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Stochastic resonance in the presence of spatially localized structures
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Stable spatially localized structures exist in a wide variety of spatially extended nonlinear systems, including
nonlinear optical devices. We study stochastic resonance~SR! in models of optical parametric oscillators in the
presence of a spatially uniform time-periodic driving and in a regime where two equivalent states with equal
intensity but opposite phase exist. Diffraction and nonlinearity enable the existence of localized states, formed
by the locking of kinks and antikinks and displaying spatially damped oscillatory tails~in one dimension! or
the stabilization of dark ring cavity solitons~in two dimensions!. We show that SR is inhibited at low driving
amplitudes by the presence of localized states which obstruct the front motion. For larger driving amplitudes,
in the regime where localized states cease to be stable, we observe instead an enhancement of SR.
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The presence of noise in a nonlinear system often res
in seemingly counterintuitive effects. One example is s
chastic resonance~SR! which is nonetheless one of the mo
studied and well understood@1,2#. During recent years ther
has been an increasing interest in the study of stocha
effects in spatially extended nonlinear systems@3#. The in-
troduction of spatial degrees of freedom gives rise to a n
series of possible features that influence the SR phenom
with respect to the zero-dimensional case@4#. Previous stud-
ies have shown that the coupling of a certain number
resonators into an array can enhance the signal-to-noise
~SNR! @5–7#. This has been referred to as array enhanced
~AESR! @8–10#. It is important to point out that the AESR i
an effect due to the discretization and cannot be observe
continuous systems where coupling constants often just
the role of scaling factors. Here we study enhancements
inhibitions of SR not due to changes in the coupling co
stants as Refs.@8–10# but to the presence of solitary stru
tures.

Our investigation focuses on one-dimensional~1D! and
2D models of optical parametric oscillators~OPO’s!, one of
the prototypes for the study of pattern formation, solito
localized structures, etc., in nonlinear optics. The OPO
nonpotential system that has attracted a lot of attention b
from the fundamental@11–14# and experimental sides@15#.
A p-phase symmetry enables the existence of two equiva
stable states with opposite phase but the same intensity
the signal field. Domain wall~DW! solutions, or kinks, sepa
rating the two equivalent states are characterized by spat
damped oscillatory tails which are ubiquitous in nonline
optics in the presence of nonlinearity and diffraction. Mutu
attraction or repulsion between a pair of DW vanishes
certain characteristic distances giving rise to stable spat
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localized states~LS’s!. Two-state transitions are activated b
stochastic fluctuations, through the nucleation of a small
main of critical size. In the presence of a spatially isotrop
time-periodic modulation, transitions between the two hom
geneous states tend to synchronize with the driving and
enhanced by the driven front motion. The best synchron
tion is achieved for an optimal noise intensity where t
signal-to-noise ratio~SNR! is maximized.

The implications that the presence of LS’s have on
appearence of SR are manifold and motivate the pre
study. The choice of a nonvariational system@16# such as the
OPO’s should not be considered a limitation on our resu
This model is in fact representative of an entire class
optical devices and of systems beyond nonlinear optics.

Our work is organized as follows. In Sec. I we introdu
the OPO models. We initially discuss the 1D case in Sec
where we study the LS stability in the presence of const
and time-dependent bias and we also discuss the implicat
of their stability when the system undergoes a periodic d
ing. We demonstrate the existence of SR for this system
we characterize the phenomenon in the presence of LS’
varying the kink density and driving amplitude. The chara
terization of SR is done by considering the average k
density. Finally, in Sec. III we generalize our results to 2
models.

I. THE MODEL

We consider models of a stochastically driven degene
OPO ~DOPO! in one transverse dimension and for conv
nience we set to zero the detunings for pump and signal fi
In the doubly resonant model~DRDOPO!, where both pump
and the degenerate signal@17# fields are resonated in a cav
ity, we have the following system of stochastic partial diffe
ential equations:

] tA05G@2A01E2A1
2#1 ia¹2A0 , ~1!
©2003 The American Physical Society02-1
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] tA15@2A11A0A1* 1 i2a¹2A1#1m1j~xW ,t !,

whereA0 andA1 are two complex functions representing t
pump and degenerate signal field, respectively,] t5]/]t, and
¹25(]/]x)21(]/]y)2. On the right-hand side of Eq.~1! G
is the ratio between the pump and degenerate signal d
rates in the cavity,E is the amplitude of the external pum
field, anda is the diffraction constant. The termm represents
a perturbation which will be conveniently chosen either co
stant or time dependent and the complex termj(xW ,t) is
Gaussian white noise which satisfies^j(xW ,t)j* (xW8,t8)&
52ed(xW2xW8)d(t2t8), with e the noise strength. ForG@1
the cavity becomes transparent to the pump field and sys
~1! reduces to

] tA152A11EA1* 1A1uA1u21 ia¹2A11m1j~xW ,t !,
~2!

which is therefore called the singly resonant DOPO.
When m and e vanish, Eqs.~1! and ~2! possess three

homogeneous steady state solutions for the degenerate s
field (A150,6AE21) which are present above the thres
old for the degenerate signal generation. The trivial solut
is unstable whereas the other two, which we callA1

6 , are
stable. DW solutions~also called kinks in 1D models! con-
necting the two stable equilibrium states are the simp
among the nonhomogeneous solutions. DW’s are also st
and correspond to heteroclinic orbits in the phase space
start from one equilibrium state forxW→2`, vanish at the
origin, the kink core, and end on the opposite equilibriu
state forxW→1`. Since the stable homogeneous states
real, DW’s manifest themselves only in the real part ofA1
where their profile is characterized in Eq.~1! by oscillatory
tails that are due to the coupling of the nonlinearity w
diffraction. In Eq. ~2! these oscillatory tails are critically
damped. Since we are interested in the switching betw
stable equilibrium states we focus only on the real partu of
A15u1 iw.

II. THE 1D CASE „“

2Ä­xx…

In one dimension the interaction between kink and a
kink vanishes at certain locking distancessj where the DW’s
lock forming stable LS’s@13#. The distancessj also identify
each j-order localized structure. The smallest separations0
corresponds to the stable spatial soliton. The stability of
locked states decreases exponentially withsj @18#, so that the
most stable is thej 50 solitonlike structure. We remark tha
all these LS’s are homoclinic solutions starting and end
on the same stable homogeneous state without intercep
the other stable state and without passing through the or
of the phase space. When dealing with DW’s we identify
core of the kink with the point where both real and imagina
parts vanish. This definition is then compromised for sm
interaction distances, where the concept of a DW as a
eroclinic solution connecting two homogeneous phases lo
validity. However, in a broader sense, sinceu is forced to
vanish both for heteroclinic and homoclinic solutions, w
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identify the crossing coordinatesxk @u(xk)50# with the kink
cores or equivalently the center of mass of the kinks. P
odic boundary conditions allow just an even number ofxk .

Above the threshold for degenerate signal generat
multiple locked-state solutions—emerging under small r
dom perturbation from the zero-signal unstable solution—
characterized by asymptotically stable spatial chaos@18#.
Under certain conditions and in the absence of forcingm
50), noise can suppress chaos inducing the growth of s
tially periodic arrays of solitons@19#.

A. LS stability with constant or periodic bias

We first consider the casee50. The symmetry between
the two equivalent stable states can be broken by the add
of a constant perturbationm in the equation for the degene
ate signal field. The sign ofm determines which of the two
steady states becomes more stable, forcing kinks that
initially stable and far from each other to move. The dire
tion of the motion is that leading to the suppression of
less stable state. If a pair of defects encloses the less~more!
stable homogeneous state they are driven towards~away
from! each other.

We study the stability of thej-order LS by applying a
perturbation that tends to contract or expand the separa
between the kink pair. Equations~1! and ~2! are integrated
numerically by using a Milshtein’s method as described
Ref. @20#. For increasing values ofumu starting from zero,
j-order LS loses stability forumu.a j and for umu.b j when
subject to contraction and expansion, respectively, wh
a j.b j . Since the stability of thej-order LS decreases with
increasing order, we also have

a0.b0.a1.b1.•••.a j.b j , ~3!

with

lim
j→`

a j5 lim
j→`

b j50.

In fact, $a j% and $b j% decay much more rapidly in the cas
of Eq. ~2! where alreadya0

(2)!a0
(1) andb0

(2)!b0
(1) ~here the

upper indices indicate systems~1! and~2!, respectively!. Re-
lation ~3! is obvious in the case where a potential for t
defect interaction can be deduced, as in Ref.@18#. In that
case the potential barriers on either side of the potential w
in which the defect sits have different heights due to
exponential decay of the interaction. Relation~3! suggests
that the same character persists in a situation far from va
tional.

In Fig. 1 we plot the stability regions of the first tw
stable localized solutions of Eq.~1! and of the solitonlike
solution of Eq.~2!, which are shown in Figs. 1~a!, 1~b!, and
1~c!, respectively, in the space of parametersE andm. Note
that for any solutionA1 there exist the negative2A1 too and
since a jÞb j we obtain two different stability regionsV↑ j
andV↓ j ~indicated by arrows in Fig. 1! for an upward~solid
arrow! and a downward~dashed arrow! oriented localized
solution. As a consequence a kink pair subject to contrac
becomes subject to expansion if we change the sign ofm ~or
2-2
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STOCHASTIC RESONANCE IN THE PRESENCE OF . . . PHYSICAL REVIEW E 68, 036602 ~2003!
that of A1). Therefore, only inside their intersectionWj
5V↑ jùV↓ j ~dark gray shading! are both thej-order state and
antistate stable. Outside the inner regionWj there is an in-
termediate regionVj5(V↑ jøV↓ j )2Wj ~light gray shading!
wherej-order locked states are stable or unstable depen
on their orientation. The most external curve~dotted line in
Fig. 1! is the threshold that defines the regionS of existence
of two stable homogeneous solutionsA1

6(m), which is given
by

m th52@~E21!/3#3/2. ~4!

In the regionQj5S2(VjøWj ) none of thej-order locked
states exist. To help with the interpretation of Fig. 1, t
regions of stability have been shaded up toE53 andE54
for the soliton and double-peak solutions of Eq.~1!, respec-
tively, and up toE55 for the soliton solution of Eq.~2!.
Similar plots are obtained for higher order LS’s.

B. Driven front motion

Since we are interested in the transitions ofu5Re(A1)
between the two equilibrium statesA1

6(t), we map the func-
tion u(x,t) into the two discrete states61, with the kink
position xk lying in the discontinuity. We defineU(x,t)
5u/uuu ignoring in this way the oscillations around the equ
librium states imposed bym ~the intrawell motion in the
potential representation!. However we point out that our re
sults are not affected qualitatively by this filtering. We defi
the spatially averaged power spectrum as

FIG. 1. Stability regions of the first two (j 50,1) stable local-
ized solutions of Eq.~1! ~shaded up toE53 and E54, respec-
tively! and of thej 50 order solution of Eq.~2! ~shaded up toE
55). Arrow pairs indicate the widths of the stability regions for
upward~solid arrow! and downward~dotted arrow! oriented state.
Dark gray shading corresponds to values ofE andm where a state
and its negative are stable, while light gray shading correspond
regions where only one of the two is stable. Insets:~a! and ~b!
0-order and 1-order solutions of Eq.~1!. ~b! 0-order solution of
Eq. ~2!.
03660
ng

L~v!5
1

LE0

L

dxU È1`

U~x,t !eivt dtU2

. ~5!

We now considerm(t)5m̄ sin(Vt), with m̄ constant. An
isolated kink displays a periodic motion driven bym, its
position being given byxk(t)52sk(v/V)cos(Vt), where
sk5@du(xk)/dx#udu(xk)/dxu21561 is the crossing direc-
tion. Herev is the constant velocity of the defect, which
found using singular perturbation theory@22# whenm is con-
stant. Thus each isolated kink gives a contribution toL at the
frequencyV. It is interesting to note that for a givenV and

m̄ there exists a kink densityrS for which the signal is maxi-
mized. For instance, we consider a random distribution ofnk

kinks with densityrk5nk /L placed at arbitrary positions
Moreover, we choosem̄,a0. In this way rk remains con-
stant for an arbitrarily long time, since without noise the
cannot be any production or annihilation of kinks. In Fig.
we plot L(V). Each point has been averaged over 100 r
dom initial conditions with a fixed kink densityrk . L(V) is
obviously zero whenrk50 (u in one equilibrium state! and
it increases on increasingrk reaching a maximum. Howeve
as the distance between adjacent kinks shortens on inc
ing rk , their motion becomes more and more restricted a
the signal eventually decreases~see Fig. 2!. This particular
resonance also depends on the angular frequency of the
On increasingV the maximum signal shifts to larger value
of rk and simultaneously decreases:V5p31022 ~tri-
angles!, V55p31022 ~squares!, V525p31022 ~circles!.
We remark that this type of resonance is possible only
cause of the locking of DW’s and because of the hierarch

to

FIG. 2. Behavior of the signal powerL(V) for Eq. ~1! on vary-
ing the kink densityrk /rp , where rp is the maximum allowed
density of kinks: V5p31022 ~triangles!, V55p31023

~squares!, and V525p31024 ~circles!. Each point has been ob
tained by averaging over 100 different initial conditions. Parame

are m̄50.1, G51, E53.
2-3
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RABBIOSI, SCROGGIE, AND OPPO PHYSICAL REVIEW E68, 036602 ~2003!
structure of their existence limits~3!. A purely attractive in-
teraction between kinks would result in their annihilati
after a suitable time.

C. Control of stability and growth of spatial structures

Tuning the parameterG in Eq. ~1! corresponds to chang
ing the pump cavity finesse with respect to the degene
signal finesse. We remark that this is possible by virtue of
double time-scale structure of Eq.~1! and is therefore absen
in Eq. ~2!. The effects of this variation are manifold and w
address them in order. First, from the deterministic side,
have the following facts.

~i! The profile of the LS’s~both stable and unstable!
changes withG. For example, on reducingG, the amplitude
of the damped oscillations increases. Importantly, a cha
in the profile of the LS’s affects the activation~deactivation!
amplitude,Ea (Ed). This is defined as the threshold that
perturbation needs to overcome in magnitude in order to g
erate~erase! a soliton@19,21#. A plot of these two quantities
versusG is reported in Fig. 3~a! ~solid and dashed lines
respectively! versusG for E53.

~ii ! The existence limits of the LS’s in the parameter spa
(m,E) are functions ofG. In Fig. 3~b! we plot the existence
range of the stable 0-order LS’s as a function ofG when
subject to contraction~solid line! and expansion~dotted
line!, respectively, imposed by the biasm. For largeG the
curves approach asymptotically the stability thresholds
the corresponding LS’s of Eq.~2!. These thresholds are ind
cated by straight lines in Fig. 3~b!. Note also that, by com
paring the widths of the stability regions in Fig. 1, it is im
mediately evident that solitons in Eq.~1! are more stable
than their counterpart in Eq.~2!.

~iii ! The velocity of a DW when subject to a uniform
external perturbationm increases withG. The curves of the
velocity calculated using, for example, the method descri
in Refs.@21,22# are displayed in Fig. 4~a! for G50.2 ~dashed
line!, G51 ~dotted line!, and G55 ~dot-dashed line!. The
corresponding values obtained from numerical analysis
represented by symbols.

FIG. 3. ~a! The threshold amplitudeEd ~dashed line! and Ea

~solid line!. Parameters areG51, E53, anda50.5. ~b! Range of
stability of the 0-order LS’s in Eq.~1! when subject to contraction
~solid line! and expansion~dotted line! in the presence of biasm.
Straight lines correspond to stability thresholds for Eq.~2!.
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Second, the stochastic dynamics of kinks is also sign
cantly affected by variations ofG and we have the following
facts.

(i8) Since the ratio betweenEa and Ed determines the
equilibrium kink density, one observes larger kink densit
on reducingG. In particular, when the activation thresho
Ea becomes smaller thanEd , r(e) no longer goes to zero fo
e→0.

(ii 8) The kink diffusion increases withG. Fig. 4b shows
the diffusion coefficientD versus the noise intensitye. Lines
represent the predicted values forG50.2 ~dashed line!, G
51 ~dotted line!, andG55 ~dot-dashed line!. These are ob-
tained by using singular perturbation theory. The values m
sured using a statistical method, which consists in measu
the time-dependent variance of the random walk of the k
over 103 different simulations, are represented by the sy
bols: G50.2 ~squares!, G51 ~triangles!, andG55 ~circles!.

A characterization of SR in the DOPO model needs
consider these five points. In particular~i!, ~ii !, and (i8) are
sufficient, as we shall see, to explain most of the behav
observed@note that (i8) is a consequence of~i!#. As a matter
of fact, points~iii ! and (ii8) concern the ‘‘mobility’’ of iso-
lated DW’s, which is reflected in their velocity and diffusio
when subject to deterministic and stochastic perturbatio
respectively. The kink dynamics in the presence of ot
kinks strongly depends on their mutual interaction. Due
the locking of kinks for short interaction distances the fro
motion may temporarily freeze thus inhibiting the synchr
nization process. Since the average interaction distance
tween kinks is 1/r, the inhibition increases withr.

In Sec. II B we showed that the driven motion of kink
contributes to the synchronization mechanism for low no
intensities. We also underlined the relevance of the densit
kinks for the signal power. As we shall see, the onset of
signal power amplification on increasinge depends onG as a
consequence of (i8). The SR curve broadens on reducingG

FIG. 4. ~a! Kink velocity when a constant perturbationm is
externally added. Lines represent the calculated values ofv for G
50.2 ~dashed line!, G51 ~dotted line!, andG55 ~dot-dashed line!,
while symbols are obtained by a direct measurement of the velo
from the numerical simulations.~b! Diffusion coefficient vs the
noise intensitye. Lines represent the predicted values forG50.2
~dashed line!, G51 ~dotted line!, andG55 ~dot-dashed line!, while
symbols are the results of the statistics for the valuesG50.2
~squares!, G51 ~triangles!, andG55 ~circles! obtained by a direct
measurement.
2-4
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STOCHASTIC RESONANCE IN THE PRESENCE OF . . . PHYSICAL REVIEW E 68, 036602 ~2003!
sincer becomes significant even for very low noise inten
ties. Importantly, from~ii ! one deduces that the behavior
SR also depends on the amplitudem̄ of the periodic bias.
Since the LS’s lose their stability on increasingm̄ the SR
inhibition gradually becomes less relevant. A large kink de
sity now gives rise to an enhancement of SR.

For the remainder of our investigation it is convenient
introduce the occupancy of the statesA16 . We first intro-
duce the total length of the segments ofUt(x) that are posi-
tive ~negative! at time t, which is considered as a paramet
This is given byy1(t)5m(Bt

1) @y2(t)5m(Bt
2)#, where

Bt
1(2)5$xP@0,L#:Ut(x).0 @Ut(x),0#%, andm is the Le-

besgue measure. The occupancyY6 of the statesA16 is
defined as

Y65
^y6~ t !&

L
. ~6!

Moreover, we introduce the normalized averaged kink d
sity r,

r5
^nk~ t !&s0

L
5

^rk~ t !&
rp

, ~7!

wherenk(t) is the number of kinks on a lengthL, rk is the
corresponding density, andrp51/s0 is the maximum density
of kinks allowed for a stable solution of Eqs.~1! and ~2!
which corresponds to a periodic soliton solution with peri
2s0.

When eÞ0 the evolution of the instantaneous kink de
sity rk becomes a random process. The birth and death
pair of kinks is equivalent to the production~annihilation! of
a 0-order LS~cavity soliton!. This is achieved when the dis
tances between the crossing pairs becomes bigger~smaller!
than the critical sizesun , the separation between the zeros
the real part of the unstable soliton solution which represe
a saddle point@19#. Therefore not all the zerosxk identify
unequivocally a kink and in the statistical count we mu
consider only kink pairs separated at least bysun . After a
transient time the system loses memory of the initial con
tion rk

05rk(t0) and its momentum̂rk(t)urk
0 ,t0& at equilib-

rium assumes the stationary valuer which depends only on
e once other parameters have been fixed. At equilibrium
for m̄50, U(x,t) is evenly distributed among the tw
equivalent states61, thereforeY65^y6&5 1

2 . In the weak
noise limit kinks can be easily tracked and their stocha
dynamics followed in time. Their evolution is described
switchings between the equilibrium distancessj for short in-
teraction distances and a diffusivelike motion for larger d
tances.

D. Stochastic resonance

Let us now consider the case with botheÞ0 andm̄Þ0.
The dynamics of an isolated kink undergoes a superpos
of Brownian and periodic driven motion which is describ
by a Langevin equation@9,23# for the kink position. Spa-
tiotemporal synchronization in spatially extended system
03660
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achieved through the depletion of the less stable state an
activated by the nucleation of small domains that grow a
shrink due to the front motion. This is a particular featu
introduced by spatial coupling of either a diffusive or a d
fractive nature.

We remind the reader that spatial solitons and LS’s e
in the 1D models~1! and~2!, just above the threshold for th
degenerate signal generation. As we have shown in Sec.
the existence limit of LS’s in the presence of bias depends
the parameterG. Our measurements of SR for different va
ues ofG are therefore very sensitive to the magnitude of
periodic bias. This suggests to us that a characterizatio
SR needs to be carried out in the parameter space (G,m̄).
The range ofm̄ is 0<m̄,m th , wherem th is given by Eq.~4!,
while G is typically chosen in the interval@0.2,5#.

Both the finite integration time and the time discretizati
act as filters, introducing the cutoff frequencies 1/Tf and
1/(2Dt), respectively, whereTf is the total time of the simu-
lation andDt is the time step. They also dictate thatDt!T
!Tf for the periodT52p/v of the bias. For the numerica
simulations we use a grid of typically 512 elements, an in
gration timeTf5128T, with T5102, and a time stepDt
51023. Other parameters area50.5 andE53 which gives
m th;1.0887. These shall be considered fixed throughout
remainder of this paper. SR is observed on tuning the no
intensity e. For fixed valuesG and m̄, we run a series of
simulations~with different noise realizations! and increasee
at each step. Among the many ways to measure SR we
ploy the SNR, defined as

u510 log10S @L~V!2LN~V!#

LN~V! D , ~8!

where LN(V) represents the spectral power of the bac
ground in the proximity of the signal peak. At our conv
nience we compare it with other SR quantifiers introduc
below. Since the soliton width changes withG @24#, the
lengthL of the transverse field is chosen in such a way as
contain the same number ofs0. In our caseL550s0. How-
ever, we remark that a change in the spatial scale does
influence our numerical results as long as 1!L/s0!N,
which is imposed by the space discretization only.

Transitions between the stable states are rare at w
noise intensities and the SNR, which is initially low, rises
increasinge, and peaks at an optimal noise intensityeSR @see
Fig. 5~a!#. For highere the transitions become less correlat
and eventually the SNR dies out. Qualitatively similar b
havior is observed in the parameter region considered h
but with different values ofE. A rich variety of behaviors is
observed in the way SR occurs on varyingG. On increasing
G the shape of the SNR curves changes continuously f
broad to narrow while their maximauM increase. To visual-
ize this, we plot in Fig. 5 the curves corresponding toG
50.2 ~crosses!, G51 ~empty squares!, G55 ~triangles! for
the driving amplitudem̄50.1m th (,a0). Note how the SNR
spectra asymptotically (G→1`) approach the SNR curve
obtained from numerical simulations of Eq.~2!, which is
represented by the dashed line in Fig. 5~a!. This increase in
2-5
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RABBIOSI, SCROGGIE, AND OPPO PHYSICAL REVIEW E68, 036602 ~2003!
the maximumuM , which appears as an enhancement of S
might resemble the AESR of Refs.@8,9#. However we stress
that in our case enhancement of SR is not obtained by tu
the diffraction coefficient. This would in fact lead to a me
change of scale for the spatial coordinates. Note also thauM
saturates to the asymptotic limit given by Eq.~2! rather than
showing a maximum as in Ref.@8#.

We now take a closer look at the dynamics of the fie
The sequences shown in Fig. 6 represent the evolutionu
over eight periods of the driving forG50.2 @panels~a–e!#
andG55 @panels~f–j!#, respectively, and for increasing va

FIG. 5. ~a! Signal-to-noise ratio curves for Eq.~1! when m̄
50.1m th . Starting from the broadest curve:G50.2 ~crosses!, G
51 ~squares!, andG55 ~triangles!. Dashed curve is obtained from
numerical simulations of Eq.~2!. b! Maximum occupancyYl for
the same valuesG50.2 ~crosses!, G51 ~squares!, G55 ~triangles!.
Other parameters area50.5, E53, andm th50.108 866.

FIG. 6. Evolution ofu(x,t) for G50.2 ~a–e! andG55 ~f–j! for
increasing values ofe: log10(e)520.7 ~a,f!, 20.45 ~b,g!, 20.2

~c,h!, 0 ~d,i!, 0.25~g,j!, whenm̄50.1m th . Dark ~light! regions rep-
resent positive~negative! values ofu. Other parameters are as
Fig. 5.
03660
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ues ofe. From left to right we have log10(e)520.7 @panels
~a,f!#, 20.45 @panels~b,g!#, 20.2 @panels~c,h!#, 0 @panels
~d,i!#, 0.25 @panels~g,j!#, when m̄50.1m th . Dark ~light! re-
gions represent positive~negative! values ofu.

We first analyze sequence~a–e! of Fig. 6 atG50.2. We
notice that a substantial kink density is already present
small e @Fig. 6~a!# in accordance with (i8). LS’s show up as
stripes, the thinnest stripes corresponding to cavity solito
Other LS’s at larger distancessj ( j .0) are less clearly iden
tifiable as they have a shorter lifetime. The increasing nu
ber of birth-death events on increasinge tends to synchro-
nize with m although the LS’s are still visible even a
resonance@Fig. 6~c!# causing a mixing between the tw
states, which prevents a full synchronization. In the last
quence (G50.2) of Figs. 6~f–j!, the kink population is ini-
tially negligible @Fig. 6~f,g!#. However here the synchroniza
tion is more effective at resonance@Fig. 6~i!#. This cannot be
fully appreciated by looking at a short evolution of the fie
and needs to be proven by a statistical analysis that cons
much longer simulations and quantifiers other than the SN
For this reason we introduced the average occupancyY6,
and densityr, that we shall now analyze.

The stochastic processesy6 andrk are no longer station-
ary @25# in the presence of a periodic bias and their mea
Y6 and r become periodic functions of timeY6(t)5Y6(t
1T) and r(t)5r(t1T/2), respectively. The curvesY1(t)
~solid line! and r(t) ~dashed line!, both obtained from nu-
merical simulations andm(t) ~dotted line! are plotted in
Fig. 7.

It is easy to see that the stationary points ofY6 have to
coincide with minima ofr whereas points whereY15Y2

51/2 (d2Y1/dt250) correspond to maxima ofr. In obtain-
ing Y6 andr one has to take into account the phase lag
the spatiotemporal synchronization@26#. As a matter of fact
the extrematst of Y6 ~minima of r) in the interval (t,t

FIG. 7. Comparison betweenr ~dashed line!, Y1 ~solid line!,

and the periodic biasm ~dotted line!, wherem̄ is set to 1 for con-

venience in the picture. The parameters arem̄50.3m th , log10(e)
520.2, G50.2. The inset shows the phase lag~degree! as function
of log10(e) for G50.2 ~solid line! and G55 ~dashed line!. Other
parameters are as in Fig. 3.
2-6
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1T# do not correspond to the extrema ofm, which aretst8
5(2n11)T/4 (n50,1,2, . . . ). Instead they are phas
shifted byF(e), i.e., tst5tst8 1F. It can be seen from the
inset in Fig. 7 that the phase shift is not negligible especia
for low noise levels.

The knowledge of one ofY6 determines completely th
other. Therefore the maximum occupancyYl of eitherA11

or A12 is achieved fort5tst where Yl5uY6(tst)21/2u
11/2, with 1/2<Yl<1. Here the dependence on the para
eter e of the variablesr and Y is implicitly assumed. A
similar definition of occupancy which ignores the phase
was given in Ref.@8#. Not surprisingly the maximum occu
pancy Yl and SNR curves behave in a similar way, as
clear from Fig. 5, which compares the two quantities. A
matter of factYl differs from the SNR because it only take
into account the signal powerL(V) and notLN(V). On
increasingG from G50.2 ~crosses! to G51 ~squares! to G
55 ~triangles!, the curvesYl(e) become narrower@Fig.
5~b!#. Furthermore their maximum increases and, as in F
5~a!, shifts to higher noise levels. Rather than thinking o
as an enhancement of SR on increasingG we should rather
consider this as a reduction in the inhibition caused by
locking of kinks. Although the interpretation of these resu
is supported by the properties~i!–~iii ! and (i8) and (ii8)
described earlier in Sec. II C, we need to look for a mo
quantitative proof of this picture.

We now consider the kink density which is itself a S
quantifier and in particular we focus on its minimumrm
5r(tst) and maximumrM5r(tst1T/4).

Figure 8~a! shows the typical behavior ofrm ~diamonds!,
rM ~circles!, and r̄5rM2rm ~squares! versuse. One notes
that r̄ also displays a resonance on tuning the noise leve
a valuee;eSR. However, the crucial quantity here isrm

SR

5rm(eSR), which represents the minimum kink density

FIG. 8. ~a! rm ~diamonds!, rM ~empty circles!, andr̄ ~squares!

for m̄50.25m th andG51. G. ~b! Minimum and maximum defec
densities at resonance:rm

SR ~filled symbols! and rM
SR ~empty sym-

bols!, respectively, for the values of bias amplitudem̄50.15m th

~circles!, m̄50.25m th ~squares!, and m̄50.4m th ~triangles!. Corre-

sponding values ofrm for Eq. ~2! at m̄50.15m th ~solid line!, m̄

50.25m th ~dashed line!, m̄50.4m th ~dotted-dashed line!.
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resonance. Why this point is crucial is evident from the fa
that the synchronization ofu requires the suppression o
kinks. The most effective synchronization is the one wh
no kinks are present attst . This is equivalent toYl(eSR)
51, rm

SR50. Typically, however,Yl(eSR),1 andrm
SR.0.

Figure 8~b! shows thatrm
SR decreases monotonically on in

creasingG for m̄50.15m th ~filled circles! so thatrm
SR is much

higher than zero for low values ofG. Here the motion of the
kinks is inhibited by the fact that they are so close to ea
other that they form metastable states. These kinks are
isolated since their average distance is 1/rm

SR;2 in s0 units.
In Fig. 8~b! we also plot the value ofrm

SR for Eq. ~2! ~solid
line! which is approached asymptotically by Eq.~1! as G
→`. At G55 the average distance between kinks is 1/rm

SR

;4. The spatial oscillations in this case are critica
damped and are not able to give rise to metastable state
order higher than 1. Hence kinks can already be conside
as independent at this average distance.

As we pointed out earlier, solitons are stable against c
traction induced by the bias whenm̄,a0. This is the weak-
est condition in order to maintain a certain number of sta
kinks in the deterministic case and in the presence of b
However, kinks can annihilate due to the presence of s
chastic fluctuations that can induce a collision betwee
kink and an antikink which results in their annihilation. I
this case the kink density is determined by the ratio betw
Ea andEd , as pointed out in (ii8). The existence limit of the
solitons does not have a great influence on the kink den
for small m̄. As a matter of fact,rm

SR(G) is monotonic while
a0(G) @see Fig. 3~b!# displays a maximum forGa0

;0.5. On

reducingG from the valueGa0
the kink densityrm

SR increases
though solitons become ‘‘less stable.’’ The key point here
the relation between the two important quantitiesEa andEd .
WhenEa;Ed a larger kink density than in the caseEa.Ed is
formed.

This holds untilm̄,a0, since close toa0 the determinis-
tic dynamics becomes more relevant. Evidently,rm

SR de-

creases on increasingm̄, because collisions become mo
likely, but it decreases at different rates for different valu
of G. Note that when a temporary equilibrium between t
two phases is establishedr has a maximum,r5rM ~see Fig.
8!. For low values ofG and at any value of the bias ampl
tude, the kink densityrM is large and decreases monoton
cally on increasingG @empty symbols in Fig. 8~b!#. It should
be noted that largerM results in a more rapid annihilation o
the kinks attst , whenm̄.a0. As a matter of fact, the close
the kinks are the easier it is for the bias to erase them a
indeed, largerM means closer interaction distances. Hen
on increasingm̄, rm

SR decreases more rapidly at smallG than

at largeG. This is shown by the curvesm̄50.25m th ~filled
squares! and m̄50.4m th ~filled triangles! in Fig. 8~b!. In the
last curve one observes in particular a nonmonotonic beh
ior which is the signature of a substantial change in the
curves, as we shall see later. Dashed and dotted-dashed
in Fig. 8~b! are again the values ofrm

SR for Eq. ~2! which
plays the role of asymptotic values of the curvesrm

SR, for
2-7
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G→1`. For comparison we also plot the maximum kin
densityrM

SR5rM(eSR) at resonance for the same values

the bias amplitudem̄50.15m th ~empty circles!, m̄50.25m th

~empty squares!, andm̄50.4m th ~empty triangles!.
The onset of signal amplification decreases on reducinG

due to the increasing kink density. Therefore the SNR a
occupancy curves, at low noise intensities, increase in w
asG decreases. On increasingm̄, the onset of SR decrease
even further whenG is small. This phenomenon is easi
explained by referring to the kink density. For weak no
levels the birth-death events become so rare thatr may be
thought of as a stationary process (rm>rM). In this circum-
stance the signal power at the driving frequency is ov
whelmingly due to front motion. Typically, on reducinge the
kink density becomes so small that this effect is hardly
servable. However, whenEa;Ed (G;0.2), r is significantly
greater than zero even for very low noise intensities. He
the contribution given by the driven fronts to the spect
componentV/2p becomes relevant and indeed leads to
lowering of the onset of SR. WhenEa@Ed , on the other
hand, the kink densityr tends to zero very rapidly fo
e→0.

We now focus on the behavior of the SNR,u, on increas-
ing m̄. We consider here the maximumuM of u. Plots ofuM

versusm̄ andG are given in Figs. 9~a! and 9~b!, respectively.
Figure 9~a! shows the growth ofuM(m̄) for the valuesG
50.2 ~circles!, G51 ~squares!, and G55 ~diamonds!. The
monotonic growth ofuM is obviously due to the increase o
the bias amplitude. What is interesting to observe, howe
is the relative growth ofuM for different values ofG. One
notices that the distance between the curves tends to dec
on increasingm̄. In particularuM grows faster for lowG
~circles!. This is significant in that the inhibition of SR in
duced by the presence of cavity solitons decreases for la
m̄. More importantly a large densityrM(SR) eventually
helps a more effective synchronization leading to an
hancement of SR.

FIG. 9. ~a! Maximum uM of the SNR againstm̄: G50.2
~circles!, G51 ~squares!, and G55 ~diamonds!. ~b! Curves uM

againstG: m̄50.1m th ~squares!, m̄50.25m th ~filled diamond!, m̄

50.4m th ~triangles!, andm̄50.55m th ~filled circles!.
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To appreciate this phenomenon more easily we plot
Fig. 9~b! the curvesuM(G) for m̄50.1m th ~squares!, m̄

50.25m th ~filled diamond!, m̄50.4m th ~triangles!, and m̄
50.55m th ~filled circles!. The transition from inhibition to
enhancement of SR is explained by the reduced effective
of the locking of kinks. This is more apparent for smallG
where a larger kink density causes the inhibition of SR wh
m̄,a0 but, on the other hand, favors the quick annihilati
of kinks whenm̄.a0. As a matter of fact kink pairs with a
shorter interaction distance are more likely to annihila
Consequently the curvesuM(G) @Fig. 9~b!# that increase
monotonically for m̄50.1m th change character, eventual
becoming decreasing functions ofG.

III. 2D CASE

In this section we examine the occurrence of SR in
two-dimensional DRDOPO model~1!. We have seen that in
one dimension, LS’s and cavity solitons emerge at the thre
old Eth for parametric down-conversion and are stabiliz
due to a balance between diffraction and nonlinearity. In t
dimensions the onset of the existence of stable struct
does not coincide with the degenerate signal threshold
cause of curvature phenomena that now have to be taken
account. For instance, atG51, the thresholdE0 for the
0-order cavity soliton is atE>2.2 while the threshold for the
degenerate signal generation isEth51. Higher order LS’s
appear for increasingly higher pump values, in such a w
that their thresholdsEj obeyEj,Ej 11 @13#. This is similar
to the 1D case in the presence of a spatially uniform cons
biasm. Even there the thresholdsEj are found on increasing
E when 0,umu,m th . This can be seen from Fig. 1 upo
moving upward along a vertical line. Earlier in Sec. II A w
pointed out that it is possible to reduce consistently
thresholdsEj by reducingG @14#. These, however, remain
above the valueEth .

The dynamics of the transverse degenerate signal fi
shows phase-ordering-like kinetics typical of nonequilibriu
systems, where the order parameter is not conserved@27#. A
domain of one phase shrinks and eventually disappears in
opposite phase forEth,E,E0. Instead forEj,E,Ej 11,
the shrinking of a domain, which can be accompanied by
disappearance of any domain embedded in it, leads eve
ally to the stabilization of a LS of circular shape with diam
etersj .

It is easy to see that quantities such as the power spec
L can be immediately extended to the 2D case. From this
can obtain the SNR which gives information about the
phenomenon. With the arguments employed in the preced
section it is possible to show that SR presents qualitativ
the same properties as in one dimension. We use a gri
1283128 elements, and a driving amplitudem̄50.15. From
the numerical side the extra spatial degree of freedom res
in a significant increase in the integration time. The length
our simulations is now 50T. Other parameters are as in th
preceding section. Note that the addition of a spatial deg
of freedom does not affectm th and the homogeneous solu
tions.
2-8
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We first analyze the near field. In Fig. 10, the two s
quences~a–d! and~e–h! show the evolution ofu during one
periodT of m(t). ForG50.1 ~right! andG55 ~left! we have
t5t8 @panels ~a,e!#, t5t81T/4 @panels ~b,f!#, t5t81T/2
@panels~c,g!#, andt5t813T/4 @panels~d,h!#, wheret8 is an
appropriate time. Att5t8 @panels~a,e!#, u is at the point of
maximum occupancy of the stateA11 ~first row!. Subse-
quently the periodic driving helps domains of the minor
phase to grow and in panels~b,f! u is equally distributed
between the two phases. At this point the negative ph
starts to be preferred and in panels~c,g! u reaches the poin
of maximum occupancy of the stateA12 . Again in panels
~d,h! we have a temporary balance between the two pha
and subsequently the entire evolution periodically repeat
time. In the left sequence (G50.1) of Fig. 10 the bright and
dark spots, clearly visible in~a! and~c!, are cavity solitons in
two dimensions. Their presence is an obstacle to the sync
nization process. This takes place more effectively forG
55 ~right sequence! where at the point of maximum occu
pancy ofA16 the transverse field consists almost entirely
one phase@see panels~e,g!#. The SNR curves shown in Fig
11 for G50.1 ~circles!, G51 ~squares!, andG55 ~triangles!
display the same qualitative behavior as Fig. 5. The ma
mum u of the SNR increases withG and the curves becom
narrower. Therefore the inhibition of SR decreases on
creasingG. However, on increasingm̄ the maxima increase
at different rates for differentG and eventually an enhance
ment of SR is achieved for lowG as in one dimension. Thes

FIG. 10. From top to bottom, the sequences show the evolu

of u(xW ,t) during one period ofm(t) taken at intervals ofT/4. ~a!

Right: G50.1. ~b! Left: G55. Other parameters areE53 andm̄
50.15m th .
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results support the idea that SR in two dimensions pres
qualitatively the same features shown by the 1D dynami

CONCLUSIONS

We have shown that SR, seen as a synchronization
noise-induced transitions between two states in the tra
verse field of OPO systems, can be enhanced~inhibited! on
increasing the kink density for large~small! driving ampli-
tudes. We have characterized SR by tuning the pump ca
finesse, i.e., the parameterG. This is seen to affect the LS
profile, modifying the ratio between activation and deactiv
tion amplitudes for the creation and annihilation of soliton
Eventually this results in a variation of the average ki
density. Hence, we demonstrated that locking kinks at l
driving amplitudes inhibit SR and this inhibition increas
with the kink density. We have also shown that, at larg
driving amplitudes, in the regime where LS’s cease to
stable, a large density of kinks is instead beneficial to
effective synchronization. Moreover we presented a suita
generalization of the SR effect to the two-dimensional c
where the validity of our interpretation holds true. The d
scribed phenomena are universal once two equivalent ho
geneous states and DW’s leading to locked solitons
present. For this reason we believe that the implications
our investigation are not limited to nonlinear optics but c
be generalized to other fields of science including fluid d
namics, chemical oscillations, and solid state physics.

Finally, we note that our SR corresponds to synchroni
tion of the order parameter. A complementary interpretat
considering the kinks as particlelike objects is possible a
will be presented elsewhere@28#.
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FIG. 11. SNR curves for Eq.~1! in two dimensions on varyingG

at the bias amplitudem̄50.15m th . Starting from the broadest curve
G50.1 ~circles!, G51 ~squares!, andG55 ~triangles!.
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@10# M. Löcher, G.A. Johnson, and E.R. Hunt, Phys. Rev. Lett.77,

4698 ~1996!.
@11# J. Opt. Soc. Am. B16 ~1999!, special issue on Optical Para

metric Devices and Processes.
@12# G.-L. Oppo, M. Brambilla, and L. Lugiato, Phys. Rev. A49,

2028 ~1994!; G.J. de Valcarcel, K. Staliunas, E. Roldan, a
V.J. Sanchez-Morchillo,ibid. 54, 1609~1996!; S. Longhi,ibid.
53, 4488 ~1995!; A. Gatti and L.A. Lugiato,ibid. 52, 1675
~1995!; A. Gatti, H. Wiedemann, L.A. Lugiato, I. Marzoli
G.-L. Oppo, and S.M. Barnett,ibid. 56, 877~1997!; I. Marzoli,
A. Gatti, and L. Lugiato, Phys. Rev. Lett.78, 2092~1997!.

@13# G.-L. Oppo, A.J. Scroggie, and W.J. Firth, Phys. Rev. E63,
066209~2001!.
03660
.

@14# G.-L. Oppo, A.J. Scroggie, S. Sinclair, and M. Brambilla,
Mod. Opt.47, 2005~2000!.

@15# M. Vaupel, A. Maitre, and C. Fabre, Phys. Rev. Lett.83, 5278
~1999!.
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