Lao(l—iK)(1—¢)|2]_ 2) _ POR: (1_e—2La0(l+ ¢0))e—2La0(1—¢0)

y models relaxation by collisions ar2iV? gives the thermal d |\ — [d
motion of the atomsY? is the Laplacian in transverse space x| cog ~k"|+Asin -k
and D the diffusion constamt The parameter, param- 0 0

etrizes the optical depth of the medium, it is half the smallyypere ) (k) is the growth rate of a periodic perturbation of
signal absorption coefficien denotes the detuning of the wave numbek. In Fig. 2 we display the marginal stability
incident laser beam with respect to tBg resonance. It is curve[\(k)=0].
normalized to the linewidth{half width at half maximum The homogeneous solution never becomes unstable
and is positive, if the laser frequency is higher than the resoagainst homogeneous perturbatioks=Q). In fact, for large
nance frequencyk,=2/589.6 nm is the wave number of values of the pump the eigenvaldgk=0)x—P° An im-
the input light field in vacuum an® the reflectivity of the  portant point to notice is that the marginal stability curve has
mirror. The pump raté®® is proportional to the intensity of 3 vertical asymptote fok,=1.9x10* m~* [27], and there-
the input light field. It is also the main bifurcation parameter.fore perturbations of the homogeneous solution with a wave
The two exponentials in the last term of E@) describe  number smaller thak, are never unstable. For pump inten-
diffraction and the action of the medium on phase and amsities above but close to threshold the system develops sta-
plitude of the light field. Details on the system and on thetionary hexagonal patterdg5.
derivation of Eq.(2) can be found in Ref§22,20,23,2%

In this paper, only the case of a plane wave input field is
discussed. We remark that for a description of a spatially

—e4|—0‘0] , (4)

IV. STATIONARY HEXAGONAL PATTERNS

varying input field Eq.2) needs to be modified slightly. Stationary hexagonal solutions of the form
N—-1
ll. LINEAR STABILITY ANALYSIS OF THE > ik0.x
X)= en® 5
HOMOGENEOUS SOLUTION (%) ngo el ©

The steady state plane wave solutigg of Eq. (2) is _
implicitly give)r/1 by P % a2 where kﬂ are the wave v?ctors of the pattern including the
homogeneous componehg, ¢,, are complex coefficients,
2L — POr(1— e 2Lao(1- o) and N is the number of Fourier modes, can be found by

7L aodo A ) solving the stationary formd¢,=0) of Eq. (2). A set of

—R(1—e 2ttt do)ye=2Lag(1=¢0)] (3)  coupled nonlinear equations for the amplitudes of the Fourier
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4.0F gons is transcritical but the bifurcating branches are unstable
until a saddle-node bifurcation point is encountered on the
backwardly bifurcating branchl,28,29. Hexagons with a
wave number much smaller than the critical one have a very
L U ] large subcritical region. However, the size of the subcritical
q~k/ V3 :-. ) . region becomes progressively smaller for hexagons with
' ] ] larger wave numbers. For hexagons with a wave number

-

20F somehow larger thalk., the dashed line in Fig.(8) ap-

. : proaches asymptotically the marginal stability curve of the
1-5:‘ : 2 1 homogeneous solutiofsolid line), indicating that the qua-
T dratic terms in the normal form are becoming progressively

24 26 small for large wave numbers. The region of existence of
stationary hexagons also extends to the left of the vertical
asymptotek, of the marginal stability curvéFig. 3(a), see
part at low wave numbetsThis implies the existence of
stationary hexagons with wave numbers that never become
linearly unstable from the homogeneous solution. However,
as we will see in the following section, both kinds of
hexagons—the ones with very large wave numbers and the

i o ones with wave numbers below the vertical asymptdte (
EIG. 3. Marginal stgblllty diagram of th_e hexagonal patterns.<ka)_are always unstable.
Stationary hexagons with a wave numikeexist above the lowest
dashed line. The solid line is the first instability region shown in
Fig. 2 and the vertical dashed line on the left is the vertical asymp- V. LINEAR STABILITY ANALYSIS OF STATIONARY

totek, . The dark gray area indicates the region in ek diagram HEXAGONAL PATTERNS
where the stationary hexagonal patterns are stdhisse ballooh In this section, following Ref{30], we perform the linear

The other discontinuous lines indicate the threshold for diﬁeren%:ab”ity analysis of the stationary hexagonal solutions found

instabilities of the hexagonal solutions. The light gray areas in pan the preceding section in order to determine their stability
(a) indicate the regions where hexagonal patterns are unstab . :
against long-wavelength perturbatiof@ec. V 4. In the panelb), &s a function of the input power and the fundamental wave

the dark gray area is the stable region as in pé&ekhile the gray ?umberk (:f tt_he (ps?tzﬁm'f I_I;ne§1r|2|ng Ect(_2) afrou?hd t?le stta—
and light gray areas correspond to the-k/4 (Sec. VD andq t!onarg/ S‘l‘: 'Sn 7t efo wa.ng (;?u_a |c(;n or the fuctua-
~k//3 (Sec. V B instability regions. In(c), the dark gray area is 1O"S $(X,t) = ¢(X,1) — py(X) is obtaine

also the stable region, and the instability regiognsk/2 (Sec. V B — (n_ 2 _ pOra—2Lag(1-¢p)

andq=k/2 (Sec. V Q are indicated in gray and light gray. ho¢ (y=DVHop—Ple

_ _ _ _ - + Re—ZLa0(1+¢h)|e—i(d/ko)vze—Lao(l—iZ)(l—¢h)|2] 5S¢
componentsp,, is obtained. Sincep, is real, ¢,= ¢y, if kp
= —E%. We consider the homogeneous component, the six
fundamental wave vectors, and 84 harmonic modes in Fou-
rier space. This amounts to a totallf=91 modes and cov-
ers a range of wave numbers up to five times the wave num-
ber of the fundamental modes. The higher harmonics have to
be considered since the bifurcation to hexagons is generally
subcritical and, hence, higher harmonics have finite ampli- . . _ .
tudes even at threshold. Sgtarting from a suitably chosen IiDni\f;:h'Ch catr;' be ertt.en a'§t5¢'— L(I¢h) o9, WhereL(fj;k,;) IS
tial condition, a Newton-Raphson method is used to find soE © Jaco 1an matrix. Sindeis a linear oper'ator with peri-
lutions of the set of nonlinear equations. With this methodOd'.C coefficients, a general bounded solution can be found
. . L which has a Floquet foril5]:

we can look for stationary hexagonal solutions with different
fundamental wave numbeks oo

The lowest dashed line in Fig(& indicates the minimum 5¢(>?,t)=j e'9%5¢(X,q,t)dq, (7)
value of the pump for which stationary hexagonal pattern o
solutions exist around the first instability regi¢solid line).
It corresponds to a saddle-node bifurcation where an eige
value of the hexagonal pattern branch becomes zero as
result of the collision with the unstable branch coming from N-1
th.e homggeneous solution: _Typically, a hexagonal branch SH(X,G,t)= > 5¢n(q,t)e”z2'i. (®)
with a givenk starts subcritically from the homogeneous n=0
solution at the pump value whekdk) =0 (solid line). Such _ 5
a behavior is consistent with the general theory of hexagoi®ince 5¢ is real, §¢(X,q,t) = 5¢* (X,—q,t). From Eqs.(6)
formation: the bifurcation of the homogeneous state to hexaand (8) we obtain a set of coupled linear equations for the

P°R —
—T[(1+iA)(1—e‘2L“0(1+‘f’h))

X(e—i(d/kO)VZe—Lao(l—iZ)(l— </>h))ei(d/k0)V2

><(e_|_ao(1+iK)(1—r/)h)gqs)+c.c.], (6)

ryyhereé}&(i,cj,t) is a function with the same spatial period-
gty as the stationary patter, . Hence, it can be written as
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coefficientsd¢,(q,t). The important point is that perturba- -~ Lo ' ' '
tions with different vectorgj are uncoupled. To know the ,: 0
stability of the solution against any possible perturbation it is 2 ol
sufficient to consider only vectoginside the first Brillouin § -
zone of the hexagonal lattice defined by the wave ve&&rs ] 2Oor
of the pattern. Any perturbation with a vectgt outside the = —30r
first Brillouin zone is equivalent to another with a vectpr © -4.0
=g’ +Kk® inside, wherek? is one of the wave vectors of the 0 ldo qyziﬁlm?f)o 40
hexagonal solution. In this way one finds a setN\oé&igen- *
values and eigenvectors for each vedjoWe order the ei-
genvalues\;(§) according to the value of their real part o107 ' ' T
RN (G)]>Rd\i;1(d)]. When a hexagonal pattern be- ; 0
comes unstable against perturbations with a vegtowave = qol
vectors at that precise distance from the wave vectors of th = -
pattern, corresponding to the Fourier components of the un :-.,' -2.01
stable eigenmode, are expected to grow linearly. < -3.0
The result of the linear stability analysis of hexagonal E —20l
patterns with different moduluk of the fundamental wave 0 1.0 20 30 4.0
vectors is shown in Fig. 3. The dark shadowed area indicate Qe gy (mm™’)
the region of stability of the hexagonal solutiofiusse bal-  (p)
loon). The different unstable regions are labeled with the - i
modulusq of the perturbation vectagj that is unstable. The Wt
place where two instability lines cross corresponds to v 9
codimension-two bifurcation point. The three most important i -1.0
instabilities are those corresponding to the three regions la & _20l
beled agy=k/2, q=k/4, andq~k/2. These are the instabili- g
ties that hexagons with wave numbers close to the critical & als 7
one will encounter by increasing the pump. They are ana © -4.0 s - L

0 1.0 2.0 3.0 4.0

lyzed in the following sections. e g, (mm™)

()

A. Long-wavelength instability

FIG. 4. Left: largest real part of the eigenvalueg Rgay,d,) |

In the regions of Fig. 3 labeled ap-0 the hexagonal r?é a stationary hexagonal pattern of fundamental wave nurkber
patterns are unstable against long-wavelength perturbatio 15)3.5 mm *. As shown in Fig. &), for this value ofk the hex-

as illustrated in Fig. 4. The largest real part of the eigenval- : 0
ues is shown for three different values of the input power:igf TS'X 5’35“‘;‘[? Efgr%m; Sp L:gsfciltir:ggfiségg fgsesf)fn?efst
below, close to, and above threshéége, e.g., Ref$31-34 ' : '

¢ ; K h N it th X10° s71, and 1.3%10° s 1). In each figure the gray scale is
or previous work on phase instabilities of hexagorss a taken between the minimuiiblack) and maximum(white) values

result of the instability, wave vectors very closg to those of Re[Ao(Cly.0y)]. The center of the figures correspondsite 0,

the hexagonal pattern are expected to grow linearly. In aynerex (0,0)=0. In the first two figures the center represents the
infinite system and close to threshold, an unstable hexagongaximum value. In the last figure the center has a gray color be-
pattern changes its wave number and orientation continlcause it is surrounded by the positive eigenvalues corresponding to
ously until it reaches the stable region. In finite size systemshe long-wavelength unstable modes. Right: transverse cut of
the discretization in Fourier space imposes a lower limit toRg \y(ay,q,)] in the g, (solid line) andg, direction (dotted ling.

the change of modulus and orientation of the wave vectors of

a hexagonal pattern. The growth of the Fourier modes of the Far from the threshold of the long-wavelength instability
grid closest to those of the unstable hexagonal pattern leadke dispersion relationy(qg) has a maximum at a finite wave
to a discrete change in the wave number and orientation afumber(Fig. 4, bottom. Therefore, the wave vectors with
the pattern towards the stable region. Figure 5 shows ththis maximum growth rate are more likely to dominate the
time evolution of an unstable stationary hexagonal pattersystem, and a finite change in the wave number and orienta-
with k=23.5 mm * andP®=1.35x10° s ! in a rather large  tion of an unstable hexagonal pattern may occur even in an
system. In the first stages of the time evolution wave vectorinfinite system.

very close to those of the pattern grow linearly in time. As  The narrow long-wavelength instability region on the left
soon as these wave vectors get a large amplitude they deforai Fig. 3 can only be observed by considering large systems
the pattern in the real space with a long-wavelength modusince in that region only perturbations with a fairly long
lation (second and third snapshptnd, finally, the original wavelength have positive growth rate. For sufficiently small
pattern is replaced by another one with a slightly smallesystems [L<6 mm) this instability region is not present and
wave number(fourth snapshotinside the stable regionk( hexagons with small wave numbers are stable lnéhters
=22.2 mnm'Y). the region labeled ag~k//3.
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x x = X = = > 4 |
Talalalalalalels T
B_ B _ B _ S _0_N_0"t_»"_
S_0_S_N_8_08_»"_»
L0 o e el el el i
S_0_S_S_N8_08_0"_» Co
................'
OO0 .
L0 el e el el el e (I - 4 ~ 20—
S_0_0_S_0_08_0"_» ' i e
L el | w7 ]
shetalalalaltalel - 2 ;
AT aTaTa a a"as - — —20r1 .
(e etetel 340 -
. . . < -6.0 4
::::z.:.z o : —a.oo 30 60 9.0 120
w . i .0 12
pseteltels » i G ()
aoes "
e . > FIG. 6. The same as in Fig. 4 for a hexagonal pattern With
.“.....‘ =20.5 mm ! in the regiong~k/+/3. For this value ok, as shown
‘aTeaTeaTe” in Fig. 3, the hexagonal pattern is unstable for any value of the
AT P _ToTag_w_" pumpP?. Here we také?®=1.5x 10° s 1. The white dashed hexa-
:2 .....= .. .:‘ gon indicates the limits of the first Brillouin zone. Note that the
] .... .‘.‘ K largest eigenvalues are located in the neighborhood of the vertex of
'.. . ..‘ . .‘ ¢ - the first Brillouin zone. The upper right panel shows an enlargement
" . . Tows an e
' ' of the area in the left panel encircled by a solid white line.
] . - '
» with § exactly at the vertices of the first Brillouin zone but

those located in their surroundings as shown in Fig. 6. If an
unstable stationary hexagonal pattern is used as the initial
condition in numerical simulations, the growth of wave vec-
tors at a distance of-k/\/3 from the wave vectors of the
pattern (forming an angle of about 30° with thesis ob-
served in the linear stages of the evolution of the instability
(Fig. 7, second snapshofs soon as these modes get a large
¢ ! amplitude, nonlinear dynamics come into play. For low val-
ues of the pump, as it is the case in Fig. 7, a hexagonal
pattern with the wave number of the linearly unstable modes
0 TaT e VaTe. replaces the original pattelthird and fourth snapshptThe
FIG. 5. Time evolution of the orientatio(%,t) (left) and its ~Wave number of the new hexagonal pattern lies inside the
Fourier spectra(right) for hexagons unstable against long- Stable region. At difference with the long-wavelength insta-
wavelength perturbations. In the left panels dawkite) color indi-  bility, in this case the wave vectors of the hexagons do not
cates low(large values of the orientation. In the right panels, the change continuously, but there is a discrete change even in
color table is inverted and the white color denotes the backgrounthe case of an infinite system. In particular, in addition to the
level whereas the black color denotes high amplitude. The dc confinite change in the modulus, the hexagons rotate almost 30°.
ponent is suppressed. The wave number of the initial unstable hex&or larger values of the pump, the nonlinear dynamics does
gons isk=23.5 mm ! andP°=1.35x 10° s™ 1. The time increases not lead to the selection of a hexagonal pattern but a more
from top to bottom. Note the growth of Fourier modes close to thecomplex nonstationary state with many excited wave vec-
fundamental ones and the final state with a smaller wave numbebrs. These structures are similar to those obtained for the
k’=22.2 mm%. This numerical simulation has been performed onsame values of the pump in calculations starting from ran-
a 256x256 rectangular grid with step widthk,=k/16 andAk, dom initial conditions.
=/3Ak,. In the following, numerical simulations have been per-
formed on a 128128 rectangular grid withAk,=k/8 and Ak, C. q=Kk/2 instability

=/3AK,.

In the regionq=k/2 [light gray area in Fig. @)] the
: . perturbations with vector§ of modulusk/2 located at the
B. g~/ 3 instabilty border of the first Brillouin zone in the direction of the
In this region[light gray area in Fig. ®)] perturbations wavevectors of the pattern have a positive growth (&tg.
with g close to the vertices of the first Brillouin zone have a8). Figure 9 shows a simulation where the pump has been
positive linear growth rate as shown in Fig. 6. These verticesncreased beyond the instability threshold. In the first stages
are located at a distané#+/3 in the direction forming a 30° of the time evolution(second and third snapshptsubhar-
angle with the fundamental wave vectors. Strictly speakingnonic wave vectors with half the wave number of the fun-
the perturbations with positive linear growth are not thosedamental modes can be seen growing linearly as predicted by
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=, L . |

& -15.0 . s .
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9y qy (mm™)
' (c)

FIG. 8. The same as in Fig. 4 for a stationary hexagonal pattern

.._. . . s e . with wave numberk=22.0 mm* crossing the instability line of
the regionq=k/2 located aiP,=3.25< 10° s~ * (from top to bot-

FIG. 7. The same as in Fig. 5 for a hexagonal pattern inside the, . p0_3 0% 105 51 3.3x10° 5! and 3.6 10° s Y. In the
B he san 9. 5 0! o 2= Mtom pO=3. st and 3. _
a~k/ 3 region «=205mn*, PP=1.5x10°s™). Note the '"1 first picture the white dashed line indicates the limits of the first
ear growth of the Fourier modes at a distanck/ 3 in the ~30 Brillouin zone. Note that the largest eigenvalues are located at the

direction with respect to the fundamental wave vectors of the solupqrger of the first Brillouin zone in the direction of the fundamental
tion in the second snapshot. The final hexagonal pattern has a waygyye vectors of the hexagonal pattern.

numberk’ =22.3 mni ! which is within the stable region.

the stability analysis. In this case the bifurcation is supercritifundamental wave vectors. The second hexagonal set has
cal since close to the critical point the amplitude of the lin-modulusk= \3k/2 and it forms a 30° angle with the wave
early unstable modes remain small due to nonlinear saturaectors of the original patterFig. 11). The resulting struc-
tion. As a result of this bifurcation a stationary superlattice isture is a superlattice with a periodicity length twice that of
observed. Its periodicity length is two times the one of thethe initial hexagonal pattern. The wave-vector configuration
underlying primary hexagongourth snapshot in Fig.)9 is the same as in Fig. 9 but the relative amplitudes and
phases are obviously different.
D. g=k/4 instability

In the regionq=k/4 [gray area in Fig. )] perturbations E. q~k/2 instability

with g=k/4 in the direction of the fundamental wave vectors ~ Finally, in theq~k/2 region[gray area in Fig. )], the

of the pattern have positive growth ra¢Eig. 10. These stationary hexagonal patterns are unstable against perturba-
wave vectors can be seen growing in the first stages of théons with g close to the limits of the first Brillouin zone in
time evolution in a numerical simulation after the pump hasthe direction of the fundamental wave vectors. However, at
been increased above the instability lifég. 11). This simu-  difference with the case discussed in Sec. V B, the perturba-
lation shows, however, that the transition is subcritical, andions that first become unstable are not those withk/2 but

the nonlinear dynamics leads to a spatial structure with 12hose in their vicinity(Fig. 12). In the second row of Fig. 12
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FIG. 9. The same as in Fig. 5 for a hexagonal pattern inside th . ’ ’ 0 25 50 7.5 10.0
q=k/2 region k=22.0 mm!, P°=3.5x10° s 1). Note the lin- e gy (mm™")

ear growth and nonlinear saturation of subharmonics exactly at the(©)
half of the wave vectors of the original hexagonal pattern and the

final superlattice. FIG. 10. The same as in Fig. 4 for a stationary hexagonal pattern

with wave numberk=22.8 mm ! crossing theq=k/4 instability
_ threshold located aPp,=2.75<10° s™* (from top to bottomP®
the growth rate of perturbations with close tok%2 (n  =25x10° s %, 2.8<10° 5%, and 3.0¢10° s 1).

=1,6) is already positive while the perturbations wijh

209 (e . . .
=kn/2 (n=1,6), exactly half of a fundamental wave vector, nonlinear dynamics leads, in general, to a complex, nonsta-
have negative growth rate as can be seen in the transverggnary pattern with many excited Fourier components,

cut. In a numerical simulation Fourier modes at a distancgnich however. resembles on average the one depicted in
q~k/2 in the direction of the fundamental wave vectors arejhe |ast row of Fig. 13.

observed to grow, if the pump parameter is increased beyond
the instability line(Fig. 13. In contrast to the casg=k/2,

the transition is subcritical and drives the system away from
the hexagonal pattern solution. In a small system, as it is the The analysis described above establishes that hexagonal
case in Fig. 13, the system ends up, after a long excursion ipatterns are stable only in a closed region of Bfek dia-
phase space, in a stationary pattern with 12 modes and redram. It is the “hexagonal” analog of the “Busse balloon”
angular symmetrylast snapshot in Fig. 23Note that two of ~ for stripes [35,1]. At the sides, it is limited by long-

the Fourier modegthe ones over the vertical axibave the ~wavelength instabilities and the finite wavelength k/+/3
largest amplitude while the two perpendicular modes have andq~k/2 instability, respectively. The long-wavelength in-
small intensity. All the other eight modes have the same instability results in the formation of a hexagonal pattern with
tensity which is in between the values of the previous onesa different stable wave number. The same is true for the
This pattern, due to its rectangular symmetry in Fourier~k/+/3 instability for low pump values.

space, is not directly connected with the unstable manifold of The upper boundary of the stability balloon is given by
the original hexagonal branch. It probably belongs to a sepdinite wavelength instabilities which result in the formation
rate branch emerging from the homogeneous solution. Howsf more complex patterns consisting of 12 wave vectoes
ever, for some parameter range it seems to be an importagtonsq=k/4, q=k/2 andg~k/2). Only theq=k/2 instabil-
attractor of the dynamics. As discussed below, this pattern igy is supercritical. Hence the coexistence of hexagons and
also often observed in the experiment. In larger systems, theore complex patterns can be expected.

F. Discussion of the theoretical results
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. . . . . . D FIG. 12. The same as in Fig. 4 for a hexagonal pattern with
- . — . AN wave numberk=23.7 mm ! crossing the instability line R®
' . - . TR =1.65x<10° s™1) of regiong~k/2. From top to bottonP°=1.6
™ "Y' X10° s 7%, 2.0x10° s %, and 2.5¢<10° s 1. The dot-dashed line

-
. . ' . . . corresponds to the transverse cut of Rg€d,,q,=1.37)] as indi-

cated by the arrow on the left.

FIG. 11. The same as in Fig. 5 for a hexagonal pattern inside thgeveral domains of patterns with 12 wave vectors of different

= i = 71 O: 71 1 . . . . . .
q—k/4 reglon q(. 22.8 mm -, P*=3.0x 10° s ). Note the final kind and/or orientation. In simulations performed for testing
nonlinear selection of Fourier modes different from those that grow

linearly. The final state is a pattern formed by 12 wave vectors. purpose¢500 000 iterations or 50 ma stationary state was
not reached. However, the form of the patterns does not

change qualitatively. At the present stage of the investiga-

In order to get some insight into the possibility of multi- tions it is not clear whether this is due to long lasting tran-
stability between different patterns, additional simulationssients or whether there is an intrinsic time dependence. Typi-
were performed on a square grid with periodic boundarycally, perfect stationary patterns are found, if a suitable seed
conditions. Noise was added in order to shorten the tranis used. These results demonstrate that hexagons and more
sients. The simulations confirm that the hexagonal pattereomplex pattern coexist over a rather large range of pump
formed spontaneously at threshold does not destabilize for walues.
pump rate lower tha®®=3.4x 10° s~ 1, if the pump rate is Finally, we comment on the relationship of the superlat-
increased. If the pump rate is decreased again, patterns witlte patterns obtained here to the ones observed in other pat-
12 Fourier components persist down to a level of at®Ut tern forming systems. Superlattices in a general sense are
~1.7x10° s 1, i.e., 30% above the primary threshold. Start- patterns with long-range periodicity. This implies that the
ing from noisy initial conditions hexagons form up to a Fourier components lie on a grid, whose meshes may be
pump rate of typicallyP®=1.8x10° s~ and patterns with much finer than the length of the wave vectors. In the sim-
12 Fourier components form above this value. This transitiorplest case allN fundamental wave vectors have equal
level amounts to a pumping level of 38% above threshold. Ifengths, but the rotational symmetry M-fold only (M
most cases, if the size of the system is large enough, th&N). In the field of spontaneous pattern formation in dissi-
resulting structures are somehow irregular and/or consist gfative systems this applied to the superlattices discussed by
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. ' : . ' .  | FIG. 14. Experimentall rved n nd far fiel
' .‘ . - G perimentally observed ne@,0 and far field(b,d)
. |

- - intensity distributions of the transmitted beam. Parameters: nitrogen
‘ - . ™ buffer gas pressurepy,=200 hPa, sodium cell temperatui®

' ' ‘ . =318 °C, and distance between the sodium cell and the feedback

' | mirror, d=88 mm; (&) input powerP;,=113 mW, detuning from

. ’. . . ‘ . S the sodiumb, line A=3.6 GHz;(b) P;,=200 mW, A=2.5 GHz.

' - ‘ ' '
.‘ - . . -y numbers were observed by other groups in the Faraday in-

TR Ty ™ stability [8—10,36.37

‘ " . . .‘ | In the superlattice patterns discussed here, the wave num-
. . . - bers of the two constitutive triads differ, but only slightly,
. and they are certainly not harmonics of each other. Hence,
. - - ,. ' . these patterns differ from both superlattice patterns, type |
. — . and type Il, and constitute a new tygésuperlattice type

b . - . . ' - ' lI” ). We conjecture that their formation is favored by the

' ' fact that the system is operated quite far from threshold so

. ' .: . ' ' that the region of linear instability has a finite width.
. . . " It should be mentioned that patterns with a wave-vector
configuration like that in Figs. 9 and 11, i.e., two hexagonal

' . .- . ‘ . ‘ triads rotated by 30° and having wave numbers different by

2/\/3, are predicted to be among the ones emerging from

FIG. 13. The same as in Fig. 5 for a hexagonal pattern inside thégen_erlc" l?l_fl_Jrcatlons of hexagon§17]. In the Iatter_ _vvork, )
q~k/2 region k=23.7 mnT%, P°=2.5x 10° s !). Note the linear the instabilities of hexagonal patterns are classified using
growth of the wave vectors predicted by the stability analysis. Theé-loquet theory and a group theoretical approach. We con-
final stationary state with 12 modes and rectangular symmetry i$ider this coincidence as encouraging for future analytical
reached after a long excursion in phase space. studies of the mechanisms of these instabilities. The “quasi-
subharmonic” instabilities(i.e., the ones ag~k/2 and q
~k/+/3) are not captured by the analysis in Réf7], since
tion of superlattices in the Faraday instapility by K.udrollli tsr:ti gt? gff ié(f. F’)ltlﬁz fnZIySs,tirs,o?sgrr:sst(r)irc]?endC?o ?r?g Imomi%mapélfu:gg
etal.[7] one of the patterns belongs to this type. It is built 5614 tongues belonging to the subharmonic resonances
from two hexagonal triads having the same wave numbe[38]_
and being rotated by an angle of about 22° with respect to
each other. It was termed “superlattice type I.” In the same
paper, the formation of a pattern termed “superlattice type
II” was reported. This pattern consists of two hexagonal tri-  As discussed in Ref[25], negative hexagons develop
ads which are rotated by an angle of 30° with respect to eacfpontaneously from the unstructured state, if some threshold
other. The two triads have very different wave numlieasio  of input power is crossed. This is in agreement with the
V3). This ratio indicates that the inner set of wave vectorsanalysis of Sec. IV and previous numeri¢a5,39 and ana-
that defines the periodicity length might be interpreted adytical studies[39]. Above a secondary threshold, patterns
subharmonics of the driven fundamental wave vectors. Suteonsisting of 12 fundamental Fourier modes emerge
sequently, several different realizations of superlattice patf26,13,14. Some examples are shown in Figs. 14 and 15.
terns containing very different—often harmonic—wave The transition occurs about 30—40 % above threshold. This

Dionneet al. [2,3]. In the pioneering paper on the observa-

VI. COMPARISON TO EXPERIMENT
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b) which has a monotonous but highly nonlinear dependence on
¢(X,y). The far field pattern is obtained from

_ = 2
¥y |(|2)~fe-aoL<1—iA>[1—¢<X’>1eik'X‘d>*< . (10

In the parameter range considered before in the simula-
tions and far enough above the secondary threshold, there is
also in the experiment a region with multistability between
different patterns consisting of twelve wave vect@se Fig.

3 of Ref.[14]). Apart from quasipatterns with a 12-fold ro-
tational symmetry(Figs. 3a,b of Ref.[14], see also Refs.

: [26,20,13) and patterns in which neither in Fourier space
bk e nor in real space a particular order is appaféigs. 3c,d) of

5 Ref. [14]), there are two dominant types of patterns which
have a Fourier power spectrum with a sixf¢kigs. 14a,b]

or a fourfold rotational symmetrffFigs. 15a,b].

The latter pattern strongly resembles the result of the nu-
erical simulation depicted in Fig. 13. It also consists of
four rows with three wave vectors. The angle between adja-
cent rows is 90°. The experimentally observed and the nu-
merically simulated patterns differ in the ratio of the wave

FIG. 15. Experimentally observed ne@,c and far field(b,d)
intensity distributions of the transmitted beam. Parameters as in Fi%
14(a), but in (b) P;,,=188 mW.

power level is considerably lower than the limit at which the
hexagons should'become linearly ””.Sta@b?‘!t 2'.6 times  humbers in the orthogonal directions. While the ratio is 1
thre_shold, Fig. B i.e., the secondary instabilities in the ex- within an accuracy of less than 2% in Figs(a%), the wave

periment take place at lower values of the pump power tha, hers differ by more than 10% in the numerical simula-
in the theoretical analysis. This might have different reasons;on (Fig. 13, i.e., the pattern is squeezed in comparison to

First, the power level for the secondary instabilities in thethe form observed experimentally. However, also in the ex-

experiment approximately matches the power level at Whic%eriment similar squeezed patterns occur for higher input

multistability between hexagons and secondary patterns a jower as depicted in Figs. (&d). In this pattern the four-

fold symmetry is clearly broken and the discussed ratio is
; o . . : > o 063. Therefore it resembles even more closely the pattern
noise—inevitably present in the experiment—might induce,yained numerically in Fig. 13. It is also apparent in the

transitions to a coexistent state before the point of lineag;, iations as well as in the experiments that the wave vec-
instability is reached. Second, due to the Gaussian profile Q4.5 ot the ends of the rows have approximately the same
the input profile the boundary conditions differ in the eXperi'ampIitude, whereas the pairs of wave vectors in the center of

ment and in theory. E_specially the fact.that the bifurcqtiont e rows have a lower or a higher amplitude than the former
parameter has a spatial dependence might play a role in a hes

\{ancing (or delaying sgcondgry .instabilities. These ques- 1 numerically obtained pattern in Fig. 11 has the same
tions need further consideration in future work. E\?ave—vector configuration as the experimentally observed

pears in the simulationgsee the preceding sectjoriThis

Patterns consisting of 12 Fourier modes are also obtaine attern in Figs. 16a,b), i.e., it consists of two hexagonal

'n.lfhe S|mulat|<r)]ns as dlscusts)ed abé)v_e. Ihn the foII_owmg, W&riads of slightly different wave numbers which are rotated
will compare the patterns observed in the experiment with, 390 The triad with the larger wave number has a lower
the ones obtained in the simulations. However, one shoul

K : ind that th in aim of the th ical | . mplitude than the one with the smaller wave number. Nev-
eep in mind that the main aim of the theoretical investiga-gyhq|ess, differences in the near field patterns hint to the fact

tions was to describe the onset of the instability of the hexafhat the phases of the Fourier peaks are not the same. In
gons and not a survey and classification of all possiblé, qer 15 clarify the deviation three generated patterns with

asymptotic states. Th? preliminary_ simulations indicat_e &he same Fourier spectrum but different phase distributions
high level of multistability between different patterns, which are shown in Fig. 16

make a determination of the complete solution space a for- If all phases arer as in Fig. 16a) the near field obeys a

midable task which has to be postponed to forthcomingj ¢, rotational symmetry. The depicted structure re-

work. . . L . sembles neither the experimental nor the numerical result. In
In the experiment, the orientation is not directly acces-ha case of Fig. 16), in which the phases are/3 for all

sible. The observed quantities are the intensity distribution o ourier modes, the pattern has a threefold rotational symme-
the transmitted field at the exit facet of the meditmear . "\t is pyilt by minima that constitute triangles. This struc-
field pattern” and the Fourier power spectrum of the trans-y ire is also obtained as the asymptotic pattern in Fig. 11.
mitted field (“far field pattern”). The near field pattern can The pattern observed in the experiméfigs. 14a,b]

be calculated by resembles the structure depicted in Fig(cl6For this struc-
ture one phase in each triad 1§ all others are zero. The
I(X,y)~e 2@t =6yl (9)  resulting pattern has a twofold rotational symmetry in real
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- - » i —— found to saturate to finite amplitude and the new state re-

)'b.".".‘l b)? oy Ty %) ...: ...': sembles the unstable deformation of the original pattern.
pdord h®ga s T This is the case only for thg= k/2 instability which result in
3T £ 7 LA 1 i the formation of a pattern with 12 wave vectors. In the other
L I “‘ e o R E R cases, the system undergoes a long excursion in the phase
B e _esass wamee space until it reaches a new attractor. In some cases it is a

FIG. 16. Hexagonal superlattices generated by the addition of€xagonal pattern with a different—stable—wave number or
12 Fourier modes with the same wave vectors and different phase& Periodic patterrisuperlatticeswith 12 wave vectors.

(a) all phases arer, (b) all phases arer/3, and(c) one phase in each Since most of the important instabilities are subcritical,.
triad is 7, all others are zero. The wave vectors are given by twohexagons and superlattice patterns might coexist and there is

hexagonal triads with different wave numbers that are mutually af!SO coexistence between different superlattice patterns. Due
an angle of 307see, e.g., Fig. 31 The amplitude of the triad with to the high level of multistability present it is very difficult to

the smaller wave number is twice the amplitude of the triad with theg,e,t an overview On,a”_ types O_f pOSSIle behavior and trari—
larger wave number. sition scenarios. This is especially true in a large system in

which competition between several coexistent attractors

space. The basic structure is a squeezed hexagon of whicfﬂight Ie"’.‘d to long-lasting transients 6!".“?' nonstationary states.
the center is built by an elongated minimum. This basic Experimentally, secondary instabilities of the hexagons

structure is typical for experimentally observed near fieldagainSt more complex patterns consisting of 12 wave vectors
intensity distributions. However, for lower values of the de-Were observed. There is a correspondence between some of

tuning the phase distribution of the observed patterns is lede experimentally observed superlattice patterns and some
clear. In this parameter region, some of the experimentall fthe patterns obtained r_iiimerically. In the ex_penmental Sys-
observed patterri&igs. 14c.d)] éontain groups of triangular €M noise induces transitions between the different coexist-
arrangements of three m7inima around a smaller centrd['9 Mmultistable patterns. Also th.e Gaussian profile of the
minima [Figs. 14c,d)]. These patterns bear a quite close re-PUMP beam may affect the stability of some of the patters.
semblance to the numerically obtained one depicted in Fig.o‘ thorough analysis of the asymptotic states is beyond the

11. We conclude that the phase selection within the hexago"‘icope of the present paper and needs considerable further

nal superstructure is weak. efforts. . . - o
P The present analysis established the limits for the stability

of hexagons and identified the modes relevant for the desta-
Vil. CONCLUSIONS bilization. Future work will be directed to a detailed investi-

We have analyzed in detail the secondary bifurcations Og.ation of the nonlinear .evolution of the secondary instabili-
hexagonal patterns in a microscopic model for an alkalfieS and the asymptotic states, and needs to address the
metal vapor in a single-mirror arrangement. The stabilityposs'ble mfluenceT of further branches emerging from the ho-
analysis of the stationary hexagonal patterns predicts differ"0geneous solutions.
ent instabilities depending on their fundamental wave num-
ber. Hexagons with wave numbers much lower or much
larger than the critical one undergo long-wavelength insta- The authors acknowledge financial support from the Eu-
bilities or instabilities atj~k/+/3 or q~k/2, while hexago- ropean Science Foundati0RHASE network D.G. and P.C.
nal patterns with a wave number close to the critical one aracknowledge financial support from MCyBpain, projects
stable for moderate values of the pump and undergo finité\cciones Integrada&rant Nos. HA98-29, PB97-0141-C02-
wavelength instabilities(regions q=k/4, q=k/2, and q 02, BFM2001-0341-C02-01, and BFM2000-1108.G.W.,
~k/2) for large values of the pump. After the instability has T.A. and W.L. acknowledge financial support by the Deut-
produced a growing disturbance, the crucial next step ische Akademische Austauschdierigtcciones Integradas
some intrinsically nonlinear mechanism by which the systemand by the Deutsche Forschungsgemeinschaft. T.A. acknowl-
moves towards a new state. In some cases, the perturbationgdges fruitful discussions with L. Gil.
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