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Controlling chaotic transients: Yorke’s game of survival
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3Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Campus Universitat Illes Balears,

E-07071 Palma de Mallorca, Spain
~Received 2 September 2003; published 20 January 2004!

We consider the tent map as the prototype of a chaotic system with escapes. We show analytically that a
small, bounded, but carefully chosen perturbation added to the system can trap forever an orbit close to the
chaotic saddle, even in presence of noise of larger, although bounded, amplitude. This problem is focused as a
two-person, mathematical game between two players called ‘‘the protagonist’’ and ‘‘the adversary.’’ The pro-
tagonist’s goal is to survive. He can lose but cannot win; the best he can do is survive to play another round,
strugglingad infinitum. In the absence of actions by either player, the dynamics diverge, leaving a relatively
safe region, and we say the protagonist loses. What makes survival difficult is that the adversary is allowed
stronger ‘‘actions’’ than the protagonist. What makes survival possible is~i! the background dynamics~the tent
map here! are chaotic and~ii ! the protagonist knows the action of the adversary in choosing his response and
is permitted to choose the initial pointx0 of the game. We use the ‘‘slope 3’’ tent map in an example of this
problem. We show that it is possible for the protagonist to survive.
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Transient chaos@1# is an interesting physical phenomeno
which occurs in systems where trajectories bounce cha
cally for a certain time in a bounded region until they rea
a final state, usually nonchaotic. Varied manifestations
transient chaos are present in chaotic scattering@2#, chaotic
advection in fluid dynamics@3#, species competition in ecol
ogy @4,5#, or voltage collapse in electric power systems@4,6#,
to cite just a few. From the point of view of nonlinear d
namics, the phenomenon of transient chaos is associated
the existence of a certain type of sets called chaotic sadd
also known as nonattracting chaotic invariant sets, formed
a bounded set of unstable periodic and aperiodic orbits,
which almost all trajectories diverge. Typical orbits in th
system will approach the chaotic saddle following its sta
manifold, spend some time bouncing in its vicinity, and th
escape from it following its unstable manifold. Therefore
compelling challenge might be to find a simple method
maintain an orbit in the neighborhood of the invariant set
all times, respecting the original dynamics of the system

While for a linear system the perturbation needed
change its nature is of the same order as the dynamics o
motion, the extreme sensitivity to initial conditions mak
control with very little perturbations a possible task. In th
sense, diminishing the amplitude of control is an import
goal in this field. Obviously, if the system is embedded in
noisy environment controlling orbits is even harder, and ty
cally stronger amplitudes than in the noiseless case
needed. Since the seminal paper of Ott, Grebogi, and Yo
@7#, the theory of chaos control in nonlinear dynamics h
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been thoroughly developed, both for Hamiltonian and dis
pative systems. Most of the work has been focused on
tems with chaotic attractors, both in noiseless and noisy
vironments@8#, and comparatively less attention has be
paid to the control of chaotic saddles. Nevertheless,
amples of studies of transient chaos include theoret
works as well as applications for models of ecological, el
trical, chemical, and laser systems@4,9–12#. The aim of
these works is typically to find small perturbations that ke
the system in a permanent chaotic regime. While such s
egies have to deal essentially with the unstable dynamic
the saddle, in the present work we shall emphasize the
stabilizing effect of strong noise. Thus our goal is to find
strategy able to trap the system close to the chaotic sa
indefinitely even in the presence of noisestrongerthan con-
trol.

Since Akiyama and Kaneko presented the ‘‘dynami
systems game theory’’@13–15#, there has been a growin
interest for modeling increasingly more complex game st
egies with concepts borrowed from nonlinear dynamics.
their work it is shown that game theory has resulted to
deeply related to several problems involving dynamical p
nomena, and for many cases it is possible to switch from
point of view of game theory to that of nonlinear dynamic
In fact, the nature of these games can be described
dynamical system. Our work points in this direction, and
face our problem as a mathematical game between two p
ers called ‘‘the protagonist’’ and ‘‘the adversary,’’ the pro
tagonist’s goal is to survive inside a bounded region, that
the vicinity of the chaotic saddle. We describe an idea wh
we apply here to a very simple nonlinear dynamical syste
but can be conveniently adapted for a wide variety of ma
with a chaotic saddle, in which some kind of noise and co
trol is present. In a system with attractors, the natural t
©2004 The American Physical Society03-1
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dency of a particle is to reach one of these attractors,
therefore it is plausible for the protagonist to maintain its
close to one attractor even when the adversary is allo
slightly stronger actions. However, it is important to rema
that without any external control, the probability of the pr
tagonist to survive in the vicinity of a chaotic saddle is ze
even in the absence of noise, and this fact makes the sur
of the protagonist a remarkable achievement.

The simplest form of this game involves a on
dimensional map, the tent map, that is defined asT(x)
5m(12uxu)21. For cases of interest such asm53, almost
all initial points x0 yield trajectories ofxn115T(xn) that go
to 2` asn→`; and in this case we say the protagonist do
not survive. To survive he must act. The equation of
game is

xn115T~xn!1un111r n11 , ~1!

where the adversary chooses the perturbationun11 ~knowing
xn and T) and the protagonist then chooses the ‘‘respon
r n11 ~knowing un11 andxn andT). The perturbationun11
might be chosen at random or using an effective strategy
the long run there is little difference between these two if
protagonist can survive forever. The protagonist faces w
appears to be an impossible task because we permit
uunu<u0 andur nu<r 0, wherer 0 andu0 are specified withr 0
, u0. If r n is viewed as the control andun is viewed as
some kind of noise~or interference!, the usual requirement i
that the control is stronger than the noise. However, the m
goal of this paper is to show that in the context of transi
chaos it is possible to control a noisy orbit, even in the c
in which noise is stronger than control. The smaller bound
r n than onun might lead us to callr n an ‘‘influence’’ rather
than a ‘‘control’’ since the protagonist cannot control t
details of the trajectory. For this problem, we let the ‘‘rel
tively safe’’ region be the intervalS5@21,11# and termi-
nate the game if somexn is outsideS. Certainly if xn is
outsideS, it is possible for the adversary to choose the
quenceun that causes the sequencexn to diverge, and there
is a slightly larger interval depending onu0 andr 0 such that
if xn is outside that, the trajectory must diverge even if t
adversary tries to help. To keep formulas simple, we state
results form53 though analogous results are available
all m.2. ~If m<2, there is a chaotic attractor and ifu0 is
sufficiently small, survival is guaranteed even if the respo
size is 0.! We begin with an example.

For u054/9 andr 052/9, there exists a strategy guara
teeing survival. Ifu0.2r 0, then there is no strategy guara
teeing survival.

The best strategy for survival depends onr 0 as is made
clear in the following theorem. There are different strateg
for r 0>2/3 and each integerk, wherer 0 is in @2/3k,2/3k21).
Recallm53.

Theorem. There is a strategy guaranteeing survival fo
given r 0 and u0 if and only if there is an integerk>1 for
which 2/3k<r 0 andu0<r 012/3k. ~The cross-hatched part o
Fig. 1 shows where there are strategies for survival.!

This type of problem is quite different from the standa
control in which the goal is to drive the trajectory to a poin
01620
d
f
d

,
al

s
e

’’

In
e
at
ly

in
t
e
n

-

e
ur
r

e

s

.

In controlling chaos@7,9#, for example, if noise is presen
~i.e., un chosen at random!, the controlr n must dominateun
so as to be able to drive the trajectory to a specified fix
point and keep it close to the fixed point. In the game
survival for the tent map, there are several ‘‘safety poin
andr 0 must be large enough so that the protagonist can re
one of them, but the choice of which is really determined
what un happens to be. The protagonist is bounced betw
these safety points in an order determined by the sequenc
un .

The example. Before analyzing the theorem in detail, w
examine the case mentioned above,u054/9 andr 052/9 and
show that the protagonist can survive. We designate f
points as safety points,z1522/322/9, z2522/312/9, z3
512/322/9, andz4512/312/9. It is easy to check tha
T(zi)562/3 andT(62/3)50. A graph of the tent map ap
pears in Fig. 2 showing all these points, and Fig. 3 shows
evolution of an orbit in this situation. The protagonist’s stra
egy must be to make sure everyxn in Eq. ~1! is a safe point
if it is to guarantee that he can survive. In particular, t
protagonist must choosex0 equal to one of the safety point
to make sure he succeeds~although in fact most points in
S5@21,1# would also be valid asx0). If xn is a safety point
for any integern>0, then we show he can chooser n11 so
that xn11 is a safety point, and so he survives another d
Since xn is a safety point, we may suppose, for examp
T(xn) is 12/3. ~The case22/3 is virtually the same.! Then
after un11 is chosen, the pointT(xn)1un11 must be in the
interval@2/324/9,2/314/9# and so is at most 2/9 from eithe
z3 or z4. Hencer n11 can be chosen withur n11u<r 0 so that
xn11 is a safety point. This case may be generalized by n
ing that this strategy works wheneveru02r 0<2/9.

This example illustrates why we call this problem a gam
of ‘‘survival’’ rather than of ‘‘control,’’ since the protagonis

FIG. 1. Parameter region of survival. Survival is possible in t
cross-hatched region if the protagonist chooses optimally. Ab
the cross-hatched region, the adversary can always win.
3-2
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is buffeted from safety point to safety point without bein
able to choose between these points~as it is shown in Fig. 3.!
There is typically only one that can be reached withur n11u
<r 0 for eachn. In the above example calculation, notice th
T(xn11) is either 22/3 if xn11 is z4 or 12/3 if z3. The
protagonist cannot choose whetherT(xn11) is to be positive
or negative~unless un11 was 0 so thatz3 and z4 were
equally close!.

The general strategy~called R) for choosingr n11 is to
identify a collection of safety points and choosex0 to be one
of them and from then on chooser n11 so thatxn11 is a
safety point. In the case where 2/3<r 0 and u0<r 012/3,
(k51), there are two safety points, namely,z1522/3 and
z252/3. Then ifxn is a safety point,T(xn)50, and the point
T(xn)1un11 must be in the interval@2u0 ,u0#. Since u0
<r 012/3, each point of the interval is withinr 0 of a safety
point. Hence the strategy can be carried out.

FIG. 2. Graph of the tent mapT(x)5m(12uxu)21 defined in
the interval@21,11# for m53. The four pointszi designate safety
points and alsoT(zi)562/3.

FIG. 3. Evolution of an orbit fork52, m53, r 052/9, andu0

54/9. The four dotted-dashed lines represent the safety poinzi

and the dashed lines represent their imagesT(zi)562/3. The
points that do not lie over any of these lines represent the step
the orbit after the influence of the noiseun .
01620
t

In the general case where 2/3k<r 0 and u0<r 012/3k,
there are 2k safety points, namely,T2k(0) which consists of

62/3162/326•••62/3k for k>1. ~2!

Note thatT(62/3162/326•••62/3k) is a point of the
form 62/3162/326•••62/3k21 ~which is the single point 0
if k51). The argument showing that the strategy can
implemented proceeds as in the special cases discu
above.

We now argue that a guaranteed strategy exists only
the above cases. Hence ifk is chosen so that 2/3k<r 0
,2/3k21 for some k>1, and u05r 012/3k1d where d
.0, then no guaranteed strategy exists; in other words, th
is a strategyU for choosing the pointsun so that the protago-
nist loses.

Let Sk be the set of safe points. The strategyU is to
chooseun so thatT(xn21)1un is as far as possible. LetYk
be the set$x:ux2yu<r 0 for somey in Sk%. HenceYk is the
set of points that are no more thanr 0 from some safe points
For any pointx0, there is au1 with uu1u<u0 such that
T(x0)1u1 is not in Yk . Hencex15T(x0)1u11r 1 ~with
ur 1u<r 0) is not a safe point. LetJk be the smallest interva
containingSk .

If xn is not inJk , it is easy to check that strategyU results
in xn11 also outsideJk , but further fromSk . If xn is in Jk ,
let J8 denote the smallest interval containingxn whose ends
are safe points. StrategyU results inxn11 which is inT(J8),
which has no points ofSk21 in its interior andxn11 is further
from Sk . Furthermore, the length ofT(J8) is greater than
that ofJ8. As the process evolves, the trajectory eventually
outsideJk , a case which is discussed above.

We have carried out several computer experiments
clarify the applicability of our results. A uniform distribute
noise with zero mean value has been used asun , since its
only requisite is to be bounded. Obviously, the same res
would have been obtained for any other kind of bound
noise. Note that, for this reason, Gaussian noise does
guarantee the survival of the protagonist. For very differ
values ofk, m, maximum responser 0, and maximum pertur-
bation u0, being r 0<u0, we have iterated the game up
several million steps. As our theorem asserts, the protago
survives inside the safe region@21,1# if and only if u0
<2r 0.

An interesting property of the system appears when
analyze the root mean square~RMS! of the control r n ,
which is expressed as

RMS5A( r n
2

n
. ~3!

Figure 4 shows the evolution of the RMS of control wh
the maximum noise to maximum control ratio is varied, bo
computationally calculated and analytically derived. We ha
fixed the control tor 052/9 andu0 is varied from 0 tou0
52r 054/9. Foru050, that is, in the absence of noise, th
control strategy is to push repeatedly the system back
safety point after the action of the dynamics. The strength
of
3-3



ro
t

S

o
in
ec
i-

e
rb

l-
he
a

w

for

u-

o-
ted

o

he
. In
yti-
tegy

to
et-
e

ich
a
ap-
r
ent
ti-
e
s in
he

ly
ety
es
al

l f

ly
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control is thus constant and equal to the distance to go f
the image of a safety point back to any of the safety poin
Calling such a distancedk , we have dk5maxjˆmini$uzi

2T(zj)u%‰, wherezi and zj are the safety points, and RM
5dk . When noise is switched on, the RMS of controlde-
creases, since in this case the orbit is pushed by the noiseun

from the image of a safety point towards one of the 2k safety
points. This result is in contrast with standard algorithms
chaos control, which aim at stabilizing unstable orbits
stead of preimages of the escaping region. For these t
niques, astronger control is needed if noise increases. F
nally, for high values ofu0 /r 0, the RMS of control shows a
minimum and starts to increase again, as there is a valu
the noise for which on average the noise places the o
optimally close to one of the safety points.

The analytical derivation of the curve for RMS is as fo
lows. Looking at Fig. 2, and noticing that the positions of t
safety pointszi are symmetric, the control needed after
noise displacementu<u0 can be simply written as

ur ~u!u5uuuu2dku. ~4!

Indicating with A^r 2& the RMS, with r (u) the control
needed after a noise displacementu, and with f (u) the noise
distribution, we obtain the following:

^r 2&5E
2u0

u0
r ~u!2f ~u!du5E

2u0

u0
~ uuu2dk!

2f ~u!du. ~5!

Expanding the expression and distributing the integral,
have

FIG. 4. The control neededdecreasesin the presence of~weak!
noise. The picture shows the root mean square of applied contro
different noise-control ratios whenm53, r 052/9. The dots were
calculated numerically, while the straight line represents the ana
cal curve.
01620
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^r 2&5dk
21E

2u0

u0
u2f ~u!du22dkE

2u0

u0
uuu f ~u!du ~6!

5dk
21^u2&22dk^uuu&. ~7!

To give an example, we can evaluate this expression
the case of uniform noise, that is,

f ~u!5H 1

2u0
, 2u0,u,u0

0, otherwise.

~8!

A straightforward calculation gives

^u2&5
1

2u0
E

2u0

u0
u2du5

1

3
u0

2 ~9!

and

^uuu&5
1

2u0
E

2u0

u0
uuudu5

1

2
u0 . ~10!

Finally, we obtain that the RMS of control for such distrib
tion is

A^r 2&5Adk
21

1

3
u0

22dku0. ~11!

If maximum controlr 0 is set todk , this function has a
minimum whenu0 /r 053/2. Figure 4 confirms this result.

The results of this work can be generalized to any unim
dal one-dimensional map with a chaotic saddle associa
~i.e., with escapes!, showing that it is always possible t
survive with less control than noise. The relationu0 /r 0, as
well as the structure of safety points, will depend on t
properties of each map, its symmetry or asymmetry, etc
order to point this fact, we have developed a similar anal
cal study for the asymmetric tent map, and the same stra
yields a noise to control ratio ofu0 /r 0511(m/ l )k, where
m, l are the left and right slopes, respectively. It is easy
see that this ratio has a maximum equal to 2 for the symm
ric casem5 l and a minimum equal to 1 when the right slop
is infinitely larger than the left one.

In summary, in this paper we are describing an idea wh
potentially can be applied to a wide variety of maps with
chaotic saddle, embedded in noisy environments, for an
propriate choice ofr 0 andu0. Such an analysis could be fa
more complex than for the symmetric and asymmetric t
maps, for which the problem can be fully explained analy
cally. Unlike traditional control theory that tries to steer th
state of a system to a precise state, there are situation
which we only have influence in a chaotic environment. T
difference betweeninfluenceandcontrol is roughly speaking
r 0,u0 vs r 0.u0.

Finally, the information that is needed in order to app
our method is just the approximate position of the saf
points. This information might be obtained from time seri
analysis, suggesting the applicability of this control to re
systems.

or

ti-
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