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Abstract

We write the master equation describing the Parrondo’s games as a consistent discretization
of the Fokker–Planck equation for an overdamped Brownian particle describing a ratchet. Our
expressions, besides giving further insight on the relation between ratchets and Parrondo’s games,
allow us to precisely relate the games probabilities and the ratchet potential such that periodic
potentials correspond to fair games and winning games produce a tilted potential.
c© 2003 Elsevier B.V. All rights reserved.
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The Parrondo’s paradox [1–3] shows that the alternation of two losing games can
lead to a winning game. This surprising result is nothing but the translation into the
framework of very simple gambling games of the ratchet e:ect [4]. In particular, the
3ashing ratchet [5–7] can sustain a particle <ux by alternating two relaxational potential
dynamics, none of which produces any net <ux. Despite that this qualitative relation
between the Parrondo paradox and the <ashing ratchet has been recognized from the
very beginning (and, in fact, it constituted the source of inspiration for deriving the
paradoxical games), only very recently there has been some interest in deriving exact
relations between both [8,9].
In this paper, we rewrite the master equation describing the evolution of the proba-

bilities of the di:erent outcomes of the games in a way that shows clearly its relation
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with the Fokker–Planck equation for the <ashing ratchet. In this way, we are able to
give an expression for the dynamical potentials in terms of the probabilities deGning
the games, as well as an expression for the current. Similarly, given a ratchet potential
we are able to construct the games that correspond to that potential.
The Parrondo’s paradox considers a player that tosses di:erent coins such that a unit

of “capital” is won (lost) if heads (tails) show up. Although several possibilities have
been proposed [10–16] , in this paper we consider the original and easiest version in
which the probability of winning, pi, depends on the actual value of the capital, i,
modulus a given number L. A game is then completely speciGed by giving the set
or probabilities {p0; p1; : : : ; pL−1} from which any other value pk can be derived as
pk = pk mod L. A fair game, one in which gains and losses average out, is obtained if∏L−1
i=0 pi =

∏L−1
i=0 (1 − pi). The paradox shows that the alternation (either random or

periodic) of two fair games can yield a winning game. For instance, the alternation of
game A deGned by pi ≡ p=1=2; ∀i, and game B deGned by L=3 and p0=1=10; p1=
p2 = 3=4 produces a winning game although both A and B are fair games.
A discrete time 
 can be introduced by considering that every coin toss increases 


by one. If we denote by Pi(
) the probability that at time 
 the capital is equal to i,
we can write the general master equation

Pi(
+ 1) = ai−1Pi−1(
) + ai0Pi(
) + a
i
1Pi+1(
) (1)

where ai−1 is the probability of winning when the capital is i− 1, ai1 is the probability
of losing when the capital is i + 1, and, for completeness, we have introduced ai0
as the probability that the capital i remains unchanged (a possibility not considered
in the original Parrondo games). In accordance with the rules described before, the
probabilities {ai−1; a

i
0; a

i
1} do not depend on time and they satisfy ai+1

−1 + ai0 + a
i−1
1 = 1

which ensures the conservation of probability:
∑

i Pi(
+ 1) =
∑

i Pi(
).
It is a matter of straightforward algebra to write the master equation in the form of

a continuity equation:

Pi(
+ 1)− Pi(
) =− [Ji+1(t)− Ji(t)] (2)

where the current Ji(
) is given by

Ji(
) = 1
2 [FiPi(
) + Fi−1Pi−1(
)]− [DiPi(
)− Di−1Pi−1(
)] (3)

and Fi = ai+1
−1 − ai−1

1 , Di = 1
2(a

i+1
−1 + ai−1

1 ). This form is a consistent discretization of
the Fokker–Plank equation [17] for a probability P(x; t)

9P(x; t)
9t =−9J (x; t)9x (4)

with a current

J (x; t) = F(x)P(x; t)− 9[D(x)P(x; t)]
9x (5)

with general drift, F(x), and di:usion, D(x). If Lt and Lx are, respectively, the
time and space discretization steps, such that x = iLx and t = 
Lt, it is clear the
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identiGcation

Fi ↔ Lt
Lx
F(iLx); Di ↔ Lt

(Lx)2
D(iLx) : (6)

The discrete and continuum probabilities are related by Pi(
) ↔ P(iLx; 
Lt)Lx and
the continuum limit can be taken by considering that M = lim

Lt→ 0;Lx→ 0
(Lx)2=Lt is a

Gnite number. In this case Fi ↔ M−1LxF(iLx) and Di ↔ M−1D(iLx).
From now on, we consider the case ai0 = 0. Since pi = ai+1

−1 we have Di ≡ D= 1=2,
Fi = −1 + 2pi and the current Ji(
) = −(1 − pi)Pi(
) + pi−1Pi−1(
) is nothing but
the probability <ux from i − 1 to i. The stationary solutions Psti are found solving
the recurrence relation (3) for a constant current Ji = J with the boundary condition
Psti = Psti+L:

Psti = Ne−Vi=D


1− 2J

N

i∑
j=1

eVj=D

1− Fj


 ; J = N

e−VL=D − 1

2
∑L

j=1 e
Vj=D=(1− Fj)

; (7)

N is the normalization constant obtained from
∑L−1

i=0 P
st
i = 1. In these expressions we

have introduced the potential Vi in terms of the probabilities of the games 1

Vi =−D
i∑
j=1

ln
[
1 + Fj−1

1− Fj

]
=−D

i∑
j=1

ln
[
pj−1

1− pj

]
: (8)

The case of zero current J=0, implies a periodic potential VL=V0=0. This reproduces
again the condition

∏L−1
i=0 pi=

∏L−1
i=0 (1−pi) for a fair game. In this case, the stationary

solution can be written as the exponential of the potential Psti = Ne−Vi=D. Note that
Eq. (8) reduces in the limit Lx→ 0 to V (x)=−M−1

∫
F(x) dx or F(x)=−M9V (x)=9x,

which is the usual relation between the drift F(x) and the potential V (x) with a mobility
coeNcient M .
The inverse problem of obtaining the game probabilities in terms of the potential

requires solving Eq. (8) with the boundary condition F0 = FL. 2

Fi = (−1)ieVi=D
[∑L

j=1(−1)j[e−Vj=D − e−Vj−1=D]

(−1)Le(V0−VL)=D − 1

+
i∑
j=1

(−1)j[e−Vj=D − e−Vj−1=D]

]
: (9)

These results allow us to obtain the stochastic potential Vi (and hence the current J ) for
a given set of probabilities {p0; : : : ; pL−1}, using (8); as well as the inverse: obtain the
probabilities of the games given a stochastic potential, using (9). Note that the game

1 In this, as well as in other similar expressions, the notation is such that
∑0
j=1 =0. Therefore the potential

is arbitrarily rescaled such that V0 = 0.
2 The singularity appearing for a fair game VL = V0 in the case of an even number L might be related

to the lack of ergodicity explicitely shown in Ref. [9] for L = 4. In this case additional conditions on the
potential are required for the existence of a fair game [18].
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Fig. 1. Left panel: potential Vi obtained from (8) for the fair game B deGned by p0 = 1=10; p1 =p2 = 3=4.
Right panel: potential for game B′, with p′

0 = 3=10; p′
1 =p

′
2 = 5=8 resulting from the random alternation of

game B with a game A with constant probabilities pi = p = 1=2; ∀i.

resulting from the alternation, with probability �, of a game A with pi = 1=2; ∀i and
a game B deGned by the set {p0; : : : ; pL−1} has a set of probabilities {p′

0; : : : ; p
′
L−1}

with p′
i = (1− �) 12 + �pi. For the Fi’s variables, this relation yields F ′

i = �Fi, and the
related potential V ′ follows from (8).
We give now two examples of the application of the above formalism. In the Grst

one we compute the stochastic potentials of the fair game B and the winning game
B′, the random combination with probability � = 1=2 of game B and a game A with
constant probabilities, in the original version of the paradox [1]. The resulting potentials
are shown in Fig. 1. Note that the potential for game B takes di:erent values at each
point i mod 3 even though the probabilities were equal for i=1; 2 mod 3. The resulting
asymmetry in the potential is the required one for the existence of the ratchet e:ect.
On the other hand, the potential of the combined game B′ has a non-zero mean slope
as it corresponds to a winning game.
The second application considers as input the potential

V (x) = A
[
sin

(
2�x
L

)
+

1
4
sin

(
4�x
L

)]
(10)

which has been widely used as a prototype for ratchets [4,19]. Using (9) we obtain
a set of probabilities {p0; : : : ; pL−1} by discretizing this potential with Lx = 1, i.e.,
setting Vi = V (i). Since the potential V (x) is periodic, the resulting game B deGned
by these probabilities is a fair one and the current J is zero. Game A, as always is
deGned by pi = p = 1=2; ∀i. We plot in Fig. 2 the potentials for game B and for the
game B′, the random combination with probability � = 1=2 of games A and B. Note
again that the potential V ′

i is tilted as corresponding to a winning game B′. As shown
in Fig. 3, the current J depends on the probability � for the alternation of games A
and B.
In summary, we have written the master equation describing the Parrondo’s games as

a consistent discretization of the Fokker–Planck equation for an overdamped Brownian
particle. In this way we can relate the probabilities of the games {p0; : : : ; pL−1} to the
dynamical potential V (x). Our approach yields a periodic potential for a fair game and



R. Toral et al. / Physica A 327 (2003) 105–110 109

-40 -30 -20 -10 0 10 20 30 40
x

-1.5

-1

-0.5

0

0.5

1

1.5
V

(x
)

-40 -30 -20 -10 0 10 20 30 40
x

-1.5

-1

-0.5

0

0.5

1

1.5

V
’(x

)

Fig. 2. Left panel: Ratchet potential (10) in the case L=9, A=1:3. The dots are the discrete values Vi=V (i)
used in the deGnition of game B. Right panel: discrete values for the potential V ′

i for the combined game
B′ obtained by alternating with probability � = 1=2 games A and B. The line is a Gt to the empirical form
V ′(x) =−Px + �V (x) with P = 0:009525, � = 0:4718.
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Fig. 3. Current J resulting from Eq. (7) for the game B′ as a function of the probability � of alternation of
games A and B. Game B is deGned as the discretization of the ratchet potential (10) in the case A = 0:4,
L = 9. The maximum gain corresponds to � = 0:57.

a tilted potential for a winning game. The resulting expressions, in the limit Lx→ 0
could be used to obtain the e:ective potential for a <ashing ratchet as well as its
current.
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