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Stochastic resonance in the presence of spatially localized structures
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Stable spatially localized structures exist in a wide variety of spatially extended nonlinear systems, including
nonlinear optical devices. We study stochastic resoné®Bein models of optical parametric oscillators in the
presence of a spatially uniform time-periodic driving and in a regime where two equivalent states with equal
intensity but opposite phase exist. Diffraction and nonlinearity enable the existence of localized states, formed
by the locking of kinks and antikinks and displaying spatially damped oscillatory(tailsne dimensionor
the stabilization of dark ring cavity solitorig1 two dimensions We show that SR is inhibited at low driving
amplitudes by the presence of localized states which obstruct the front motion. For larger driving amplitudes,
in the regime where localized states cease to be stable, we observe instead an enhancement of SR.
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The presence of noise in a nonlinear system often result®calized state$L S’s). Two-state transitions are activated by
in seemingly counterintuitive effects. One example is sto-stochastic fluctuations, through the nucleation of a small do-
chastic resonand&R) which is nonetheless one of the most main of critical size. In the presence of a spatially isotropic
studied and well understodd,2]. During recent years there time-periodic modulation, transitions between the two homo-
has been an increasing interest in the study of stochast@eneous states tend to synchronize with the driving and are
effects in spatially extended nonlinear systef@s The in-  €nhanced by the driven front motion. The best synchroniza-
troduction of spatial degrees of freedom gives rise to a neWion is achieved for an optimal noise intensity where the
series of possible features that influence the SR phenomessignal-to-noise rati¢SNR) is maximized.
with respect to the zero-dimensional cf4¢ Previous stud- The implications that the presence of LS’s have on the
ies have shown that the coupling of a certain number ofppearence of SR are manifold and motivate the present
resonators into an array can enhance the signal-to-noise ratiudy. The choice of a nonvariational systgif] such as the
(SNR) [5-7]. This has been referred to as array enhanced SRPO’s should not be considered a limitation on our results.
(AESR) [8—-10. It is important to point out that the AESR is This model is in fact representative of an entire class of
an effect due to the discretization and cannot be observed i@ptical devices and of systems beyond nonlinear optics.
continuous systems where coupling constants often just play Our work is organized as follows. In Sec. | we introduce
the role of scaling factors. Here we study enhancements arfi¢ OPO models. We initially discuss the 1D case in Sec. |I
inhibitions of SR not due to changes in the coupling con-where we study the LS stability in the presence of constant

stants as Ref§8—10] but to the presence of solitary struc- and time-dependent bias and we also discuss the implications
tures. of their stability when the system undergoes a periodic driv-

Our investigation focuses on one-dimensiofiBD) and  ing. We demonstrate the existence of SR for this system and
2D models of optical parametric oscillatoai®PO’y, one of ~ We characterize the phenomenon in the presence of LS’s on
the prototypes for the study of pattern formation, solitonsvarying the kink density and driving amplitude. The charac-
localized structures, etc., in nonlinear optics. The OPO is &erization of SR is done by considering the average kink
nonpotential system that has attracted a lot of attention botflensity. Finally, in Sec. Ill we generalize our results to 2D
from the fundamentdl11-14 and experimental sidgd5].  models.

A m-phase symmetry enables the existence of two equivalent

stabl_e states with opposite phase bu'_c the same intensity for | THE MODEL

the signal field. Domain wallDW) solutions, or kinks, sepa-
rating the two equivalent states are characterized by spatially
damped oscillatory tails which are ubiquitous in nonlinear
optics in the presence of nonlinearity and diffraction. Mutual
attraction or repulsion between a pair of DW vanishes al
certain characteristic distances giving rise to stable spatiall

We consider models of a stochastically driven degenerate
OPO (DOPO in one transverse dimension and for conve-
ience we set to zero the detunings for pump and signal field.
n the doubly resonant moddDRDOPQ, where both pump
¥nd the degenerate sigridl7] fields are resonated in a cav-
ity, we have the following system of stochastic partial differ-

_ ) ential equations:
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GAL=[— A+ AA* +i2aV2A, ]+ u+ E(X,1) identify the crossing coordinatesg [ u(x,) = 0] with the kink
! e cores or equivalently the center of mass of the kinks. Peri-

whereA, andA, are two complex functions representing the 0dic boundary conditions allow just an even numbexjof
pump and degenerate signal field, respectivily,d/ot, and Above the threshold for degenerate signal generation,
V2= (3/9x)%+(dldy)?. On the right-hand side of Eq1) T multiple locked-state solutions—emerging under small ran-
rates in the cavityE is the amplitude of the external pump Characterized by asymptotically stable spatial chpif).
field, anda is the diffraction constant. The termrepresents Under certain conditions and in the absence of forcipg (
a perturbation which will be conveniently chosen either con-=0), hoise can suppress chaos inducing the growth of spa-
stant or time dependent and the complex tef(ﬁ,t) is tially periodic arrays of solitong19].
Gaussian white noise which satisfidg(x,t)&* (x',t"))

=2e8(x—x")8(t—t’), with e the noise strength. Fdr>1 _ _
the cavity becomes transparent to the pump field and system We first consider the case=0. The symmetry between

A. LS stability with constant or periodic bias

(1) reduces to the two equivalent stable states can be broken by the addition
of a constant perturbation in the equation for the degener-
OAL=—Ar+EAY +A|A|2+iaV2A + u+ E(X,1), ate signal field. The sign g& determines which of the two

2) steady states becomes more stable, forcing kinks that are
initially stable and far from each other to move. The direc-
which is therefore called the singly resonant DOPO. tion of the motion is that leading to the suppression of the
When u and e vanish, Egs.(1) and (2) possess three less stable state. If a pair of defects encloses the(faese
homogeneous steady state solutions for the degenerate sigiséble homogeneous state they are driven towaatgy
field (A;=0,=JE—1) which are present above the thresh-from) each other.
old for the degenerate signal generation. The trivial solution We study the stability of thg-order LS by applying a
is unstable whereas the other two, which we ¢gfl, are perturbation that tends to contract or expand the separation
stable. DW solutiongalso called kinks in 1D modelson-  between the kink pair. Equatiort4) and (2) are integrated
necting the two stable equilibrium states are the simplesfumerically by using a Milshtein’s method as described in
among the nonhomogeneous solutions. DW's are also stabRef. [20]. For increasing values dfu| starting from zero,
and correspond to heteroclinic orbits in the phase space thizorder LS loses stability fofu|>«; and for|u|>8; when
start from one equilibrium state for— — oo, vanish at the subject to_ contraction .z_ind expansion, respectively, V\_/here
origin, the kink core, and end on the opposite equilibrium®i= B - Since the stability of th¢-order LS decreases with

state forx— +. Since the stable homogeneous states arlencreasmg order, we also have

real, DW’s manifest themselves only in the real partAgf o> Bo>ay> B> > a> B (3)
! L ; ; ) i~ Pj»

where their profile is characterized in Ed) by oscillatory

tails that are due to the coupling of the nonlinearity with with

diffraction. In Eq. (2) these oscillatory tails are critically

damped. Since we are interested in the switching between lim a;= lim B;=0.
stable equilibrium states we focus only on the real paof joe jow
Aj=u+tiw.

In fact, {@;} and{B;} decay much more rapidly in the case
of Eq. (2) where alreadyr(?)<a{" and 8{)<B" (here the
upper indices indicate syster(ly and(2), respectively. Re-

In one dimension the interaction between kink and antidation (3) is obvious in the case where a potential for the
kink vanishes at certain locking distancgsvhere the DW’s  defect interaction can be deduced, as in R&8]. In that
lock forming stable LS'§13]. The distances; also identify  case the potential barriers on either side of the potential well
eachj-order localized structure. The smallest separagn in which the defect sits have different heights due to the
corresponds to the stable spatial soliton. The stability of thexponential decay of the interaction. Relati(8) suggests
locked states decreases exponentially \sjthl8], so that the  that the same character persists in a situation far from varia-
most stable is th¢=0 solitonlike structure. We remark that tional.
all these LS’s are homoclinic solutions starting and ending In Fig. 1 we plot the stability regions of the first two
on the same stable homogeneous state without interceptirgjable localized solutions of E¢l) and of the solitonlike
the other stable state and without passing through the origigolution of Eq.(2), which are shown in Figs.(&), 1(b), and
of the phase space. When dealing with DW’s we identify thel(c), respectively, in the space of parametérand . Note
core of the kink with the point where both real and imaginarythat for any solutiorA; there exist the negative A, too and
parts vanish. This definition is then compromised for smallsince «;# 8; we obtain two different stability region¥';;
interaction distances, where the concept of a DW as a he&ndV ; (indicated by arrows in Fig.)Ifor an upward(solid
eroclinic solution connecting two homogeneous phases losesrow) and a downwarddashed arroyvoriented localized
validity. However, in a broader sense, sinecas forced to  solution. As a consequence a kink pair subject to contraction
vanish both for heteroclinic and homoclinic solutions, webecomes subject to expansion if we change the sign @fr

[Il. THE 1D CASE (V?=4,,)
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FIG. 1. Stability regions of the first twoj €0,1) stable local- P

ized solutions of Eq(1) (shaded up tE=3 andE=4, respec-
tively) and of thej=0 order solution of Eq(2) (shaded up t&E
=5). Arrow pairs indicate the widths of the stability regions for an
upward (solid arrow and downwarddotted arrow oriented state.
Dark gray shading corresponds to value€adnd « where a state
and its negative are stable, while light gray shading corresponds
regions where only one of the two is stable. Insé@:and ()  areu=0.1,I'=1, E=3.
0-order and 1-order solutions of E@l). (b) 0-order solution of
Eq. (2).

FIG. 2. Behavior of the signal powex(Q) for Eq. (1) on vary-
ing the kink densityp,/p,, wherep, is the maximum allowed
density of kinks: Q=wx10"2 (triangles, Q=57x103
(squarel and Q) =257x10"* (circles. Each point has been ob-
t@ingj by averaging over 100 different initial conditions. Parameters

2

fWU(x,t)e“"tdt (5)

0

L
A(w)z% f dx
that of A;). Therefore, only inside their intersectiol; 0
=V;;NV|; (dark gray shadingare both thg-order state and
antistate stable. Outside the inner regldh there is an in- o o
termediate regiotV;=(V,;UV ;) —W, (light gray shading We now considen(t) = u sin(2t), with x constant. An
wherej-order locked states are stable or unstable dependinigolated kink displays a periodic motion driven hy, its
on their orientation. The most external curigotted line in  position being given byx,(t)=— o (v/Q)cos(lt), where
Fig. 1) is the threshold that defines the regbrof existence o=[d u(xk)/dx]|du(xk)/dx|‘1= +1 is the crossing direc-
of two stable homogeneous solutioh$ (1), which is given  tion. Hereu is the constant velocity of the defect, which is
by found using singular perturbation thed82] whenu is con-
stant. Thus each isolated kink gives a contribution tat the
win=2[(E—1)/3]%2 (4)  frequency(). It is interesting to note that for a givei and

;there exists a kink densifys for which the signal is maxi-
In the regionQ; =3 — (V;UW,) none of thej-order locked mized. For instance, we consider a random distribution,of

states exist. To help with the interpretation of Fig. 1, thekinks with densityp,=n,/L placed at arbitrary positions.
regions of stability have been shaded ufEte 3 andE=4 Moreover, we choos@<aq. In this way p, remains con-
for the soliton and double-peak solutions of Ef), respec- stant for an arbitrarily long time, since without noise there
tively, and up toE=5 for the soliton solution of Eq(2).  cannot be any production or annihilation of kinks. In Fig. 2
Similar plots are obtained for higher order LS’s. we plot A(Q)). Each point has been averaged over 100 ran-
dom initial conditions with a fixed kink density, . A(Q) is
obviously zero whemw,=0 (u in one equilibrium staeand
it increases on increasing, reaching a maximum. However
Since we are interested in the transitionsuef Re(A;) as the distance between adjacent kinks shortens on increas-
between the two equilibrium statés (t), we map the func- ing py, their motion becomes more and more restricted and
tion u(x,t) into the two discrete states 1, with the kink  the signal eventually decreasesee Fig. 2 This particular
position x, lying in the discontinuity. We defindJ(x,t) resonance also depends on the angular frequency of the bias.
=u/|u| ignoring in this way the oscillations around the equi- On increasing) the maximum signal shifts to larger values
librium states imposed by (the intrawell motion in the of p, and simultaneously decrease€=7x10 2 (tri-
potential representatibnHowever we point out that our re- angles, Q=57Xx10 2 (squares Q=257x10 2 (circles.
sults are not affected qualitatively by this filtering. We defineWe remark that this type of resonance is possible only be-
the spatially averaged power spectrum as cause of the locking of DW's and because of the hierarchical

B. Driven front motion
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FIG. 4. (@) Kink velocity when a constant perturbatiga is
FIG. 3. (@) The threshold amplitud€y (dashed lingand &,  externally added. Lines represent the calculated values fof I
(solid ling). Parameters arE=1, E=3, anda=0.5. (b) Range of =0.2(dashed ling T'=1 (dotted ling, andT" =5 (dot-dashed ling
stability of the 0-order LS's in Eq(1) when subject to contraction while symbols are obtained by a direct measurement of the velocity
(solid line) and expansioridotted ling in the presence of biag.  from the numerical simulationsb) Diffusion coefficient vs the
Straight lines correspond to stability thresholds for E). noise intensitye. Lines represent the predicted values for0.2
(dashed ling I'=1 (dotted ling, andI’ =5 (dot-dashed ling while

structure of their existence limi(8). A purely attractive in- ~ Symbols are the results of the statistics for the vallies0.2
teraction between kinks would result in their annihilation (S94ares F_tl (triangley, andT'=>5 (circles obtained by a direct
after a suitable time. measurement.

Second, the stochastic dynamics of kinks is also signifi-
C. Control of stability and growth of spatial structures cantly affected by variations df and we have the following

Tuning the parametdr in Eq. (1) corresponds to chang- factg.’. . . .
ing the pump cavity finesse with respect to the degenerate (', _) §|nce_ the ratio betweet, and £q determlnes th_e_
signal finesse. We remark that this is possible by virtue of th&duilibrium kink density, one observes larger kink densities
double time-scale structure of E) and is therefore absent N reducingl’. In particular, when the activation threshold
in Eq. (2). The effects of this variation are manifold and we €a P&comes smaller thagy, p(e) no longer goes to zero for

address them in order. First, from the deterministic side, Wé_’_(_)- ) S ) )
have the following facts. (ii") The kink diffusion increases with'. Fig. 4b shows

(i) The profile of the LS's(both stable and unstable the diffusion coefficienD versus the noise intensity Lines
changes witH. For example, on reducin, the amplitude ~ "epresent the predicted values 6=0.2 (dashed ling I’
of the damped oscillations increases. Importantly, a change 1 (dotted ling, andI’=5 (dot-dashed line These are ob-
in the profile of the LS's affects the activatigdeactivation ~ tained by using singular perturbation theory. The values mea-
amplitude, &, (&). This is defined as the threshold that a sured using a statistical method, which consists in measuring
perturbation needs to overcome in magnitude in order to gerthe time-dependent variance of the random walk of the kink
erate(erase a soliton[19,21]. A plot of these two quantities over 1G different simulations, are represented by the sym-
versusI' is reported in Fig. &) (solid and dashed lines, bols:I"=0.2 (squareg I'=1 (triangles, andI'=5 (circles.
respectively versusl® for E=3. A characterization of SR in the DOPO model needs to

(i) The existence limits of the LS’s in the parameter spaceconsider these five points. In particulay, (ii), and (i) are
(m,E) are functions of". In Fig. 3(b) we plot the existence sufficient, as we shall see, to explain most of the behavior
range of the stable 0-order LS's as a functionlofwhen  observednote that (i) is a consequence @f)]. As a matter
subject to contraction(solid line) and expansion(dotted  of fact, points(iii) and (i) concern the “mobility” of iso-
line), respectively, imposed by the bias For largel’ the Ilated DW's, which is reflected in their velocity and diffusion
curves approach asymptotically the stability thresholds fowhen subject to deterministic and stochastic perturbations,
the corresponding LS’s of E@2). These thresholds are indi- respectively. The kink dynamics in the presence of other
cated by straight lines in Fig.(B). Note also that, by com- kinks strongly depends on their mutual interaction. Due to
paring the widths of the stability regions in Fig. 1, it is im- the locking of kinks for short interaction distances the front
mediately evident that solitons in EQl) are more stable motion may temporarily freeze thus inhibiting the synchro-

than their counterpart in Eq2). nization process. Since the average interaction distance be-
(iii) The velocity of a DW when subject to a uniform tween kinks is 14, the inhibition increases with.
external perturbatiom increases witd'. The curves of the In Sec. Il B we showed that the driven motion of kinks

velocity calculated using, for example, the method describedontributes to the synchronization mechanism for low noise
in Refs.[21,22 are displayed in Fig.(@) for '=0.2(dashed intensities. We also underlined the relevance of the density of
line), I'=1 (dotted ling, andI'=5 (dot-dashed line The  kinks for the signal power. As we shall see, the onset of the
corresponding values obtained from numerical analysis arsignal power amplification on increasiagiepends o’ as a
represented by symbols. consequence of (. The SR curve broadens on reduciiig
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sincep becomes significant even for very low noise intensi-achieved through the depletion of the less stable state and is
ties. Importantly, from(ii) one deduces that the behavior of activated by the nucleation of small domains that grow and

SR also depends on the amplitugeof the periodic bias. Shrink due to the front motion. This is a particular feature

Since the LS's lose their stability on increasim_gthe SR introduced by spatial coupling of either a diffusive or a dif-
fractive nature.

|Sri1tf;/|br:t(|)(\)l\;1 éli\r/aeiuﬁ!g ?; ;%rr;ishger?:errﬁﬁ:/tagg.gqlarge ik den- We remind the reader that spatial solitons and LS’s exist
For the remainder of our investigation it is convenient to"M the 1D models{l) and(2),. Just above the thresholq for the

introduce the occupancy of the statgs. . We first intro- degengrate agnql generation. As we have shpwn in Sec. Il C

duce the total length of the segmentsth{x) that are posi- the existence limit of LS’s in the presence of bias depends on

tive (negative at timet, which is considered as a parameter. Lhees %?ltar;rit?rférgflcj)rrem\?ee:?/ustgrr?s?t?\i ?; tShF‘; fr?ngggifgggto\ﬁke
R AR + B _

This is given byy™ () =m(B, ) [y ()=m(B, )], where periodic bias. This suggests to us that a characterization of

B, (7)={xe[0L]:U(x)>0 [U(x)<0]}, andmis the Le- . : o
besgue measure. The occupanty of the statesa,. is SR needs to be carried out in the parameter spicg)

defined as The range ofx is 0< u< uy,, Whereu,, is given by Eq(4),
while T" is typically chosen in the interv4l.2,5].
Ly () Both the finite integration time and the time discretization
Y== L ®  act as filters, introducing the cutoff frequencied{lland

1/(2At), respectively, wher@; is the total time of the simu-
Moreover, we introduce the normalized averaged kink denlation andAt is the time step. They also dictate thet<T

sity p, <T; for the periodT=2m/w of the bias. For the numerical
simulations we use a grid of typically 512 elements, an inte-
(n(t))sp  (pi(t)) gration time T;=128T, with T=10%, and a time step\t
ST T, (7)  =10"3. Other parameters age=0.5 andE=3 which gives

min~1.0887. These shall be considered fixed throughout the
wheren,(t) is the number of kinks on a length py is the remainder of this paper. SR is obsirved on tuning the noise
corresponding density, ang,= 1/s, is the maximum density intensity e. For fixed values™ and u, we run a series of

of kinks allowed for a stable solution of Eqél) and (2) simulations(with different noise realizationsaand increase
which corresponds to a periodic soliton solution with periodat each step. Among the many ways to measure SR we em-

25,. ploy the SNR, defined as

When e€# 0 the evolution of the instantaneous kink den- A — Al
sity p, becomes a random process. The birth and death of a =10 logy [ACQ)— AnD)] (8)
pair of kinks is equivalent to the productigannihilation of An(Q) ’

a 0-order LS(cavity soliton. This is achieved when the dis-

tances between the crossing pairs becomes biggeralley  where A\ ({2) represents the spectral power of the back-
than the critical sizs,,, the separation between the zeros ofground in the proximity of the signal peak. At our conve-
the real part of the unstable soliton solution which representsience we compare it with other SR quantifiers introduced
a saddle poinf19]. Therefore not all the zeros, identify  below. Since the soliton width changes with [24], the
unequivocally a kink and in the statistical count we mustlengthL of the transverse field is chosen in such a way as to
consider only kink pairs separated at leastdyy. After a  contain the same number sf. In our caseL =50s,. How-
transient time the system loses memory of the initial condi-ever, we remark that a change in the spatial scale does not
tion pP=py(to) and its momentundp,(t)|p?,to) at equilib-  influence our numerical results as long as<ll/sy<N,

rium assumes the stationary valpevhich depends only on which is imposed by the space discretization only.

e once other parameters have been fixed. At equilibrium and Transitions between the stable states are rare at weak
for ;:0, U(x,t) is evenly distributed among the two NOise mtensmes and the SNR, WhICh is _|n|t|_ally I0\_/v, rises on
equivalent states 1, thereforeY* =(y*)=1. In the weak NCreasinge, anq peaks at an opjumal noise intensigyy [see
noise limit kinks can be easily tracked and their stochastid"i9- X&]. For highere the transitions become less correlated
dynamics followed in time. Their evolution is described by @nd eventually the SNR dies out. Qualitatively similar be-
switchings between the equilibrium distansggor short in- havior is observed in the parameter region considered here

teraction distances and a diffusivelike motion for larger dis-Put With different values oE. A rich variety of behaviors is
tances. observed in the way SR occurs on varyiigOn increasing

I' the shape of the SNR curves changes continuously from
broad to narrow while their maximé,, increase. To visual-
ize this, we plot in Fig. 5 the curves correspondinglto

Let us now consider the case with bath0 andu#0.  =0.2(crosses I'=1 (empty squargs I'=5 (triangles for
The dynamics of an isolated kink undergoes a superpositiothe driving amplitudeu= 0.1u, (< @g). Note how the SNR
of Brownian and periodic driven motion which is describedspectra asymptoticallyl{— +«) approach the SNR curve
by a Langevin equatiofi9,23] for the kink position. Spa- obtained from numerical simulations of E), which is
tiotemporal synchronization in spatially extended systems isepresented by the dashed line in Figa)5This increase in

D. Stochastic resonance
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FIG. 7. Comparison between (dashed ling Y™ (solid line),
and the periodic biag (dotted ling, where; is set to 1 for con-

0 0.5 1 venience in the picture. The parameters are 0.3uy,, 10g;o(€)
log (6) =-0.2,I'=0.2. The inset shows the phase (dggre¢ as function
10 of logye(€) for T'=0.2 (solid line) andT'=5 (dashed ling Other
parameters are as in Fig. 3.

Y,

0.5

FIG. 5. (a) Signal-to-noise ratio curves for Eql) when u
=0.1u,, . Starting from the broadest curv&=0.2 (crosseg I'
=1 (squares andI'=5 (triangle$. Dashed curve is obtained from ues ofe. From left to right we have log(e)= —0.7 [panels
numerical simulations of Eq2). b) Maximum occupancyy, for (a,f], —0.45 [panels(b,g], —0.2 [panels(c,h], O [panels
the same valueE=0.2 (crosses I'=1 (squarey I'=5 (triangles. (d)], 0.25[ Is(g,j)], wh =0 Dark (light) re-
Other parameters ame=0.5, E=3, andu.,=0.108 866. LV, 9.201paneisig,))], when u dpun - Dark (light) re

gions represent positivenegative values ofu.

We first analyze sequenda—e of Fig. 6 atI’=0.2. We
hotice that a substantial kink density is already present for

mall € [Fig. 6(a)] in accordance with (). LS’s show up as

tripes, the thinnest stripes corresponding to cavity solitons.
Other LS’s at larger distances (j>0) are less clearly iden-
tifiable as they have a shorter lifetime. The increasing num-
ber of birth-death events on increasiagends to synchro-
nize with x although the LS’s are still visible even at
resonanceFig. 6(c)] causing a mixing between the two
states, which prevents a full synchronization. In the last se-
quence [=0.2) of Figs. &f—j), the kink population is ini-
tially negligible [Fig. 6(f,g)]. However here the synchroniza-
tion is more effective at resonanfgeig. &(i)]. This cannot be
fully appreciated by looking at a short evolution of the field
and needs to be proven by a statistical analysis that considers
much longer simulations and quantifiers other than the SNR.
For this reason we introduced the average occupaficy
and densityp, that we shall now analyze.

The stochastic processgs$ andp, are no longer station-
ary [25] in the presence of a periodic bias and their means
Y* andp become periodic functions of timé*(t)=Y™*(t
+T) and p(t)=p(t+T/2), respectively. The curves™ (t)
(solid line) and p(t) (dashed ling both obtained from nu-
merical simulations angk(t) (dotted ling are plotted in
Fig. 7.

It is easy to see that the stationary pointsYof have to

FIG. 6. Evolution ofu(x,t) for I'=0.2 (a—8 andI'=5 (f—j) for coincide with minima ofp whereas points wher¥* =Y~
increasing values o€: log;o(€)=—0.7 (a,f), —0.45 (b,g, —0.2  =1/2 (d*>Y*/dt?=0) correspond to maxima gf. In obtain-
(c,h), 0 (d,i), 0.25(g,j), whenu=0.1u,, . Dark (light) regions rep-  iNg Y= andp one has to take into account the phase lag in
resent positivenegative values ofu. Other parameters are as in the spatiotemporal synchronizati®6]. As a matter of fact
Fig. 5. the extrematg, of Y= (minima of p) in the interval €,t

the maximumé), , which appears as an enhancement of SR
might resemble the AESR of Ref8,9]. However we stress
that in our case enhancement of SR is not obtained by tunin
the diffraction coefficient. This would in fact lead to a mere
change of scale for the spatial coordinates. Note alsoghat
saturates to the asymptotic limit given by E@) rather than
showing a maximum as in Rdfi3].

We now take a closer look at the dynamics of the field.
The sequences shown in Fig. 6 represent the evolutian of
over eight periods of the driving far=0.2 [panels(a—8 |
andI’=5 [panels(f—j)], respectively, and for increasing val-

time

—— o

— space
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FIG. 8. (a) p,,, (diamonds, py, (empty circle$, andp (squares
for 4=0.25uy, and'=1. T. (b) Minimum and maximum defect
densities at resonancg3R (filled symbolg and p3 (empty sym-
bols), respectively, for the values of bias amplitud_ue= 0.15u4p
(circles, u=0.25u,, (squarel and u=0.4u,, (triangles. Corre-
sponding values op,, for Eq. (2) at u=0.15uy, (solid line), u
=0.25u, (dashed ling = 0.4u,, (dotted-dashed line

+T] do not correspond to the extrema @f which aret,
=(2n+1)T/4 (n=0,1,2...). Instead they are phase
shifted by ®(e), i.e., tg=t,+P. It can be seen from the
inset in Fig. 7 that the phase shift is not negligible especiall
for low noise levels.

The knowledge of one oY~ determines completely the
other. Therefore the maximum occupanty of eitherA,
or A;_ is achieved fort=tg, where Y,=|Y"(ts)—1/2

PHYSICAL REVIEW E 68, 036602 (2003

resonance. Why this point is crucial is evident from the fact
that the synchronization ofi requires the suppression of
kinks. The most effective synchronization is the one where
no kinks are present dt;. This is equivalent toY,(esg)
=1, p3R=0. Typically, howeverY,(esp <1 andp;*>0.
Figure 8b) shows thatpﬁR decreases monotonically on in-

creasing’” for u=0.15uy, (filled circles so thatp}Ris much
higher than zero for low values &f. Here the motion of the
kinks is inhibited by the fact that they are so close to each
other that they form metastable states. These kinks are not
isolated since their average distance lsﬁf/vz in Sy units.
In Fig. 8(b) we also plot the value g3 for Eq. (2) (solid
line) which is approached asymptotically by Ed.) asT’
—. At T=5 the average distance between kinks g3/
~4. The spatial oscillations in this case are critically
damped and are not able to give rise to metastable states of
order higher than 1. Hence kinks can already be considered
as independent at this average distance.

As we pointed out earlier, solitons are stable against con-

traction induced by the bias when< «,. This is the weak-
est condition in order to maintain a certain number of stable
kinks in the deterministic case and in the presence of bias.
However, kinks can annihilate due to the presence of sto-
chastic fluctuations that can induce a collision between a
kink and an antikink which results in their annihilation. In
this case the kink density is determined by the ratio between
&, and&y, as pointed out in (fi). The existence limit of the
Ysolitons does not have a great influence on the kink density

for small 1. As a matter of factp>R(I") is monotonic while
ao(I) [see Fig. )] displays a maximum fof’, ~0.5. On

reducingl’ from the valud’,, the kink densityp>Rincreases

+1/2, with 1/2<Y, <1. Here the dependence on the param-though solitons become “less stable.” The key point here is

eter e of the variablesp and Y is implicitly assumed. A

the relation between the two important quantitgsand&y .

similar definition of occupancy which ignores the phase lagiWwhené&,~ &y a larger kink density than in the cagg>¢&, is

was given in Ref[8]. Not surprisingly the maximum occu-

pancy Y, and SNR curves behave in a similar way, as is

formed.
This holds untilu< «g, since close tay, the determinis-

clear from Fig. 5, which compares the two quantities. AS &jc dynamics becomes more relevant. Evidenpg® de-

matter of facty, differs from the SNR because it only takes
into account the signal powek({)) and notA (). On
increasingl’ from I'=0.2 (crossegto I'=1 (squaresto I
=5 (triangles, the curvesY,(e) become narrowefFig.

5(b)]. Furthermore their maximum increases and, as in Fig
5(a), shifts to higher noise levels. Rather than thinking of it

as an enhancement of SR on increadihwe should rather

consider this as a reduction in the inhibition caused by th
locking of kinks. Although the interpretation of these results

is supported by the propertig$)—(iii) and (/) and (ii’)

creases on increasing, because collisions become more
likely, but it decreases at different rates for different values
of I'. Note that when a temporary equilibrium between the
two phases is establish@chas a maximump = py, (see Fig.
8). For low values ofl” and at any value of the bias ampli-
tude, the kink density,, is large and decreases monotoni-
cally on increasind’ [empty symbols in Fig. @)]. It should

e noted that largg), results in a more rapid annihilation of

the kinks atts,;, whenu> aq. As a matter of fact, the closer

described earlier in Sec. Il C, we need to look for a morethe kinks are the easier it is for the bias to erase them and,

quantitative proof of this picture.

indeed, largep,, means closer interaction distances. Hence,

We now consider the kink density which is itself a SR on increasingu, pSF decreases more rapidly at smBlthan

quantifier and in particular we focus on its minimupn,
=p(ts) and maximunmpy = p(ts+T/4).

Figure 8a) shows the typical behavior gf,, (diamonds,
pwm (circles, andp=py— pm, (Squaresversuse. One notes
thatp also displays a resonance on tuning the noise level,
a valuee~ egg. However, the crucial quantity here bﬁlR

at largel’. This is shown by the curveg=0.25u,, (filled
squaresand u=0.4u,, (filled triangles in Fig. 8b). In the
last curve one observes in particular a nonmonotonic behav-
ior which is the signature of a substantial change in the SR
aturves, as we shall see later. Dashed and dotted-dashed lines
in Fig. 8b) are again the values gf>" for Eq. (2) which

=pm(€esp), Which represents the minimum kink density at plays the role of asymptotic values of the cur\m?, for
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T T T T To appreciate this phenomenon more easily we plot in

. b) Fig. 9b) the curvesfy(I') for u=0.1uy, (squarey u
: =0.25uy, (filled diamond, w=0.4u,, (triangles, and

=0.55uy, (filled circles. The transition from inhibition to
ey enhancement of SR is explained by the reduced effectiveness
Jle* ] of the locking of kinks. This is more apparent for small
where a larger kink density causes the inhibition of SR when
ar gl u<ag but, on the other hand, favors the quick annihilation
™ of kinks whenu> a,. As a matter of fact kink pairs with a
i 1 shorter interaction distance are more likely to annihilate.
| | . N Consequently the curve8y(I') [Fig. 9b)] that increase

00 02 04 06 0 1 2 3 4 5 monotonically for w=0.1u,, change character, eventually
i T becoming decreasing functions bf

0,,(dB)

FIG. 9. (8 Maximum 6, of the SNR against;: I'=0.2 Ill. 2D CASE
(circles, I'=1 (squares and I'=5 (diamonds$. (b) Curves 6
againstl: u=0.1uy, (squarel u=0.25u, (filled diamond,
=0.4u,, (triangles, and;=0.55mh (filled circles.

In this section we examine the occurrence of SR in the
two-dimensional DRDOPO modél). We have seen that in
one dimension, LS’s and cavity solitons emerge at the thresh-
I'—+o. For comparison we also plot the maximum kink old Eg, for parametric down-conversion and are stabilized
density pSR— (ess) at resonance for the same values c)fd_ue to a balance between dlffract_lon and nonlinearity. In two

_pr PMU€SR ) - dimensions the onset of the existence of stable structures
the bias amplitudg.=0.15u., (empty circle$, ©=0.25u1n  does not coincide with the degenerate signal threshold be-
(empty squares and = 0.4u,, (empty triangles cause of curvature phenomena that now have to be taken into

The onset of signal amplification decreases on redufing account. For instance, dt=1, the thresholdg, for the
due to the increasing kink density. Therefore the SNR and-order cavity soliton is aE=2.2 while the threshold for the
occupancy curves, at low noise intensities, increase in widthlegenerate signal generationksg,=1. Higher order LS’s
asT" decreases. On increasing the onset of SR decreases appear for increasingly higher pump values, in such a way
even further wherl" is small. This phenomenon is easily that their threshold&; obey E;<E;,; [13]. This is similar
explained by referring to the kink density. For weak noiseto the 1D case in the presence of a spatially uniform constant
levels the birth-death events become so rare gphatay be  biasu. Even there the thresholds are found on increasing
thought of as a stationary process & py). In this circum-  E when 0<|u|<u,. This can be seen from Fig. 1 upon
stance the signal power at the driving frequency is overmoving upward along a vertical line. Earlier in Sec. Il A we
whelmingly due to front motion. Typically, on reducirghe  pointed out that it is possible to reduce consistently the
kink density becomes so small that this effect is hardly obihresholdsE; by reducingl’ [14]. These, however, remain
servable. However, whefy,~ &4 (I'~0.2), p is significantly ~ above the valu&y, .
greater than zero even for very low noise intensities. Here, The dynamics of the transverse degenerate signal field
the contribution given by the driven fronts to the spectralshows phase-ordering-like kinetics typical of nonequilibrium
componentQ)/27 becomes relevant and indeed leads to asystems, where the order parameter is not consd@gdA
lowering of the onset of SR. Whefi,>&,, on the other domain of one phase shrinks and eventually disappears in the
hand, the kink density tends to zero very rapidly for opposite phase foE,<E<E,. Instead forE;<E<Ej,,
e—0. the shrinking of a domain, which can be accompanied by the

We now focus on the behavior of the SNR,on increas- disappearance of any domain embedded in it, leads eventu-
ing ; We consider here the maximuéi, of 6. Plots off,, ally to the stabilization of a LS of circular shape with diam-

dT are given in Fi d 9b tively, ©CTSL
versusu andl" are given in Figs. &) an 9b), respectively. It is easy to see that quantities such as the power spectrum

Figure 9a) shows the growth ofy(u) for the valuesl’ A can be immediately extended to the 2D case. From this we
=0.2 (circles, I'=1 (squarey andI'=5 (diamond$. The  can obtain the SNR which gives information about the SR

monotonic growth off) is obviously due to the increase of phenomenon. With the arguments employed in the preceding
the bias amplitude. What is interesting to observe, howevekection it is possible to show that SR presents qualitatively
is the relative growth oby for different values ofi’. One  the same properties as in one dimension. We use a grid of

notices that thgdistance between the curves tends to decreasgs, 1og elements, and a driving amplituEez 0.15. Erom

on increasingu. In particular 6y grows faster for lowl’  the numerical side the extra spatial degree of freedom results
(circles. This is significant in that the inhibition of SR in- in a significant increase in the integration time. The length of
duced by the presence of cavity solitons decreases for largefr simulations is now 50. Other parameters are as in the
w. More importantly a large density, (SR eventually preceding section. Note that the addition of a spatial degree
helps a more effective synchronization leading to an eneof freedom does not affeqt,, and the homogeneous solu-
hancement of SR. tions.
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FIG. 11. SNR curves for Eq1) in two dimensions on varyingj

at the bias amplitudg = 0.15u,, . Starting from the broadest curve:
I'=0.1(circles, I'=1 (squares andI'=5 (triangles.

results support the idea that SR in two dimensions presents
qualitatively the same features shown by the 1D dynamics.

CONCLUSIONS

FIG. 10. From top to bottom, the sequences show the evolution We have shown that SR, seen as a synchronization of
of u(X.t) during one period ofx(t) taken at intervals off/4. () noise-induced transitions between two states in the trans-

Right: T=0.1. (b) Left: T=5. Other parameters a@=3 andu "o o0 fi_eld of OF.)O systems, can be enhar(d:_wk_libiteo) on
=0.15u,,. increasing the kink densﬁy for Iargjsmalq driving ampli- '
tudes. We have characterized SR by tuning the pump cavity
finesse, i.e., the parametEr This is seen to affect the LS
profile, modifying the ratio between activation and deactiva-
tion amplitudes for the creation and annihilation of solitons.
Eventually this results in a variation of the average kink
density. Hence, we demonstrated that locking kinks at low
driving amplitudes inhibit SR and this inhibition increases
with the kink density. We have also shown that, at larger
quently the periodic driving helps domains of the minority g{;vk;?g er;srlggdg:hslir;yﬂ:)ef Ii(iarglg?sv;/:setreeaclj_ SbZnCeefiE:‘:isael E[g 2?1

Ehtase to tgr]]rovtv andhln panz{tb{];)' u 'S.ef?ﬁ"y d'Strt'.bUte?] effective synchronization. Moreover we presented a suitable
etween the two phases. IS point the negative p as&eneralization of the SR effect to the two-dimensional case
starts to be preferred and in panétsg) u reaches the point

f ) f the st Again i | where the validity of our interpretation holds true. The de-
of maximum occupancy of the stafe_ . Again in panels scribed phenomena are universal once two equivalent homo-
(d,h) we have a temporary balance between the two phas

; : L “geneous states and DW'’s leading to locked solitons are
e_md subsequently the entire evolut|oq perlodlcally repeats Il esent. For this reason we believe that the implications of
time. In the left SeqL.Je.nCdT(:O'l) of Fig. 10 the b”.ght and our investigation are not limited to nonlinear optics but can
dark Spots, _clearly V'.S'ble ite) and(c), are cavity solitons in be generalized to other fields of science including fluid dy-
two d_|men5|ons. The'f presence Is an obstacle to _the Syncm?famics, chemical oscillations, and solid state physics.
mzatu_)n process. This takes place_ more effgctlvely for Finally, we note that our SR corresponds to synchroniza-
=5 (right sequencewnhere at .the pomt. of maximum OCCU- " tion of the order parameter. A complementary interpretation
pancy ofA; . the transverse field consists almost entirely in¢qgjgering the kinks as particlelike objects is possible and
one phasg¢see panel¢e,g]. The SNR curves shown in Fig. i pe presented elsewhefas.
11 forI'=0.1(circles, I'=1 (squarep andI' =5 (triangles
display the same qualitative behavior as Fig. 5. The maxi-
mum 6 of the SNR increases with and the curves become

narrower. Therefore the inhibition of SR decreases on in- \ve acknowledge support from SGI, EPSRGrant Nos.
creasingl’. However, on increasing the maxima increase GR/M19727, GR/M31880, and GR/R04Q%khe EC (Con-
at different rates for differenf’ and eventually an enhance- tract No. 1IST-2000-26019 QUANTIMand SHEFC(grants
ment of SR is achieved for low as in one dimension. These VISION and VIDEOS.

We first analyze the near field. In Fig. 10, the two se-
guencega—d and(e—h show the evolution ofi during one
periodT of w(t). ForI'=0.1(right) andI' =5 (left) we have
t=t' [panels(a,@], t=t"+T/4 [panels(b,f)], t=t"+T/2
[panels(c,g)], andt=t'+3T/4 [panels(d,h)], wheret’ is an
appropriate time. At=t' [panels(a,@], u is at the point of
maximum occupancy of the sta#®;, (first row). Subse-
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