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Abstract
The existence and stability properties of localized structures in nonlinear
optical cavities with slightly non-equivalent homogeneous solutions and
displaying a modulational instability of flat fronts are investigated. We
present a new type of stable localized structures in the regime of formation
of labyrinthine patterns based on the balance between the curvature and the
asymmetry effects.
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1. Introduction

The formation of localized structures in the transverse
plane of nonlinear optical cavities has been studied in
several systems in recent years [1]. Two kinds of cavity
solitons have been extensively considered, those arising in
regimes where a spatially modulated solution coexist with
an homogeneous one [2] and those associated with the
existence of two equivalent stable homogeneous solutions
(also referred to as phases). Analogously, in systems
with a quadratic nonlinearity, two homogeneous solutions
may differ from each other by a π phase shift in the
slowly varying amplitude of the electric field and still be
completely equivalent from the dynamical point of view.
In systems with polarization symmetry two homogeneous
solutions with different polarization states are dynamically
equivalent. Cavity solitons in these systems in two transverse
dimensions are often formed by shrinking domains of one
phase surrounded by the other. The domain walls separating
the two equivalent phases are narrow spatial features [3] and

3 http://www.imedea.uib.es/physdept

present damped oscillations in their tails due to diffraction.
When a domain of one phase or polarization embedded in
the other shrinks, these oscillatory tails interact and may form
stable localized states. The intensity profile of these cavity
solitons is characterized by a peak surrounded by a dark
ring and then by a homogeneous phase. Dark ring cavity
solitons (DRCSs) have been described first in the mathematical
context of the Swift–Hohenberg equation [4] and later in the
degenerate optical parametric oscillator (DOPO) both off [5]
and at resonance [6, 7], in non-mean field models [8] and in
the vectorial Kerr resonator [9].

More recently, we have described a different kind of stable
localized structures with wide relevance in nonlinear optics:
the stable droplet (SD) [10, 11]. In contrast with DRCSs,
whose size is typically of the order of a domain wall width
and with central peak intensity larger than the corresponding
homogeneous solution, SDs are large stable circular domain
walls separating the two homogeneous solutions. SDs in
symmetric bistable systems appear close to the modulational
instability of a flat domain wall and balance the curvature-
driven shrinking of a domain with the growth due to the
instability of tightly curved fronts [10]. There is a fundamental
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difference between the mechanism that allows for the existence
of previously reported localized structures, namely cavity
solitons in regimes where a homogeneous and a spatially
modulated solution coexist and cavity solitons are stabilized
by oscillatory tail interaction (DRCS), and the SD. While the
first two types of cavity solitons exist both in one and two
dimensional systems, SDs have no counterpart in 1D since
their stability is due to curvature effects. Therefore they only
exist in systems whose dimensionality is at least two. The
SD has been described both in a generic prototype equation,
the parametrically driven complex Ginzburg–Landau equation
(PCGLE) [10], as well as in specific models of nonlinear optics
devices such as the DOPO and vectorial Kerr resonators with
linearly polarized pump [11].

In real photonic systems the assumption of two exactly
identical phases can be considered as an idealization. A
small symmetry breaking in the field phases can appear due
to small higher order nonlinear terms or be induced by a
small external seeding. Similarly a residual birefringence
or a pump with a slight elliptical polarization can break the
polarization symmetry. As soon as the symmetry is broken the
homogeneous solutions become dynamically non-equivalent.
In one dimensional systems a front connecting these two
solutions will move in a given direction. The direction
of the motion provides an indication of which is the most
stable solution after the breaking of the symmetry. In two
dimensional systems curvature comes into play and therefore a
competition between curvature and drift may arise. In systems
approaching thermodynamical equilibrium this scenario has
been studied within the so-called nucleation theory [12]. It
is well known that an equilibrium radius at which curvature
effects and drift counterbalance each other exists. However,
this localized structure (labelled as ‘nucleus’ in the following)
is typically unstable and either grows to infinite size or shrinks
until it disappears. In this paper we analyse the effects
of a small symmetry breaking on the existence of localized
structures in a general class of two dimensional nonlinear
systems. We show for example that in regimes of labyrinthine
pattern formation, an equilibrium between the drift due to the
asymmetry and local curvature leads to the formation of a
new kind of SD. Labyrinthine patterns have been observed
for instance in nonlinear chemical reactions [13], and they
are commonplace in nonlinear optics [9, 14, 15]. Our results
follow from an extension of the analysis given in [10]. For this
reason, we review the general results for SDs in symmetric
bistable systems in section 2, with particular emphasis on their
relevance in nonlinear optics. Section 3 is devoted to the
general theory of SDs in two dimensional asymmetric bistable
systems displaying a modulational instability of stable fronts.
The application of the general theory to the cases of the solution
inside the circular domain being favoured or disfavoured by the
asymmetry are presented in sections 4 and 5. In the first case,
before the modulational instability of the front the nucleus
merges directly from an SD or a DRCS, while in the second
case curvature and front motion balance to originate an SD after
the instability. For convenience and generality we apply the
theory to the PCGLE equation with diffusion and diffraction.
Our results, however, are universal in nonlinear optics and
we present evidence of SDs in the labyrinthine regime in an
asymmetric singly resonant DOPO in section 5. Conclusions
are presented in section 6.

2. Stable droplets in nonlinear optical systems with
phase or polarization symmetry

In this section we briefly review the origin and properties
of SDs in symmetric bistable systems with emphasis on
their relevance in nonlinear optics. SDs exist close to
modulational instabilities of a stable front separating two stable
homogeneous phases or polarization domains4. Before and
away from the front instability, circular domains of one phase
(polarization) surrounded by the other shrink to zero radius
due to local curvature effects. Such shrinking may be stopped
by DRCSs because of the interaction of the tails of the curved
fronts [10, 11] or by the presence of other localized states [16].
Beyond the modulational instability of the front, however,
circular domains grow to infinite size. For intermediate values
of the control parameter, an equilibrium between the large
radius shrinking droplets where curvature effects dominate and
small radius expanding droplets where the tight front instability
prevails is found. SDs are then formed which correspond to
stable circular domains [10, 11]. In particular we showed that
SDs exist for spatially extended dynamical systems in two
dimensions and of the form

∂t �� = D∇2 �� + �W ( ��, p), (1)

where ��(�x) is a real N component vector field, the matrix D
describes the spatial coupling, �W is a local nonlinear function
of the fields and p a control parameter. Equation (1) is invariant
under translations and under the change �x → −�x . In addition
we assume that it has a discrete symmetry Z that allows for the
existence of two, and only two, equivalent stable homogeneous
solutions, and that, in a 1D system, they are connected by a
stable Ising front ��0(x, p) (see footnote 4). An Ising front
satisfies

��0(x0 − x) = Z ��0(x − x0), (2)

where x0 is the front location [17] so that the 1D front
(and equivalently a flat front in 2D) is stationary, D∇2 ��0 +
�W ( ��0, p) = 0. The modulational instability of the front is

identified by the change of sign of the quantity

γ (p) ≡ 1

�

∫ ∞

−∞
�a0 · D�e0 dr, (3)

where �e0 ≡ ∂r ��0 is the Goldstone mode of the front and
� ≡ ∫ ∞

−∞ �a0 · �e0 dr Note 5, and �a0 is the null mode of M†

with Mi
j = Di

j∂
2
r + δ� j W i | ��0,p being the operator of the

linearization around the flat front. For a circular domain of
radius R the curvature is equal to 1/R, while the (normal)
front velocity v is

v = ∂t R = −γ (p)/R. (4)

Marking with pc the value of the control parameter at the
front instability, one clearly sees from (4) that before the
instability (γ > 0 for p > pc) large domains shrink, while

4 This work and that presented in [10, 11] is concerned specifically with Ising
walls and avoids parameter regions where Ising–Bloch transitions and Bloch
walls exist.
5 � vanishes at an Ising–Bloch transition [17]. Here we only consider
parameter regions far away from any Ising–Bloch transition for which � is
never zero.
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after the instability (γ < 0 for p < pc) circular domains
diverge to infinity. A multiple scale analysis of circular
domains, however, reveals that for γ > 0 (i.e. p > pc), the
initial shrinking of large domains can be counterbalanced by
a growth of small radius domains due to the incoming front
instability. In particular the radius of the circular domain obeys
the equation

∂t R = −c1(p − pc)
1

R
− c3

1

R3
, (5)

where the coefficients c1 = γ /(p − pc) and c3 are model
dependent and can be evaluated exactly once the form of the
equation (1) is given [10]. Since c1 > 0, SDs of radius

R0 = 1√
p − pc

√−c3

c1
. (6)

form when c3 is negative. Equation (5) clearly shows that SDs
in symmetric bistable systems are due to the balance of the
curvature (the c1 term) and the instability of tightly curved
fronts (the c3 term) which dominated the dynamics at the front
instability (γ = 0 and p = pc).

We verified the validity of this general theory in three
different models. First, in the PCGLE in the presence of both
diffusion and diffraction [10]

∂t A = (1 + iα)∇2 A + (µ + iν)A − (1 + iβ)|A|2 A + pA∗, (7)

where α is the ratio between diffraction and diffusion, µ

measures the distance from the oscillatory instability threshold,
ν is the detuning and p > 0 is the forcing amplitude. In [10] we
used the PCGLE as a generic model displaying both labyrinths
and SDs. We note, however, that specific limits of this equation
have found direct application in modelling optical devices. For
example, the PCGLE with zero diffusion, µ = −1 and β = 0
describes a singly resonant DOPO where the pump field is
not resonated [7, 18, 19]. The PCGLE with zero diffusion,
µ = −1 and purely imaginary nonlinear coefficient (more
correctly referred to as the parametrically driven nonlinear
Schrödinger equation; see [16] for general results) describes
DOPO with large pump detuning [3, 20] and vectorial Kerr
resonators with large cavity anisotropy [21]. In [10] we located
an entire branch of SD solutions for p > pc = 2.566 29
for α = 2, β = 0, ν = 2 and µ = 0. It is important to
note that SDs are generic to parameter changes provided that
a modulational instability of the front is detected.

In [11] we verified the existence of SDs in a model for a
vectorial Kerr resonator [22]:

∂t E± = −(1 − iθ)E± + i∇2 E± + E0

− 1
4 i[|E±|2 + β|E∓|2]E±, (8)

where E± are the circularly polarized field components, E0 is
the pump (x-polarized), θ is the cavity detuning, ∇2 is the
transverse Laplacian, and β is related to the susceptibility
tensor. We found SDs for E0 > Ec = 1.550, θ = 1, and
β = 7. Finally, SDs were described in the DOPO model

∂t A0 = �[−A0 + E0 − A2
1] +

ia

2
∇2 A0

∂t A1 = −A1 − i�1 A1 + A0 A∗
1 + ia∇2 A1,

(9)

where A0 and A1 are the pump and signal field, � is the ratio
between the pump and signal cavity decay rates, E0 is the
amplitude of the external pump field (our control parameter),
�1 is the signal detuning, and a is the diffraction parameter.
Again, SDs were found for E0 > Ec = 2.189, � = 6, a = 0.5,
and �1 = −1 [11]. An intriguing bistability between an SD
and a DRCS was also described.

3. General theory of stable nucleation droplets in
systems with asymmetry

As stated in the introduction, our theoretical work is presented
in the general framework developed in [10]. Therefore, we
consider a generalization of (1) to systems with asymmetry

∂t �� = D∇2 �� + �W ( ��, p) + ε �S, (10)

where ε �S is a symmetry breaking term. For ε 	= 0 the two
homogeneous solutions are no longer equivalent; the 1D Ising
front does not satisfy the symmetry condition (2) and therefore
it moves.

Assuming that the asymmetry is small (ε 
 1) and
proceeding as in [10], we derive an equation for the evolution
of a circular domain of one phase surrounded by the other.
In cylindrical coordinates (r, θ) and in the reference frame
moving with the front, equation (10) becomes

D∂2
r

��+

(
Ṙ I +

1

R
D

)
∂r ��+

1

R2
D∂2

θ
��+ �W ( ��, p)+ε �S = ∂t ��,

(11)
where R is the radius of the circular domain and Ṙ its radial
velocity. We analyse the dynamics of radially symmetric fronts
(∂θ

�� = 0) with a large radius (R � 1). We also assume that
in the moving reference frame the front profile is stationary
(∂t �� = 0). Linearizing around the stationary profile ��0 of the
symmetric (ε = 0) 1D front we obtain the following equation
for the perturbation ��1 = �� − ��0:

M ��1 = −ε �S −
(

Ṙ I +
1

R
D

)
∂r ��0, (12)

where Mi
j = Di

j∂
2
r + δ� j W i | ��0,p is the Jacobian of

equation (10). Due to the translational invariance of (10), now
broken by the presence of the front, each front has a neutrally
stable mode �e0, namely M�e0 = �0. This mode is known as the
Goldstone mode, and it has the form of the gradient of the front
�e0 ≡ ∂x ��0. M is therefore a singular matrix, so there exists
a solvability condition for equation (12) which is obtained by
multiplying on the left both sides of (12) by the null vector of
M†, �a0. We obtain

Ṙ = v0(p) − γ (p)
1

R
, (13)

where

v0(p) = −ε
1

�

∫ ∞

−∞
�a0 · �S dr, (14)

and γ (p) is given by (3). v0(p) corresponds to the velocity of
the 1D front connecting the two homogeneous solutions and
vanishes for ε = 0. v0(p) is positive if the inner solution is
more ‘stable’ and negative otherwise. γ (p) is the coefficient of
the curvature driven term and is independent of the symmetry
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breaking term ε. We remark here that the expression γ (p)

is the same as for the systems with phase and polarization
symmetry discussed in section 2. Both v0(p) and γ (p) depend
on the control parameter p through the shape of the symmetric
1D front ��0. Typically, the dependence of v0 on the system
parameters is quite weak, while off-diagonal terms in D may
induce a quite strong dependence on the parameters in γ . This
is of particular relevance in nonlinear optical systems where
the spatial coupling is diffractive and therefore D only contains
off-axis elements. We have already seen in section 2 that γ

can easily change its sign at p = pc for several models in
nonlinear optics. This means that for γ > 0 (γ < 0) the
curvature effect tends to shrink (grow) circular domains and a
flat front is stable (unstable). If v0 and γ have the same sign,
equation (13) predicts an equilibrium radius R0 for which the
curvature effect is exactly compensated by the radial motion of
the front due to the asymmetry of the homogeneous solution

R0 = γ

v0
= −1

ε

∫ ∞
−∞ �a0 · D�e0 dr∫ ∞

−∞ �a0 · �S dr
. (15)

It is important to stress that the circular localized structures
corresponding to (15) are closely related to the SDs presented
in section 2 but are stabilised by a different mechanisms where
the role of the asymmetry ε is essential. In the following two
sections we discuss the cases of v0 > 0 and v0 < 0 separately.

4. Nucleation for v0 > 0

This case corresponds to the situation in which the inner
solution of the circular domain is favoured by the asymmetry.
For p > pc (γ > 0) the domain wall dynamics is
qualitatively described by the so-called nucleation theory of
fronts in potential systems with two stable phases with different
stability [12]. It is well known that in 1D the fronts move
with a velocity proportional to the potential difference between
the two solutions, and that in 2D the surface tension may
counterbalance the potential difference leading to a stationary
circular domain (nucleus). It is also well known that this
nucleation radius is always unstable, and a circular domain
with a larger radius grows until infinity and a domain with
a smaller radius shrinks until it disappears. For the systems
that we are considering here, there is no known potential. We
can, however, consider γ as an effective ‘surface tension’ and
describe the dynamics as in nucleation theory. When γ is
positive and large the equilibrium radius (15) is very large.

We have studied the nucleation regime for v0 > 0 in the
asymmetric PCGLE [23]

∂t A = (1+iα)∇2 A+(µ+iν)A−(1+iβ)|A|2 A+ pA∗+ε. (16)

The dashed line in figure 1 is the radius of the nucleation
droplet for the asymmetric PCGLE (16) obtained numerically
by solving the stationary radial equation

(1+iα)

(
∂2

r +
1

r
∂r

)
A+(µ+iν)A−(1+iβ)|A|2A+ pA∗+ε = 0.

(17)
The dotted line in figure 1 shows the radius of the nucleation
droplet from the theoretical prediction (15). The 1D front
profile ��0 is obtained by solving the 1D stationary equation

(1 + iα)∂2
r A + (µ + iν)A − (1 + iβ)|A|2 A + pA∗ = 0. (18)

Figure 1. Radius of the nucleation droplet (dashed line) and DRCS
(solid line) as a function of p. The dotted line corresponds to the
theoretical prediction (15) while the solid (dashed) line has been
obtained by numerically solving the stationary radial equation (17).
The DRCS is stable, while the nucleation droplet is always radially
unstable. Here we have taken α = 2, β = 0, ν = 2, µ = 0 and
ε = 5 × 10−2. The vertical dot–dashed line indicates the
modulational instability point pc = 2.566 of a flat wall in 2D.

Both equations (17) and (18) have been solved by means of a
Newton method in which the space has been discretized and
the transverse derivatives computed in Fourier space [7, 24].
To compute (15) we also evaluate the operator M , which now
takes the form of an N×N matrix where N is the number of grid
points, from the discretized profile ��0. The null mode of M†

is easily obtained by finding the eigenvalues and eigenmodes
of the transposed of the matrix M .

When p decreases, γ also decreases, making R0 smaller.
The agreement between the theoretical prediction (15) and
the numerically evaluated radius for the nucleation droplets is
excellent until R0 becomes too small and the approximations
used to obtain (12) are no longer valid. This happens when
R0 becomes of the order of the front width. In fact, this
distance is also the range of the oscillatory tail interactions
which may stop the shrinking due to the curvature leading to
the formation of DRCSs. The radius of the DRCS obtained by
solving numerically the radial equation (17) is also shown in
figure 1 with a solid line. The branch of nucleation droplets
connects, close to pc, with the branch of the DRCS which
extends back until p = 2.85, where γ becomes too large and
the oscillatory tail interaction can no longer stop the collapse.

For p < pc (γ < 0) both the asymmetry and curvature
effect make the circular domains grow. We have found that
in the range of parameters explored for the PCGLE, the tail
interaction is not able to prevent the growth of the circular
domains. Therefore a circular domain keeps growing until the
boundary breaks up due to the modulational instability of the
circular wall. This scenario leads finally to the formation of a
labyrinthine pattern.

5. Stable droplets in labyrinthine patterns for v0 < 0

This case corresponds to the situation in which the outer
solution is favoured by the asymmetry. For p > pc (γ > 0)
both the asymmetry and the curvature effect tend to shrink the
circular domains. The interaction of the tails can however stop
the collapse, leading to the creation of localized structures.
However, as now the tail interaction has to compensate for the
combined shrinking effect of both asymmetry and curvature,
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Figure 2. The radius of the stable droplet and localized structure as
a function of p. The dotted line corresponds to the theoretical
prediction (15) while the solid (dashed) line has been obtained by
numerically solving the stationary radial equation (17). Here the
solid (dashed) line refers to stable (azimuthally unstable) structures.
The vertical dot–dashed line indicates the modulational instability
point pc of flat fronts.

Figure 3. The real part of a stable droplet (a) and dark ring cavity
soliton (b) for the PCGLE at p = 2.52 and 2.7. The solid curves are
the central sections of the 3D plots.

the upper limit for the existence of DRCSs is shifted to p =
2.82, a value smaller than that shown in figure 2 in the previous
section. Figure 3(b) shows the shape of a typical DRCS.

For p < pc there are now stable DRCSs, as shown in
figure 2. Furthermore, there is an equilibrium radius given
by (15) for which the curvature counterbalances the velocity
term due to the asymmetry. In contrast to the previous case
and nucleation theory, the roles of the curvature and asymmetry
have been exchanged, and the equilibrium radius is stable. This
leads to the existence of radially stable droplets (SDs) with
a large radius beyond pc, the threshold for the modulational
instability of a flat wall in 2D, as shown in figures 2 and 3(a).
While SDs are stable to radial perturbations, modulation
instabilities of their circular wall in the azimuthal direction
can occur. We have numerically performed a stability analysis
of SDs against azimuthal perturbations of the form δA =
f (r)eimθ . We find that SDs are fully stable for p > 2.515,
as shown in figure 2. At p = pm=2 = 2.515, SDs become
unstable under perturbations with azimuthal index 2 leading to
the elongation of the droplet until finally a labyrinthine pattern
is formed (figure 4). For lower values of the control parameter
p, instabilities of larger azimuthal index dominate, as shown
in figure 5 for p = 2.46 where an m = 4 instability takes
place. The circular droplet evolves first towards a square shape
and later to a cross whose arms keep growing until finally a
labyrinthine pattern is formed.

We should emphasize, however, that in the region pm=2 <

p < pc the SDs are fully stable. Labyrinthine patterns also

Figure 4. The m = 2 azimuthal instability of a droplet for p = 2.5.
Simulations have been performed onto a 256 × 256 grid with
�x = 0.25. The time increases from left to right.

Figure 5. The m = 4 azimuthal instability of a droplet for
p = 2.46.

Figure 6. Evolution starting from two different initial conditions,
namely a square domain (top) and random (bottom), at p = 2.52.
Time increases from left to right. Note the formation of large
elliptical-like homogeneous domains (see for instance the top
right-hand corner in the formation of the labyrinthine pattern).
These big bubbles are reminiscent of the existence of stable
droplets, but they are deformed by the interaction with the
labyrinthine pattern. The final state is frozen.

exist in the same parameter region. The evolution towards one
or the other solution will depend on the initial conditions (see
figure 6), and coexistence can take place.

We have also verified that these results are robust and they
are present for values of the parameters more usual to systems
in nonlinear optics. In particular we have verified the existence
of SDs in labyrinthine patterns for the singly resonant DOPO
with small injected signal (figure 7). This system is described
by equations (9) in the limit of large �, i.e. by the PCGLE with
zero diffusion, µ = −1 and β = 0 [7, 18, 19].

6. Conclusions

We have studied the effect of a small symmetry breaking on the
existence and stability properties of droplet-like structures due
to the presence of two equivalent homogeneous states for the
symmetric system. We have shown that localized structures
in 2D are robust to small symmetry breakings, although their
region of existence may be shifted in parameter space. We have
also found that in situations where the outer solution is favoured
by the asymmetry, a new kind of SD appears in the parameter
region where a flat wall in 2D becomes modulationally unstable
and labyrinthine patterns are formed. These structures are

S269



D Gomila et al

Figure 7. The real part of a stable droplet in the regime of
labyrinthine pattern formation for the singly resonant DOPO at
p = 1.935. Here equation (16) has zero diffusion, α = 1, µ = −1,
ν = 1, β = 0, and ε = 5 × 10−3. For these values of the parameters
the modulation instability of a flat front is found at pc = 2.081.

nucleation droplets which can be stable as a result of a balance
between the asymmetry generated motion of a 1D domain wall
and the 2D curvature effect. In the limit ε → 0 these structures
continuously transform into the SDs described in [10] which
are stabilized by nonlinear curvature effects. Our results have
been derived in a completely general context and have been
illustrated in a prototypical model like the PCGLE and in the
singly resonant DOPO as an example of an optical system. We
expect our results to be valid for vectorial Kerr cavities, doubly
resonant DOPO, and any system that displays modulational
instabilities of an Ising front in the presence of asymmetry
of two homogeneous states. In the case of vectorial Kerr
cavities, the symmetry breaking can be introduced by a slightly
elliptically polarized input beam, and in the DOPO by the
injection of a small signal seed [18].
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