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Spatial quantum correlations in the fluorescence of traveling-wave second-harmonic generation

Pierre Scotto
Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Campus Universitat Illes Balears,

E-07071 Palma de Mallorca, Spain
~Received 14 December 2002; published 29 September 2003!

We investigate theoretically the spatial quantum correlations of the light produced by spontaneous emission
in type-I second-harmonic generation in the traveling-wave configuration. It is first shown that spontaneous
emission occurs at both fundamental and second-harmonic frequency. Considering the quantum fluctuations of
the intensities collected in symmetrical parts of the far-field plane, nonclassical correlations below the shot
noise are predicted not only at fundamental frequency, but also at second-harmonic frequency. The latter
cannot be traced back to any twin-photon emission mechanism, but are generated by a secondary process
acting on twin photons. This mechanism also creates correlations between fundamental and second-harmonic
field, at a given transverse wave number, and at opposite wave numbers. The analysis of a simplified few-mode
model, on a quantum level, provides a good qualitative understanding of these correlations.
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I. INTRODUCTION

The concept of twin photons is of a disarming simplicit
when, in a nonlinear~NL! optical system, an elementary pro
cess leads to the creation of pairs of distinguishable phot
these are referred to as ‘‘twin photons.’’ The simplest e
ample is parametric down-conversion, in which photons
an intense pump beam propagating through ax (2)-NL crystal
can disintegrate, under conservation of energy and mom
tum, into pairs of photons of lower energy@1–3#. Quantum
mechanically, these highly correlated twin photons are
scribed by an entangled state@4–6#, and therefore are con
nected with the most fundamental issues of quantum
chanics @7–9#. At the same time, they turn out to hav
numerous technological applications in two-photon imag
@10#, quantum lithography@11#, quantum cryptography
@12,13#, quantum teleportation@14,15#, and quantum compu
tation @16#.

By means of an optical resonator, one can increase
efficiency of a twin-photon generation process@17#, and
eventually obtain macroscopic numbers of photon pairs, g
erally referred to as ‘‘twin beams.’’ As a consequence of
underlying photon pair generation mechanism, the leve
quantum noise in the difference of the intensities of tw
beams drops below the standard quantum limit, as predi
for the nondegenerate optical parametric oscillator~OPO!
@17–19# and demonstrated experimentally@20#. Spatially
separated twin beams, translating into two symmetrical li
spots in the far field@21#, have been predicted for the dege
erate OPO@22#, in which a pump photon may decay into tw
half-frequency photons propagating in opposite directions
the transverse plane, and for a vectorial Kerr model in
self-defocusing case@23–26#, where two linearly polarized
pump photons annihilate under creation of two counterpro
gating photons with the orthogonal polarization. Close to
pump threshold, at which twin-beams build up in the opti
cavity, twin photon generation is the dominant process
the correlations of the quantum fluctuations of the twin be
intensities are directly related to energy and momentum c
servation. Moreover, a three-mode model@27,22#, describing
1050-2947/2003/68~3!/033814~15!/$20.00 68 0338
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the coupled dynamics of the two modes associated with
twin beams and the pump mode, provides a good un
standing of the quantum properties of the fields@25,26#.

However, neither this simplified description of the dynam
ics of coupled quantum fields, nor the resulting intuitive e
planation of the predicted correlations is possible in num
ous situations occurring in NL optical systems, namely, wh
the nonlinear field dynamics couples more than three fi
modes. The properties of quantum correlations in the cas
‘‘multi-mode interaction,’’ which have recently attracted a
increased theoretical interest, are addressed in the pre
paper. More specifically, we focus here on the quantum pr
erties of traveling-wave second-harmonic generation~TW-
SHG!, which is probably the simplest system, in which t
consequences of ‘‘multimode interaction’’ can be studied a
quantum level. As a matter of fact, the nonlinear field d
namics leads to a coupling of four radiation modes: two
them can be identified with a pair of twin photons, but no
each of these modes turns out to be coupled to anothe
diation mode through a secondary process, which is in
case of TW-SHG a frequency up-conversion process.
consequences of this secondary process on the spatial q
tum properties of the system will be the main focus of th
paper.

Previous investigations of twin-beam correlations in t
presence of ‘‘multimode interaction’’ have been carried o
for various NL optical systems and revealed a rich pheno
enology. In the OPO above threshold, the twin-beam cha
ter was found to be largely preserved, not only for pum
values slightly above threshold@28#, despite the increasing
number of field modes displaying a macroscopic intens
@21,29#, but also far above threshold, where spatially dis
dered structures emerge@30#. On the contrary, noise sus
tained structures, characteristic of a convective instabi
@31,32#, were shown to destroy any kind of twin-beam co
relations@33#.

A rich multimode dynamics may emerge as a con
quence of a transverse variation of the pump of an OPO@34#
or, as in the scalar Kerr model, of an instability leading to
hexagonal pattern@35#. In the latter case, conservation law
©2003 The American Physical Society14-1
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imply a perfect noise reduction of combinations of the inte
sities of groups of four among the six off-axis far-field spo
@36,37#. The fluctuations of the intensities of individua
spots, however, were shown to display the strongest corr
tions not at opposite wave vectors, as suggested by a n
picture based on twin-photon emission, but for those form
a 120° angle@38#. In the case of a square pattern, mod
associated with critical wave vectors forming an angle ofp/2
were even found to be anticorrelated@39#. Similarly, a mul-
timode description is necessary in the case of intraca
SHG, since at a given threshold, both fundamental
second-harmonic field may destabilize at a finite wave nu
ber, while below this threshold, only the homogeneous m
at each frequency displays a macroscopical intensity. N
classical correlations of the intensity fluctuations at sy
metrical far-field points have been predicted not only at fu
damental frequency, but also at second-harmonic freque
@40#. The origin of the latter correlations, which cannot
explained in terms of twin-photon emission, since no
ementary process can generate two counterpropaga
second-harmonic waves, has not been so far completely
cidated.

In this paper, we consider SHG in the traveling-wave co
figuration and investigate the spatial quantum correlati
displayed by the fields generated by spontaneous emis
As we will show, spontaneous emission in TW-SHG gen
ates field waves with nonvanishing transverse wave vect
both at fundamental and second-harmonic~SH! frequency.
These transverse modes being originally in the vacuum s
field generation occurs ‘‘spontaneously,’’ as the result of
interaction of the vacuum fluctuations of these modes w
the strong homogeneous waves at fundamental freque
~pumping! and SH frequency~frequency up-conversion o
the pump through SHG!. The study of the spatial quantum
properties of TW-SHG presents a twofold interest: from
practical point of view, nonlinear optical systems in t
single-pass configuration are interesting because their tem
ral and spatial bandwidths are generally much larger than
ones of their cavity counterparts. These features make t
well suited for numerous applications such as quantum
aging or the generation of broadband squeezed light. In
context, some spatial aspects of TW-SHG were recently
dressed in the framework of an experimental study@41#, and
although this work was carried out on a pure classical le
a detailed characterization of the spatial quantum prope
of this system, including the spatial distribution of spontan
ous emission appears to be relevant. The second motiva
is of conceptual order: due to its simplicity, TW-SHG allow
us to develop a clear physical picture of the origin of t
diverse quantum correlations displayed by the fields, wh
might be useful for a better understanding of the gene
consequences of multimode entanglement.

This paper is organized as follows. In Sec. II, the physi
system under study will be briefly presented, the pheno
enon of spontaneous emission defined and the underl
microscopic processes identified. These considerations
provide a basis for the construction of a minimal four-mo
model, which will be analyzed on a quantum level in S
III. The quantum correlations present in this model constit
03381
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a valuable guideline for the understanding of the spatial c
relations of the far-field intensity fluctuations in TW-SHG
The theoretical framework, based on the quantum desc
tion of the dynamics of the coupled system of fundamen
and SH field in TW-SHG derived in Ref.@42#, will be briefly
summarized~Sec. IV!. By linearizing the full nonlinear
quantum propagation equations around the solution of c
sical nonlinear optics, we will show that quantum fie
propagation in TW-SHG can be described in terms of a fo
mode dynamics, which couples pairs of field modes w
opposite transverse wave vectors and frequency offset
fundamental and second-harmonic frequency. As in the c
ity counterpart of this system@40#, this coupling results in
interesting quantum correlations, including twin-beam cor
lations at both frequencies and cross correlations betw
fields at different frequencies. Expressions for all corre
tions of interest will be derived~Sec. V! and the results,
obtained from a numerical integration of the propagat
equations, presented and discussed in Sec. VI.

II. THE MODEL

The physical system we consider is ax (2) nonlinear crys-
tal in the traveling-wave configuration, pumped with
monochromatic light source at frequencyv. For simplicity,
the pump intensity will be taken to be uniform in the tran
verse plane. Because of the quadratic nonlinearity of
crystal, a second-harmonic wave will be generated from
pump field and, in the general case, classical nonlinear op
predict a periodic transfer of energy between fundame
and SH field along the propagation axis@43#. In the particu-
lar case of a perfect phase matching@i.e., if 2kF2kS50,
wherekF (kS) is the wave number of a wave at frequencyv
(2v) propagating in the NL crystal#, the spatial period of
these oscillations diverges and the efficiency of the f
quency up-conversion of the pump increases monotonic
as a function of the propagation length~Fig. 1!. However,
when the quantum fluctuations of the fields are taken i
account, this process, at some propagation length, is reve
and the fundamental field starts being regenerated thro

FIG. 1. SHG in the perfect phase-matched case. Upper part:
intensity of fundamental~dotted line! and SH field~solid line! in the
crystal as a function of the propagation length. Lower part: Sc
matic representation of the different regions of the crystal. The h
zontal axisz corresponds to the direction of beam propagatio
whereas (x,y) defines the transverse plane. The slightly~strongly!
wavy arrows represent fundamental~SH! photons.
4-2
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down-conversion of the SH field@44#. In the following, we
will assume that the length of the crystal is much sma
than this typical length, so that the complication connec
with this ‘‘revival’’ can be disregarded.

In Ref. @42#, this system has been studied in the contex
quantum image processing, i.e., under the assumption tha
addition to the pump field, a coherent signal, encoding
image to be processed, was injected into the NL crysta
has been pointed out that the main peculiarity of TW-SH
with respect to the OPA pumped at second-harmonic
quency, relies on the presence of two ‘‘strong’’ homogene
waves inside the crystal: the pump field at frequencyv and
the SH field at twice this frequency, generated through SH
As in an OPA, the latter can decay into pairs of count
propagating fundamental photons and perform pha
dependent amplification or deamplification of a signal at fu
damental frequency, whereas the strong fundamental w
was shown to allow for the conversion of a signal from o
frequency~fundamental or SH! to the other.

Spontaneous emission, on which we focus in this pa
takes place without any coherent input signal, and is
direct manifestation of the vacuum quantum fluctuatio
which, as stated by quantum mechanics, enter the cryst
all temporal and spatial frequencies. As a result, the str
homogeneous SH wave can decay ‘‘spontaneously’’ i
pairs of perfectly correlated twin photons,

@2v#~0W ,0!→@v#~qW ,V!1@v#~2qW ,2V!, ~1!

with opposite transverse wave vectors and conjugate w
respect to the fundamental frequencyv, as a consequence o
momentum, resp. energy conservation (@v#(qW ,V) refers to a
photon at frequencyv1V and transverse wave vectorqW ,
while @2v#(0W ,0) represents an on-axis photon associa
with the static homogeneous SH wave generated by S
@45#!. In the remaining of this paper, we will only consid
the properties of the outgoing fields at nonvanishing wa
vectorsqW Þ0W , for which process~1! is a spontaneous emis
sion process, since the modes@v#(6qW ,6V) are originally
in the vacuum state.

Further, due to the presence of the~depleted! fundamental
pump field, some of the twin photons produced through
~1! will be up-converted, according to the frequenc
changing process:

@v#~6qW ,6V!1@v#~0W ,0!→@2v#~6qW ,6V!. ~2!

Therefore, a fluorescence field at SH frequency will be g
erated as well~Fig. 2!. The role of the two processes~1! and
~2! in the stability of plane-wave pump beams propagat
throughx (2) NL media has been studied, on a classical lev
in the temporal domain@46# and, recently, under conside
ation of the transverse spatial degrees of freedom@47#. At the
level of a quantum description, process~2!, absent in an
OPA, will act randomly on some of the fundamental photo
generated by process~1!. Whereas the output field of an OP
exclusively consists of pairs of twin photons, what transla
into perfect correlations of the fluctuations of the fundam
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tal far-field intensities collected symmetrically with respe
to the optical axis@48#, process~2! will be equivalent to a
loss mechanism. Therefore it is expected to lead to a de
dation of the correlations generated by twin-photon em
sion. But simultaneously, as will be demonstrated in the r
of this paper, some twin-beam features will appear in
fluorescence field at SH frequency, as well as further co
lations between fundamental and SH field. This is best de
onstrated by the simple few-mode model developed in
following section.

III. A SIMPLE FEW-MODE MODEL FOR TW-SHG

Before considering a full multimodal description of th
quantum field propagation in TW-SHG, it can be useful
construct a minimal quantum model which includes, in t
simplest possible way, the elementary processes discuss
the preceding section, i.e., twin-photon production~1! and
frequency up-conversion~2!, acting separately on the twin
photons. This model is represented in Fig. 3. The first par
an OPA, which generates pairs of tilted waves with oppos
transverse wave vectors. For simplicity, we will only co
sider one pair of transverse modesv1qW andv2qW with wave
vectorsqW and 2qW . In a quantum description, the OPA
characterized by the following input-output transformation

b̂F,1qW5uâF,1qW1vâF,2qW
† , ~3a!

b̂F,2qW5uâF,2qW1vâF,1qW
†

~3b!

FIG. 2. Elementary processes, which are responsible for fluo
cence in TW-SHG.

FIG. 3. Simplified model for spontaneous emission in TW-SH
two counterpropagating waves generated by an OPA are separ
injected into independent up-converters. The dotted waves repre
the modes which are in the vacuum state.
4-3
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PIERRE SCOTTO PHYSICAL REVIEW A68, 033814 ~2003!
where b̂F,6qW (âF,6qW) are the operators associated with t
two considered modes in the output~input! plane of the OPA.
The standard commutation relations

@ b̂F,6qW ,b̂F,6qW
†

#5@ âF,6qW ,âF,6qW
†

#51 ~4!

impose the unitarity condition

uuu22uvu251. ~5!

The up-conversion process~2! will be modeled by assuming
that each wave generated by the OPA is injected separa
into a frequency up-converter. In a quantum description,
quency conversion, in the parametric approximation~i.e., un-
der the assumption of a strong undepleted pump!, is formally
equivalent to a beam splitter~BS! @49,50#. Figure 4 explains
this correspondence: one input port of the BS receives
incoming wave at fundamental frequency. This wave com
out with some attenuation at one of the output ports of
BS, whereas the other output is identified with the fraction
the input, which has been up-converted to SH frequency
preserve the commutation relations of all output fields,
remaining input port of the BS has to be formally illuminat
with the vacuum fluctuations entering at SH frequency.

In terms of the quantum operators associated with
involved wavesvqW and 2vqW ~the notations can be obtaine
from Figs. 3 and 4!, up-conversion is therefore expressed
the relations@51#.

êF,qW5tb̂F,qW2rb̂S,qW , ~6a!

êS,qW5rb̂F,qW1tb̂S,qW ~6b!

with the following condition for the coefficientst and r,
taken as real quantities:

r 21t251. ~7!

For symmetry reasons, the operators associated with
waves with wave vector2qW fulfill the same relations~6a!
and~6b!. Combining Eqs.~6! with Eqs.~3!, we finally obtain
the input-output transformations for the simple model rep
sented in Fig. 3:

êF,1qW5tuâF,1qW1tvâF,2qW
†

2râS,1qW , ~8a!

êS,1qW5ruâF,1qW1rvâF,2qW
†

1tâS,1qW , ~8b!

FIG. 4. Equivalence between up-conversion and a beam spl
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êF,2qW5tvâF,1qW
†

1tuâF,2qW2râS,2qW , ~8c!

êS,1qW5rvâF,1qW
†

1ruâF,2qW1tâS,2qW . ~8d!

Once the state of the incoming radiation is defined, which
here the vacuum state since we are interested in spontan
emission, Eqs.~8! encode the full quantum statistics of th
four coupled modesv6qW and 2v6qW . In particular, this model
predicts that the fluctuations of the photon numbers in
four modes are correlated. We first look for twin-beam c
relations, i.e., nonclassical correlations of the photon num
fluctuations in two counterpropagating modes. Introduc
the operators associated with the photon number in each
put modeN̂i ,6qW5êi ,6qW

†
êi ,6qW , with i 5F,S, the quantity of

interest is the variance of the differenceN̂i ,qW2N̂i ,2qW , nor-
malized to the shot noise (ZSN),

Vii
(2)@qW ,2qW #5

^~N̂i ,qW2N̂i ,2qW !2&
ZSN

, ~9!

which may drop below the classical limit of 1@Eq. ~9! al-
ready takes into account the symmetry^N̂i ,qW&5^N̂i ,2qW&]. In-
serting Eq.~8! into Eq. ~9!, one finds after some algebra

VFF
(2)@qW ,2qW #5

^~N̂F,qW2N̂F,2qW !2&
ZSN

5r 2, ~10a!

VSS
(2)@qW ,2qW #5

^~N̂S,qW2N̂S,2qW !2&
ZSN

5t2. ~10b!

These expressions, interestingly, do not depend on the
rameters characterizing the OPA but only on those associ
with the BS. The limit of a perfectly transmitting beam spl
ter (t51 and hencer 50) corresponds to no up-conversio
acting on the OPA output and, as expected, Eq.~10a! reduces
to VFF

(2)@qW ,2qW #50: the correlations are perfect. In the opp
site caser 51, the twin beams generated by the OPA a
entirely up-converted to SH frequency, and hence the per
twin-beam correlations are completely transferred to SH
quency (VSS

(2)@qW ,2qW #50), whereas the differenceN̂F,qW

2N̂F,2qW is left with fluctuations at the shot noise leve
These two limits are very similar to what occurs in intraca
ity SHG for very different losses at the two frequencies@52#:
perfect squeezing is displayed by the fundamental field
the cavity losses at SH frequency are insignificant~this cor-
responds to an up-conversion rate close to zero for the ou
fields!, whereas in the opposite case of very low losses
fundamental frequency, the squeezing moves to the SH fi
This phenomenon has been also recently discussed in
context of a quantum optical dimer@53#.

An intermediary value ofr describes a partial up
conversion of the twin beams generated by the OPA, wit
rate equal tor 2. In this case, the varianceVFF

(2)@qW ,2qW # does
not vanish any more since the up-conversion mechanism
domly breaks pairs of twin photons by up-converting one

r.
4-4
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the two photons. The noise level in the photon number
ferenceN̂F,1qW2N̂F,2qW turns out to precisely coincide with
the up-conversion rate:

VFF
(2)@qW ,2qW #5

^N̂S,qW&

^N̂F,qW&1^N̂S,qW&
. ~11!

As already mentioned, this twin-photon pair breaking p
cess is not purely detrimental, since it induces some de
of twin-beam correlations at SH frequency: as can be s
from Eq. ~10b!, VSS

(2)@qW ,2qW #,1. In this simple model, one
observes that the twin-beam correlations at fundamental
SH frequency always sum up to 1:

VFF
(2)@qW ,2qW #1VSS

(2)@qW ,2qW #51. ~12!

These elementary considerations demonstrate that twin-b
correlationsdo not always imply the existence of a micr
scopic process leading to the pairwise production of the p
tons of each beam. A secondary process acting separately
each of the two twin beams is enough to generate beams
intensity fluctuations, which are correlated to better than
shot noise.

Other interesting correlations are present in this sim
four-mode model. The normalized variances

VFS
(2)@qW ,6qW #5

^~N̂F,qW2N̂S,6q!2&2^~N̂F,qW2N̂S,6q!&2

ZSN
~13!

characterize the correlations between the fluctuations of
photon numbers in a fundamental and SH mode, either a
same (1) or at opposite wave vectors (2). Again, a simple
calculation gives

VFS
(2)@qW ,qW #511v2~ t22r 2!2, ~14a!

VFS
(2)@qW ,2qW #511v2~ t22r 2!222t2r 2. ~14b!

These expressions deserve some comments. First consid
the particular case of a balanced 50/50 beam splitter (r 5t
51/A2), one ends up with the following equalities:

VFF
(2)@qW ,2qW #5VSS

(2)@qW ,2qW #5VFS
(2)@qW ,2qW #5

1

2
, ~15!

which indeed are not surprising, since a balanced 50/50
distributes randomly and with a probability 1/2 the incomi
photons over the two outputs. Hence, any output of one B
equally correlated to any of the two outputs of the other B
With respect to the perfectly correlated inputs of the two B
this correlation is of course weaker but still nonclassic
since it corresponds to half the shot-noise level in the diff
ence of the considered photon numbers. If we now cons
the noise in the difference of the two outputs of a given
with r 5t51/A2, we find the standard quantum lim
VFS

(2)@q,q#51. This result is also a consequence of the r
dom character of the transmission or reflection process
BS and is known to be independent of the photon statistic
03381
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the input beam@54#. In the general case~i.e., for an arbitrary
value of r ), VFS

(2)@q,q# and VFS
(2)@q,2q# do depend on the

parameterv characterizing the OPA. Inspecting Eqs.~14a!
and ~14b!, one observes that

VFS
(2)@qW ,2qW #,VFS

(2)@qW ,qW #. ~16!

At first glance, this result looks paradoxical, since it sta
that the photon number fluctuations at fundamental and
frequency are more correlated at opposite wave vectors
at the same wave vector. The same counterintuitive beha
had been reported in Ref.@40# in the case of type-I intracav
ity SHG. The equivalence of up-conversion with a BS he
to elucidate this phenomenon. From Fig. 3, it is clear that
differenceN̂F,1qW2N̂S,1qW is not affected by the fact that th
beam injected into the up-converter is one of the two p
fectly correlated twin beams. On the contrary, the quan
N̂F,1qW2N̂S,2qW keeps track of the twin-photon emission ta
ing place in the OPA: as a matter of fact, since the inputs
both BS are perfectly correlated, there is a finite probabi
that an outgoing fundamental photon at1qW is accompanied
by a perfectly correlated SH photon at2qW : this occurs each
time the photon at1qW of a given pair produced by the OP
is transmitted while the second at2qW is up-converted.
Evaluating the noise inN̂F,1qW2N̂S,2qW , the two photons of
the original twin-photon pair are recombined, and this lea
to a partial noise cancellation. Comparing the noise leve
N̂F,1qW2N̂S,1qW to the one inN̂F,1qW2N̂S,2qW , one finds a noise
reduction of22t2r 2. This quantity can be understood b
considering a twin-photon gun emitting pairs of photons
regular intervals. For a given shot, the photon at1qW may
either leave the system as a fundamental photon~with the
probability amplitudet), giving rise to the output photon
numbersNF,q51 andNS,q50, or be up-converted, and i
this case,NF,q50 andNS,q51. The same occurs indepen
dently at the other BS placed at2q. The variances of inter-
est can be written as

^~N̂F,1qW2N̂S,1qW !2&2^N̂F,1qW2N̂S,1qW&
2

5•••22^N̂F,1qW•N̂S,1qW ,&, ~17a!

^~N̂F,1qW2N̂S,2qW !2&2^N̂F,1qW2N̂S,2qW&
2

5•••22^N̂F,1qW•N̂S,2qW&, ~17b!

where••• stands for the common contributions to the tw
variances. The two BS being independent,^NF,1qW•NS,2qW&
on the right-hand side of Eq.~17b! can be evaluated by re
placing the average of the product by the product of avera
t2r 2. On the other hand, the product^NF,1qW•NS,1qW& is al-
ways zero because of photon number conservation. We
tain, as the difference between the two correlations, the re
22t2r 2. Finally, we note that whereas the differenceNF,1qW

2NS,qW is always above shot noise~or at shot noise if the
up-conversion rate is 1/2), the statistics ofNF,1qW2NS,2qW

can be below this limit. This occurs if the parameterv, char-
4-5
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acterizing the OPA and in particular the amount of exc
noise present in the individual beam injected into each
converter, does not exceed the value 2t2r 2/(t22r 2)2.

Now, thinking in terms of the original problem of TW
SHG, two aspects are missing in this simple model: first,
fact that twin-photon emission and up-conversion take pl
in fact simultaneously at any point of the crystal, while t
scheme represented in Fig. 3 is based on the spatial se
tion of these two processes. Furthermore, the multimo
nature of field dynamics in TW-SHG has been so far ignor
since a single temporal mode was taken into account. In s
of these restrictions, the study of the simplified model p
vides us with a valuable guideline for the detailed investi
tion of the correlations in the fluorescence spectrum of T
SHG, which will be the subject of the remaining of th
paper.

IV. A COMPLETE MULTIMODE
QUANTUM-MECHANICAL DESCRIPTION OF SHG

A quantum-mechanical description of the dynamics of
system of fundamental and SH field coupled through thex (2)

nonlinearity of the crystal has been derived in Ref.@42#. In
this section, we briefly review some general properties
this system and define some useful notation well suited
the study of a four-mode system. One first introduces
amplitude envelope operatorsAF(z,xW ,t) andAS(z,xW ,t) asso-
ciated with fundamental and SH field, normalized in suc
way thatAF

†(z,xW ,t)AF(z,xW ,t) and AS
†(z,xW ,t)AS(z,xW ,t) coin-

cide with the photon flux densities in photons per cm2 per
sec at a pointxW on the transverse plane and at timet. z is the
coordinate on the beam propagation axis. These opera
fulfill the free field commutation relation:

@Ai~z,xW ,t !,Aj
†~z,xW8,t8!#5d i j d~xW2xW8!d~ t2t8!. ~18!

The propagation of these quantum fields in ax (2) nonlinear
crystal was shown to be described by the following coup
equations@42#:

]

]z
ÂF~z,qW ,V!522KE d2q8dV8ÂF

†~z,qW 8,V8!

3ÂS~z,qW 1qW 8,V1V8!

3ei „kS
z(qW 1qW 8,V1V8)2kF

z (qW ,V)2kF
z (qW 8,V8)…z

~19a!

]

]z
ÂS~z,qW ,V!51KE d2q8dV8ÂF~z,qW 8,V8!

3ÂF~z,qW 2qW 8,V2V8!

3ei (kF
z (qW 8,V8)1kF

z (qW 2qW 8,V2V8)2kS
z(qW ,V))z,

~19b!

whereÂi(z,qW ,V) for i 5F,S is defined through the Fourie
transform,
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Âi~z,qW ,V!5e2 i (ki
z
„qW ,V)2ki …zE d2xe2 iqW •xWE dteiVtAi~z,xW ,t !

~20!

and represents the propagation corrected annihilation op
tor of a photon with transverse wave vectorqW , frequency
v i1V, (V is the frequency offset with respect to the carr
frequency!, and a longitudinal wave number deduced fro

the dispersion relation:ki
z(qW ,V)5Ak(v i1V)22qW 2, k(v i

1V) giving the wave number of a wave with frequenc
v i1V propagating in the NL crystal under consideration.
particular, the wave numberski introduced in Eq.~20! are
ki5k(v i). K is the coupling constant of the nonlinear inte
action and is proportional to the nonlinear susceptibilityx (2).
To solve Eqs.~19a! and ~19b!, one usually separates th
strong homogeneous fields created by the pump inside
crystal by means of the ansatz,

ÂF~z,qW ,V!5cF~z!d (2)~qW !d~V!1âF~z,qW ,V!, ~21a!

ÂS~z,qW ,V!5cS~z!d (2)~qW !d~V!1âS~z,qW ,V!, ~21b!

in which cF(z) andcS(z) are the amplitudes of these stron
monochromatic waves at frequenciesv and 2v. The product
of d-functions encodes the assumption of a stationaries
transversally homogeneous pump. In the small fluctuat
approximation, a system of two linear coupled propagat
equations for the quantum operators associated with fun
mental and SH field is obtained@42#:

]

] z̃
âF~ z̃,qW ,V!52 c̃S~ z̃!âF

†~ z̃,2qW ,2V!e2 i D̃(qW ,V) z̃

2A2c̃F* ~ z̃!âS~ z̃,qW ,V!e2 iD̃ (qW ,V) z̃,

~22a!

]

] z̃
âS~ z̃,qW ,V!51A2c̃F~ z̃!âF~ z̃,qW ,V!eiD̃ (qW ,V) z̃, ~22b!

whereas the normalized amplitudesc̃F( z̃)5cF(z)/AW and
c̃S( z̃)5cS(z)/AW/2, with W5ucF(0)u212ucS(0)u2 defined
as the input power injected into the nonlinear crystal, sati
as expected, the classical equations of nonlinear optics:

d

dz̃
c̃F~ z̃!52 c̃F* ~ z̃!c̃S~ z̃!e2 iDsz̃, ~23a!

d

dz̃
c̃S~ z̃!51 c̃F

2~ z̃!eiDsz̃. ~23b!

The dimensionless interaction lengthz̃ is the propagation
length expressed in units ofz051/(A2WK), the characteris-
tic length scale in phase-matched SHG.Ds5(2kF2kS) z0
represents the dimensionless collinear phase mismatch
the case of a vanishing phase mismatchDs50, the solution
of Eqs.~23! is particularly simple and reads@43#
4-6
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c̃F~ z̃!5eifF
(0)

sech~ z̃!, ~24a!

c̃S~ z̃!5e2ifF
(0)

tanh~ z̃!, ~24b!

wherefF
(0) is the phase of the pump field at the input pla

of the crystal, which, in the context of spontaneous emiss
is irrelevant.

The propagation equations for the quantum field opera
~22a! and ~22b! clearly display the two types of elementa
processes used in Sec. III to construct the simplified mo
The first term on the rhs of Eq.~22a! couples the fundamen
tal field amplitudeâF( z̃,qW ,V) to âF

†( z̃,2qW ,2V) and origi-
nates in the photon down-conversion~1! of the strong SH
wave generated in the crystal through SHG. Its amplitu
c̃S( z̃), combined with a phase factor involving an effecti
phase mismatch along the beam propagation direction,

D̃~qW ,V!5~kF
z ~qW ,V!1kF

z ~2qW ,2V!2kS!z0 ~25!

governs the efficiency of this process. The frequency cha
ing process ~2! generates a coupling of the amplitud
âF( z̃,qW ,V) to âS( z̃,qW ,V), encoded through the second ter
on the rhs of Eq.~22a! and the rhs of Eq.~22b!. The pump
for this process is the depleted pump fieldc̃F( z̃)5sech(z̃),
which appears as a prefactor, as well as a complex expo
tial factor involving a second effective phase mismatch

D̃~qW ,V!5@kF
z ~qW ,V!1kF2kS

z~qW ,V!#z0 , ~26!

whose effect will be to limit the efficiency to a certain ran
of spatial and temporal frequencies. In the standard para
and monochromatic approximation, the effective phase m
matches,

D̃~qW ,V!5Ds1sgn~kF9 !
V2

V2
2

2
q2

q2
2

, ~27a!

D̃~qW ,V!5Ds2
V

V1
1sgn~kF9 !

V2

4V2
2

2
1

4 S 12
Dk

2kF
Dq2

q2
2

,

~27b!

involve one typical spatial frequencyq25AkF /z0 and two
distinct temporal frequenciesV15@(2nS82nF8 )z0v/c#21 and
V25(ukF9 uz0)21/2, with kF95k9(v) and ni85n8(v i), n(v i)
being the refraction index of the crystal at frequencyv i
5v ( i 5F) or 2v ( i 5S). V2 and q2 are known from the
theory of the OPA to set the bandwidths for amplificatio
deamplification of an input signal and squeezing at fun
mental frequency@55#. V1 comes in through the first-orde
dependence ofD̃(qW ,V) on V, and originates in the group
velocity mismatch between fundamental and SH wave@56#.
As can be seen from Eqs.~22a! and~22b!, it determines the
bandwidth of the coupling between SH and fundamen
field @57#. Expressingq and V in units of q2 and V2 (Ṽ
5V/V2 , q̃5q/q2), and assuming thatDk/2kF!1, one
ends up with the following expressions:
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D̃~qW ,V!5Ds1V 2̃2q̃2, ~28a!

D̃~qW ,V!5Ds2hṼ1
Ṽ2

4
2

q̃2

4
, ~28b!

with h5V2 /V1. In all numerical calculations, we will se
h54, which is compatible with the value considered in R
@56#. In addition, we restrict our study to the normal dispe
sion regime, for which sgn(kF9 )51.

Integrating Eqs.~22a! and~22b!, one can express the ou
put field operatorsêi(qW ,V)5âi( z̃L ,qW ,V) defined in the exit
plane of the crystal (z̃L being the length of the crystal in unit
of z0) in terms of the operatorsâi(qW ,V)5âi(0,qW ,V) associ-
ated with the fields in the input plane. One finally obtains t
following input-output transformations for the system of fu
damental and SH field in TW-SHG:

êF~qW ,V!5uF~qW ,V!âF~qW ,V!1vF~qW ,V!âF
†~2qW ,2V!

1mF~qW ,V!âS~qW ,V!1nF~qW ,V!âS
†~2qW ,2V!,

~29a!

êS~qW ,V!5uS~qW ,V!âF~qW ,V!1vS~qW ,V!âF
†~2qW ,2V!

1mS~qW ,V!âS~qW ,V!1nS~qW ,V!âS
†~2qW ,2V!,

~29b!

which generalizes to the case of two coupled fields,
input-output transformation

êF~qW ,V!5uF~qW ,V!âF~qW ,V!1vF~qW ,V!âF
†~2qW ,2V!

~30!

describing the propagation of fundamental field in an O
@55#. Transformation~29! reflects the coupling of the fou
field modes associated with the waves@v#(q,V), @v#
(2q,2V), @2v#(q,V), @2v#(2q,2V) induced during
propagation by the two microscopic processes~1! and~2!. To
avoid lengthy formulas, it is advantageous to introduce
vectorlike notation by defining the two-component operat
aW (qW ,V) andaW †(qW ,V),

aW ~qW ,V!5S âF~qW ,V!

âS~qW ,V!
D , aW †~qW ,V!5S âF

†~qW ,V!

âS
†~qW ,V!

D ~31!

and arranging the coefficients of Eqs.~29! as

UW i~qW ,V!5S ui~qW ,V!

m i~qW ,V!
D VW i~qW ,V!5S v i~qW ,V!

n i~qW ,V!,
D ,

~32!

with i 5F,S. This allows us to rewrite the input-output tran
formation in the following compact way:

êF~qW ,V!5UW F~qW ,V!•aW ~qW ,V!1VW F~qW ,V!•aW †~2qW ,2V!,
~33a!
4-7
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êS~qW ,V!5UW S~qW ,V!•aW ~qW ,V!1VW S~qW ,V!•aW †~2qW ,2V!.
~33b!

The eight complex coefficients of the input-output transf
mation~29a! and~29b! are not independent. First, the outpu
field operators, like the ones characterizing the input fie
have to satisfy the free-field commutation relations:

@ êi~qW ,V!,êj
†~qW 8,V8!#5@ âi~qW ,V!,â j

†~qW 8,V8!#

5~2p!3d (2)~qW 2qW 8!d~V2V8!d i j .

~34!

This condition translates into the following relation for th
coefficients:

UW i* ~qW ,V!•UW j~qW ,V!2VW i* ~qW ,V!•VW j~qW ,V!5d i j . ~35!

From the requirement that operators associated with field
different frequencies must commute@ êi(qW ,V),êj (qW 8,V8)#
50, one obtains a further condition

UW i~qW ,V!•VW j~2qW ,2V!5UW j~2qW ,2V!•VW i~qW ,V!.
~36!

It is worth mentioning that within this vectorial notation
Eqs.~35! and ~36! for i 5 j 5F are formally identical to the
relations fulfilled by the coefficients of the input-outp
transformation~30! for the OPA and used in Ref.@48#. Fi-
nally, from energy-momentum conservation, another rela
can be derived:

VW F* ~qW ,V!•VW F~qW ,V!1VW S* ~qW ,V!•VW S~qW ,V!

5VW F* ~2qW ,2V!•VW F~2qW ,2V!

1VW S* ~2qW ,2V!•VW S~2qW ,2V!. ~37!

Analytical expressions for the coefficients of the two-fie
input-output transformation are available so far only forq
50 andV50 @57#. In the case of arbitrary values of spati
and temporal frequency, no analytical solution of the pro
gation equations is known, and the results presented in
VI were obtained by means of a numerical integration
Eqs.~22a! and ~22b! @42#.

V. CORRELATIONS IN
SECOND-HARMONIC GENERATION

The general structure of the input-output transformat
~29a! and ~29b! indicates the presence of quantum corre
tions within any four-mode subsystem built by two fund
mental modes with opposite transverse wave vectorsqW and
2qW and frequenciesv1V andv2V, and two SH modes a
the same wave vectors and frequencies 2v1V and 2v
2V. These correlations originate in the microscopic p
cesses~1! and (2): thefirst correlates the modes@v#(q,V)
and @v#(2q,2V) associated to a pair of twin photon
whereas the latter induces population exchanges betwee
03381
-

s,

at

n

-
c.

f

n
-

-

the

modes@v#(q,V) and@2v#(q,V), resp.@v#(2q,2V) and
@2v#(2q,2V) via sum-frequency mixing with an on-axi
pump photon@v#(0,0) @47,58#. However, the strength o
these correlations depends onqW and V in a way which is
essentially determined by the phase-mismatch functi
D̃(qW ,V) and D̃(qW ,V) @Eqs. ~28a! and ~28b!#. One manifes-
tation of these quantum correlations is the existence of c
relations in the fluctuations of the intensities at both frequ
cies measured in symmetrical portions of the far-field pla
@59#. The experimental setup, which would allow us to me
sure these correlations, is sketched in Fig. 5.

The fluorescence field is imaged on the detection plane
means of a one-lens-imaging system. As stated by stan
results of classical optics, the field on the detection pla
Ei(xW ,t) is the spatial Fourier transform of the output fie
Ai(zL ,xW ,t),

Ei~xW ,t !52
i

l i f
E d2x8Ai~zL ,xW8,t !e2 i (2p/l i f )xW•xW8

52
i

l i f
êi S 2p

l i f
xW ,t D , ~38!

where êi(kW ,t) represents the quantum operator associa
with an outgoing wave with frequencyv i and wave vectorkW
at timet. Therefore, the lens images an outgoing plane w
with transverse wave vectorqW at a pointxW i5( f /ki)qW of the
detection plane,f being the focal length of the lens. Since th
position of this point depends on the wavelength under c
sideration, the far-field intensities at fundamental and
frequency for a given wave vector can be detected in a sin
measurement. In the case of perfect phase matching, an
of four detectors placed atxWF , 2xWF ,xWF/2,2xWF/2, with xWF

5( f /kF)qW , would allow us to measure simultaneously t
intensity of fundamental and SH mode at transverse w
vectorsqW and2qW and to determine experimentally the co
relations of interest. Assuming for simplicity a perfect qua
tum efficiency of the detectors, the measured quantities
be expressed in terms of the operators associated with
number of outgoing photons:

N̂i~q!5E
s(q)

d2kE
2td/2

td/2

dtêi
†~k,t !êi~k,t !. ~39!

FIG. 5. Experimental setup for the investigation of spatial c
relations in TW-SHG.
4-8
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The time integration accounts for a finite acquisition tim
td , and the size of the detector in real space is modeled
integrating the local intensity over a surfaces(q) of areasd
centered on an average wave numberq. Going to time fre-
quencies, expression~39! reads

N̂i~q!5E
s(q)

d2kE dV1dV2

~2p!2
F~V12V2!

3êi* ~k,V1!êi~k,V2!, ~40!

where the function

F~V!5E
2t/2

t/2

dteiVt5
sin~Vt!

V
~41!

encodes the information about the finite time measurem
The field operators involved in Eq.~40! are defined by Eqs
~29!, while it is assumed that the detection areas(q) does
not contain the direction of the optical axisq50, so that the
coherent field components do not impinge on the detec
The correlations of the intensity fluctuations are encoded
the following shot-noise normalized variances:

Vi j
(e)~q,nq!

5
^@N̂i~q!1eN̂j~nq!#2&2^@N̂i~q!1eN̂j~nq!#&2

ZSN
,

~42!

with i , j 5F,S, e56 andn56 ~The notation̂ •••& denotes
vacuum expectation values@60#.! More specifically, correla-
tions between counterpropagating modes of each field
be addressed by settingi 5 j , while cross correlations con
necting modes of fields at different frequencies correspon
iÞ j . The parametern is 11, if the far-field correlations at a
given wave vector are investigated, or21 at opposite wave
vectors. Finally,e51 corresponds to evaluating the noi
level in the sum of the photon intensities, whereas in the c
e521 the noise in the intensity difference will be com
puted. To express variances~42! in terms of the coefficients
of input-output transformation~29!, we first define the un-
normalized correlation function:

Ci j
e ~q,nq!5^@N̂i~q!1eN̂j~nq!#2&2^@N̂i~q!1eN̂j~nq!#&2

5Xi i ~q,q!1Xj j ~nq,nq!12eXi j ~q,nq!, ~43!

where the photon number variance

Xi j ~q,nq!5^N̂i~q!N̂j~nq!&2^N̂i~q!&^N̂j~nq!& ~44!

can be rewritten as
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Xi j ~q,nq!5E
s(q)

d2kE
s(nq)

d2k8E dV1dV2

~2p!2 E dV3dV4

~2p!2

3F~V12V2!F~V32V4!

3@^êi
†~k,V1!êi~k,V2!êj

†~k8,V3!êj~k8,V4!&

2^êi
†~k,V1!êi~k,V2!&^êj

†~k8,V3!êj~k8,V4!&#.

~45!

Making use of the free-field commutation relations~34!, ex-
pression~45! can be converted into a normal ordered expr
sion, the extra terms corresponding to the associated s
noise level:

ZSN@Xi j ~q,nq!#5dn,1d i , jE
s(q)

d2kE dV1dV2dV4

~2p!4

3F~V12V2!F~V22V4!

3^êi
†~k,V1!êi~k,V4!&. ~46!

Before inserting Eq.~33! into Eqs.~45! and ~46!, we make
the following simplifying assumptions: first we assume th
the acquisition timet is much larger than the two time scale
V2

21 andV1
21 associated with the two microscopic process

of photon down-conversion and up-conversion. Furthermo
we consider detectors which are small enough, so that
variations of the fields on the detection area can be
glected. After some bosonic operator algebra, we end up w
the following expressions:

Xi j ~q,nq!5
tdsd

2p3 Fdn,1E dV@VW i* ~q,V!•VW j~q,V!#

3@UW i~q,V!•UW j* ~q,V!#

1dn,21E dVuUW i~q,V!•VW j~2q,2V!u2G
3d (2)~0W !, ~47!

ZSN@Xi j ~q,nq!#

5
tdsd

2p3 Fdn,1d i , jE dVVW i* ~q,V!•VW i~q,V!Gd (2)~0W !.

~48!

The presence of the divergent factord (2)(0W ) in both expres-
sions can be traced back to the assumption of a crystal
infinite transverse dimensions. As shown in Ref.@61#, a natu-
ral way to regularize this divergence consists of placing
pupil in the output plane of the nonlinear crystal. Under c
tain additional assumptions, this procedure merely amou
in replacingd (2)(0W ) by a factorSp /l2f 2, depending onSp ,
the area of the pupil. Defining the few following integral
which will be evaluated numerically
4-9
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I i~q!5E dVVW i* ~q,V!•VW i~q,V!, ~49a!

Ji~q!5E dV@VW i* ~q,V!•VW i~q,V!#@UW i* ~q,V!•UW i~q,V!#

~49b!

Ki~q!5E dVuUW i~q,V!•VW i~2q,2V!u2, ~49c!

Lm~q!5E dVuUW F~q,V!•VW S~2q,2V!u2, ~49d!

Lp~q!5E dVuVW F* ~q,V!•VW S~q,V!u2, ~49e!

the variances of interest can be expressed as follows:

Vii
(1)~q,q!5

Ji~q!

I i~q!
, ~50a!

Vii
(e)~q,2q!5

Ji~q!1eKi~q!

I i~q!
, ~50b!

VFS
(e)~q,q!5

JF~q!1JS~q!12eLm~q!

I F~q!1I S~q!
, ~50c!

VFS
(e)~q,2q!5

JF~q!1JS~q!12eLp~q!

I F~q!1I S~q!
. ~50d!

Recalling definition~42!, VFF
(1)(q,q) and VSS

(1)(q,q) charac-
terize the statistics of the individual photocurrents at fun
mental and SH frequency,Vii

(2)(q,2q) being the twin-beam
correlations at each frequency, whileVFS

(e)(q,6q) allows to
detect the presence of correlations in the fluctuations of
intensities at the two frequencies either at the same w
vector (1), or at opposite wave vectors (2). Finally, it
should be pointed out that these expressions were derive
nonvanishing transverse wave vectors. The special cas
the correlations at zero transverse wave vector, for which
coherent component of the fields gives rise to additional c
tributions to the variances of interest, has been treated in
@62# and will not be considered here.

VI. RESULTS

We first investigate the distribution of fluorescence fie
in the transverse plane. The mean intensities at fundame
and SH frequency, proportional to the integralsI F(q) and
I S(q) defined by Eq.~49a!, are plotted as a function of th
transverse wave number~Fig. 6!. One immediately notes tha
fluorescence emission at SH frequency is much weaker
at fundamental frequency. In the region of efficient spon
neous emission, typical values of the ratioNS(q)/NF(q) are
of the order of magnitude of 0.1. This low value can
traced back to the fact that twin-photon emission mainly
curs in the region of the crystal where the SH homogene
wave is strong. But there, the fundamental pump field, wh
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acts as a pump also for the up-conversion process, is stro
depleted~Fig. 1! and therefore, the conversion of the flu
rescence field fromv up to 2v is not efficient. At first sight,
it seems surprising that the profile of the transverse distri
tion of fluorescence field at fundamental frequency show
maximum at a finite transverse wave number. One wo
rather expect, in the perfect phase-matched case, the sp
neous emission to be strongest when both twin photons
emitted collinearly in the pump beam direction, as predic
and demonstrated experimentally for the type I OPA@63#.
The effect observed here is a consequence of the variatio
the temporal bandwidth of photon down-conversion with t
transverse wave number. To see this, we start from the pr
gation equation for the fundamental field, Eq.~22a!, in which
we neglect the contribution coming from the copropagat
SH field. This approximation is justified by the differen
magnitudes of spontaneous emission at fundamental and
frequency~see Fig. 6!. One is left with an equation

]

]z
âF~z,qW ,V!52cS~z!âF

†~z,2qW ,2V!e2 iD(qW ,V)z, ~51!

which describes an OPA with az-dependent pump.~From
now on, in order to simplify the notation, we will omit th
‘‘tildes’’ above the dimensionless quantities and the arro
above the wave vectors.! The effective phase mismatc
D(qW ,V) being responsible for an oscillatory phase modu
tion on the rhs of Eq.~51!, the production of pairs of funda
mental photons with frequencies (q,V) and (2q,2V)
should be the most efficient if the conditionD(q,V)50 is
fulfilled. This clearly appears in the case of the OPA in t
undepleted pump approximation@55,63#, for which
VW F* (q,V)•VW F(q,V), which can be identified with the spec
tral density of spontaneous emission at fundamental
quency, can be calculated analytically:

VW F* ~q,V!•VW F~q,V!uOPA5S sinh~A12D2~q,V!/4z!

A12D2~q,V!/4
D 2

.

~52!

In Ref. @63#, the fluorescence spectrum was investigated
degeneracy, i.e., forV50. Experimentally this was achieve
by putting a monochromator in front of the detector and,

FIG. 6. Mean intensities of spontaneous emission at fundam
tal ~a! and SH frequency~b! as a function of the transverse wav
number. Interaction length:z51.5 ~dotted line! and z52 ~solid
line!, corresponding to 82% (z51.5), resp. 93% (z52) SHG effi-
ciency.
4-10
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SPATIAL QUANTUM CORRELATIONS IN THE . . . PHYSICAL REVIEW A 68, 033814 ~2003!
this case, the effective phase mismatchD(q,V50) indeed
vanishes atq50, giving a maximal spontaneous emissi
along the beam axis. Here, we consider the whole fluo
cence spectrum, i.e., integrating over all temporal frequ
cies. The upper plot of Fig. 7 represents the spectral den
of spontaneous emission at fundamental frequency as a f
tion of the frequency offsetV. As in the case of the OPA in
the undepleted pump approximation, for a given value oq,
VW F* (q,V)•VW F(q,V) is essentially nonzero ifV is inside a
region formed by two intervals centered on1q and 2q,
which precisely ensure thatD(q,V)50. Starting fromq
50, for which the two intervals perfectly overlap, the wid
of this region, in terms ofV, first increases withq, until the
two intervals around1q and2q start to be separated by
central region of low spectral density. Further increasingq
leads again to a reduction of the total width of the region
effective spontaneous emission, since it scales like 1/q, as
shown by a elementary inspection of Eq.~28a!. Considering
Eq. ~52! reveals that this bandwidth is inversely proportion
to the square root of the propagation lengthz. As a conse-
quence, the maximum of the fluorescence spectrum is sh
to smaller wave numbers, when the propagation length
creases, as can be seen from Fig. 6.

No similar behavior is observed in the fluorescence sp
trum at SH frequency which instead shows a plateau at s
q, followed by a monotonous decrease. To understand
behavior, it is again useful to consider the correspond
spectral densityVW S* (q,V)•VW S(q,V) ~lower panel of Fig. 7!,
which reveals an interesting structure: four peaks can be
tinguished. Two of them are located atV56q, and coincide

FIG. 7. Spectral density of spontaneous emission at fundame
~upper panel! and SH frequency~lower panel! as a function of the
frequency offsetV, for two different values of the transverse wav
number: q53.5 ~solid line! and q55 ~dotted line!. Interaction
length:z52.
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with the maxima of the spectral density of emission at fu
damental frequency. This is consistent with the expecta
that a maximal twin-photon emission should translate into
enhancement of fluorescence at SH frequency. However,
additional peaks are present, one of them being the domi
contribution to spontaneous emission at 2v. A closer inspec-
tion reveals that these peaks are centered around two
quencies

V6
max5

1

3
~22h6A4h219q2!, ~53!

which fulfill the condition:

D~q,V6
max!5D~q,V6

max!, ~54!

i.e., for which the two effective phase mismatches defined
Eqs. ~28a! and ~28b! coincide. Coming back to the couple
propagation equations~22a! and ~22b!, condition ~54! im-
plies that up-conversion is perfectly phase matched w
twin-photon emission at any point of the crystal. Obvious
this gives the condition for an optimal conversion of t
spontaneously generated fundamental field up to SH
quency. This conclusion is consistent with recent results o
numerical study of colored conical emission in SHG@47#. As
a consequence of the group velocity mismatch between
damental and SH field,V1

max andV2
max are not symmetrical

with respect to the origin. Since uD(q,V1
max)u

,uD(q,V2
max)u, the twin-photon emission is less efficient

(q,V2
max) than at (q,V1

max) and, as a result, the spectral de

sity VW S* (q,V)•VW S(q,V) shows a higher peak atV1
max than at

V2
max. At small q the peaks atV1

max and atq roughly coin-
cide, resulting in the plateau in Fig. 7. Whenq increases, the
region of maximal SH fluorescence is shifted towards hig
frequencies, as predicted by Eq.~53!, with a strong decrease
of the maximum value of the spectral density. As a con
quence, the intensity of the SH fluorescence field rapi
drops to zero at higher transverse wave numbers.

As next, the statistics of the individual currents are brie
investigated. The normalized photon number variances~50a!
can be rewritten using identity~35! as

^N̂i~q!2&2^N̂i~q!&2

ZSN
511

E dV@VW i* ~q,V!•VW i~q,V!#2

E dV@VW i* ~q,V!•VW i~q,V!#

~55!

and, since the fraction is positive, the individual photoc
rents are always superpoissonian. Taking into account
peak structure of both spectral densities, Eq.~55! can be
approximated as

^N̂i~q!2&2^N̂i~q!&2

ZSN
511a@VW i* ~q,V!•VW i~q,V!#umax,

~56!

where (VW i* (q,V)•VW i(q,V))umax is the maximum value of
the spectral density with respect toV for a givenq anda is

tal
4-11
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PIERRE SCOTTO PHYSICAL REVIEW A68, 033814 ~2003!
a numerical factor depending on the specific shape of
peaks. The noise level in the individual current is hence
sentially determined by the maximal value of the spec
density, which characterizes the strength of the amplifica
of the vacuum fluctuations in the mode with frequenc
(V,q). These quantities have been plotted in Fig. 8 a
function of the transverse wave number.

At fundamental frequency, the amount of excess nois
almost independent of the transverse wave number, and
~56! shows that this property is due to the fact that chang
the value of the wave number does not affect the maxim
value of the spectral density~see Fig. 7!. Again, this is not
true at SH frequency, for which a higher wave number tra
lates into a lower maximal spectral density of fluoresce
and hence a noise level closer to the shot noise.

The interesting feature of the fluorescence field of
OPA, as pointed out in Ref.@48#, relies on the fact that al
though the individual photocurrents collected in two sy
metrical parts of the far-field plane can be both well abo
the shot noise, they show perfectly correlated quantum fl
tuations. In the case of TW-SHG, the photon up-convers
mechanism deteriorates the correlations between the fluc
tions of N̂F(q) andN̂F(2q), and gives rise to a finite leve
of quantum noise in the differenceN̂F(q)2N̂F(2q). This
quantity has been plotted in Fig. 9, together with the u
conversion rate for comparison. Whereas in the simplifi
model, these two quantities were shown to exactly coinc
@see Eq.~11!#, we observe that in TW-SHG the noise level
the differenceN̂F(q)2N̂F(2q) is below the up-conversion
rate, i.e., the deterioration of the twin-beam correlations

FIG. 8. Level of noise, normalized to the shot noise (ZSN), in
the individual currents at fundamental~a! and SH frequency~b! as
a function of the transverse wave number. Interaction lengthz
51.5 ~dotted line!, z52 ~solid line!.

FIG. 9. Twin-beam correlation at fundamental frequency~a! and
up-conversion rate~b!. Interaction length:z51.5 ~dotted line!, z
52 ~solid line!
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less pronounced than predicted by the simplified model.
already pointed out, in TW-SHG, twin photon productio
and up-conversion take place simultaneously. This mix
implies that TW-SHG, instead of the simplified model repr
sented in Fig. 3, is more similar to a cascade of many
those simplified models. The difference is that what ent
into each BS at SH frequency, instead of being the vacu
fluctuations~Fig. 3!, is in fact the output of the previou
‘‘simplified model’’ in the cascade, and hence already co
tains some twin-beam correlations. Therefore it seems
sonable that spatial mixing finally generates ‘‘more corre
tions’’ than if the two processes were spatially separat
Increasing the transverse wave number, the up-conver
becomes less efficient and therefore, the deterioration of
perfect twin beam correlations at fundamental frequency
less pronounced. A similar effect occurs when the propa
tion length increases~Fig. 9!: in this case, the intensity o
spontaneous emission at fundamental frequency incre
faster than the one at SH frequency and the degradatio
the twin-beam correlations is again reduced.

As far as the presence of twin-beam correlations at
frequency is concerned, the noise level in the differen
N̂S(q)2N̂S(2q), plotted in Fig. 10, is clearly below the
shot noise: the partial up-conversion of the twin photons g
erated at fundamental frequency transfers a part of the tw
beam correlations up to SH frequency. As can easily
checked, Var„N̂S(q)2N̂S(2q)…/ZSN is below the value of
the ratio ^N̂F(q)&/(^N̂F(q)&1^N̂S(q)&), and therefore the
simplified model underestimates the amount of twin-be
correlations present at SH frequency.

Finally, we looked for spatial correlations between t
two fields. The noise levels in the sum and the difference
the two photocurrents at the same far-field pointNF(q)
6NS(q) and at symmetric pointsNF(q)6NS(2q) are
shown in Fig. 11. Similarly to what was observed in t
cavity case@40#, the fluctuations of the intensitiesN̂F(q) and
N̂S(2q) turn out to be more strongly correlated than t
intensities at the same far-field pointN̂F(q) and N̂S(q). As
developed in Sec. III, this observation finds a simple exp
nation in terms of partial noise cancellation from the reco
bination of those twin-photon pairs, which were brok

FIG. 10. Noise level, normalized to the shot noise (ZSN), in the
sum~upper curves! and difference~lower curves! of the SH far-field
intensities at opposite wave vectors, as a function of the transv
wave number. Interaction length:z51.5 ~dotted lines! and z52
~solid lines!.
4-12
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SPATIAL QUANTUM CORRELATIONS IN THE . . . PHYSICAL REVIEW A 68, 033814 ~2003!
through an up-conversion process.
However, in contrast to the cavity case@40#, neither

N̂F(q)2N̂S(2q) nor N̂F(q)2N̂S(q) is below the shot noise
In fact, a comparison of Fig. 11 with the dotted curves of F
8 reveals that these quantities are manifestly dominated
the noise level in the individual photocurrent at fundamen
frequency. This obviously originates from the fact th

^N̂S(6q)&!^N̂F(q)&, as pointed out at the beginning of th
section, so that Var„NF(q)2NS(6q)…/ZSN
.Var„NF(q)…/ZSN. In this particular situation, the stronge
correlations are found not betweenN̂F(1q) and N̂S(6q)
but betweenN̂F(1q) and a scaled version ofN̂S(6q). Fol-
lowing the ideas introduced in Ref.@64# and exploited in
Ref. @22# for the investigation of Einstein-Podolsky-Rose
Correlations in the OPO, we investigated the statistics of
linear combination of photocurrentsN̂F(1q)1lN̂S(6q).
Plotting the corresponding noise levels, as always norm
ized to the shot noise, as a function of the scaling param
l ~Fig. 12!, we find that for a proper choice of the parame
l, the quantityN̂F(1q)1lN̂S(2q) indeed drops below the
shot noise, revealing the presence of correlations of nonc
sical nature between the two fields at opposite wave n
bers, whereasN̂F(1q)1lN̂S(1q) is at best slightly above
the shot noise. Figure 13 shows the value of the noise le
in N̂F(q)1lN̂S(6q), minimized for each wave numbe
with respect tol @65#.

It can be interesting to carry out the same optimizat
procedure in the case of the simplified model considered
Sec. III, and we found the following analytical results:

FIG. 11. Cross correlations~difference: solid curve; sum: dashe
curve! between the intensity fluctuations at fundamental and
frequency, at the same transverse wave vector~a! and at opposite
wave vectors~b!, as a function of the transverse wave numb
Interaction length:z51.5.

FIG. 12. Weighted cross correlation as a function of the weig
ing parameterl. Interaction length:z51.5. Transverse wave num
bers:q50 ~solid line! andq52 ~dotted line!.
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Var~N̂F,1qW1lN̂S,1qW !

ZSN
umin(l)51, ~57a!

Var~N̂F,1qW1lN̂S,2qW !

ZSN
umin(l)5122t2r 2, ~57b!

the last expression being derived under the simplifying
sumption thatv@1. The noise level in a linear combinatio
of both outputs at a given wave vector is at best given by
shot-noise level, whereas the fluctuations in a linear com
nation of N̂F,1qW and N̂S,2qW can drop below this limit, the
difference22t2 r 2 being precisely the amount of noise ca
cellation coming from twin-photon pair recombination.
both cases, the value oflmin which minimizes the noise leve
is given by 2t2/r 2 and coincides with the intensity rati

^N̂F,q&/^N̂S,q&. This simple result corroborates the interpr
tation of lmin as a factor which compensates the differen
between the average values of the involved currents, whe
the negative sign oflmin means that the currents have to
substracted from each other. Coming back to the full mu
mode calculation, the optimal valuelmin can be easily cal-
culated in terms of the different integrals defined by E
~49!, and has been plotted in Fig. 14. A slight deviation fro
the ratio ^N̂F(q)&/^N̂S(q)& predicted for the simplified
model is observed. A further discrepancy between the
models is seen in the fact that while the simplified mod
predicts the optimized variance ofN̂F(1q)1lminN̂S(2q)

H

.

t-

FIG. 13. Optimized cross correlation as a function of the tra
verse wave number, at the same transverse wave vector~a! and
opposite wave vectors~b!. Propagation lengthz51.5 ~dotted line!
andz52 ~solid line!.

FIG. 14. Value of the parameterl, which minimizes the cross
correlation at the same wave vector~a! and ratio of the intensities a
fundamental and SH frequency~b!. Interaction length:z51.5 ~dot-
ted line! andz52 ~solid line!.
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PIERRE SCOTTO PHYSICAL REVIEW A68, 033814 ~2003!
to be below the shot-noise level@Eq. ~57b!#, the full calcu-
lation shows that above a certain propagation length,
variance remains above the shot noise. This is connecte
the fact thatN̂F(q)1lminN̂S(q) displays some excess nois
at small transverse wave numbers, missed in the simpli
model, which increases with the propagation length. A
result, for larger propagation lengths, the partial noise c
cellation present inN̂F(q)1lminN̂S(2q) is not able to com-
pensate this excess noise and this quantity remains a
shot noise. However, the optimization procedure presen
here allows a substantial reduction of the noise level in
difference of intensity of the two fields with respect to t
equally weighted difference of photocurrents.

VII. CONCLUSION

In this paper, we investigated the properties of the flu
rescence field generated by phase matched second-harm
generation in the traveling-wave configuration. It was fi
shown that spontaneous emission leads to the generatio
fluorescence field at fundamental and SH frequency, as
result of two different mechanisms: first the strong SH wa
generated from the pump field through SHG decays i
pairs of twin photons. Subsequently, this fluorescence fi
may undergo a partial up-conversion triggered by
strongly depleted pump field at fundamental frequency,
gives rise to the fluorescence field at SH frequency. Ho
ever, in the case of phase-matched SHG, the depletion o
pump implies that this field distribution always remai
much weaker than the fluorescence field at fundamental
quency. We studied the transverse far-field intensity distri
tion at each frequency and explained the results in term
the spectral density of spontaneous emission at each
quency. We then focused on the study of the spatial quan
correlations in the fluctuations of the far-field intensities. W
found that the intensity of the fluorescence field at fun
mental frequency collected in symmetrical portions of t
-

e-

ll-
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far-field plane displays very strongly correlated fluctuatio
Unlike the OPA, the noise level in the difference is not ri
orously vanishing, but is found to be approximately given
the up-conversion rate at the wave number considered. Tw
beam correlations were also predicted at SH frequency.
originality of these correlations is that they cannot be trac
back to a twin-photon emission process. The emergenc
these nonclassical correlations originates from the fact
the considered beams are the result of a secondary pro
acting on twin beams, and hence display some correlat
present in the field from which they are generated. Ot
interesting correlations were predicted between the fluc
tions of the intensities of fundamental and SH field either
the same transverse wave vector, or at opposite wave vec
These cross correlations, interestingly, were found to
stronger when the intensities are compared at opposite
field points than at the same point. We showed that th
counterintuitive features could be understood in terms of p
tial noise cancellation due to the recombination of tw
photon pairs broken by the secondary process. This
illustrated from a qualitative point of view by considering
simplified few-mode model based on the formal equivalen
between up-conversion and beam splitters. This appro
could be useful to understand the quantum correlations
other optical systems, in which twin-photon emission co
petes with secondary processes. In particular, these cons
ations could be also adapted to the cavity configuration.
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