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Abstract
We present numerical and experimental investigations of the
synchronization of the coupling-induced instabilities in two distant mutually
coupled semiconductor lasers. In our experiments, two similar Fabry–Perot
lasers are coupled via their coherent optical fields. Our theoretical
framework is based on a rate equation model obtained under weak coupling
conditions. In both experiments and simulations, we find (achronal)
synchronization of subnanosecond intensity fluctuations in concurrence with
asymmetric physical roles between the lasers, even under symmetric
operating conditions. We explore the synchronization of these instabilities
with respect to the coupling strength and the injection current. We
demonstrate the existence of a critical coupling strength, below which
synchronization is lost; however, dynamical instabilities persist. Our model
correctly reproduces the observed dynamical features over the entire
investigated parameter space. We provide an intuitive explanation of the
appearance of the achronal solution by analysing the dynamics of the
injection phases of the optical fields.

Keywords: semiconductor lasers, injection locking, synchronization,
nonlinear dynamics

1. Introduction

Coupled nonlinear oscillators have been extensively studied
in the past due to the rich variety of possible behaviours
and applications. Periodic and chaotic oscillations have
been reported in a wide class of systems: chemical
reactions, population dynamics, physiological interactions,
coupled neurons, mechanical oscillators, lasers [1–4] etc.
Investigations using semiconductor lasers (SCL) have several
advantages. Firstly, the nonlinear dynamical behaviour of
these lasers is widely understood. Secondly, the parameters
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of SCL are well known and some of them can be controlled
accurately. Thirdly, SCL are the key devices for current
telecommunication technologies. In a new development,
interest in coupling and synchronization phenomena in SCL
has been boosted by the proposal of novel communications
systems using chaotic carriers [5–7].

Mutually coupled oscillators are of special interest since
fundamental concepts, such as synchronization, were first
discovered in these systems. In many real world systems, the
coupled oscillators are spatially separated. As a consequence,
the coupling exhibits a certain delay due to the propagation of
the signal between the oscillators. Nevertheless, it is in many
cases justified to neglect this delay because it is much shorter
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than the internal timescales of the subsystems. However, if this
condition is not fulfilled, delay can yield unexpected dynamical
behaviours, mainly due to the additional degrees of freedom
introduced into the system.

Most of the studies with coupled semiconductor lasers
considered unidirectional injection from a master laser to
a slave laser in order to achieve injection locking [8, 9]
or synchronization of chaotic oscillations [5]. The first
studies of weak mutually coupled semiconductor lasers with
delay [10, 11] found an interesting type of synchronization,
characterized by localized oscillations in one of the lasers.
Under these conditions, the laser intensities generally undergo
periodic or quasi-periodic oscillations. Recently, considering
weak to moderate coupling conditions and long delay times, a
new fascinating dynamical behaviour was found [12, 13]: the
coupled lasers exhibit subnanosecond synchronized chaotic
dynamics. Even in the case of identical devices, the roles
between the lasers were found to be asymmetric, and a
time lag between their dynamics was observed [12]. Since
these discoveries, interest in the fundamental investigation
of mutually delay coupled lasers has emerged. In [14, 15]
the authors discussed the question of whether a rate equation
model or the optical travelling wave model can correctly
describe the coupled lasers. The authors found that both
descriptions lead to similar behaviours when the coupling
is kept to moderate values. Using the rate equation
description it has been possible to obtain analytical expressions
of the phase-locked monochromatic solutions (bidirectional
injection locking) [14], stability of fixed points and periodic
orbits [16], and semi-analytical predictions of the stability of
synchronized chaotic solutions [17]. In spite of these advances,
many aspects of the complex nonlinear dynamics, such as the
mechanisms leading to synchronization with a time shift, are
not yet fully understood.

In the first part of this paper, we present a
detailed numerical and experimental investigation of the
synchronization scenario of two delayed coupled SCL.
This framework enables a joint description of the different
dynamical behaviours of the system with their synchronization
properties. We centre the discussion on the dynamical
instabilities resulting from symmetric coupling of the lasers.
Synchronization occurs upon increase of the coupling strength
beyond a well defined threshold. Synchronization is robust
in the sense that it appears for a wide range of currents and
coupling strengths. Despite the large degree of symmetry in the
system, we demonstrate that the system spontaneously selects
a state of achronal synchronization characterized by a time
lag between the dynamics of the lasers, and a large degree of
correlation. The dynamical properties of the achronal solution
are analysed using crosscorrelation techniques. The second
part of the paper is devoted to providing an intuitive picture
of the observed dynamics. We start analysing the stability of
the chaotic isochronal solution. We find that the isochronal
solution is unstable for any small fluctuation, e.g. due to
spontaneous emission. Associated with the instability of the
isochronal solution, we find the nontrivial dynamics of the
optical injection phases of the lasers. The leader–laggard role
of the lasers turns out to be related to the evolution of the optical
phases. Moreover, a simplified model describing the phase
dynamics corroborates the fact that the isochronal solution is
intrinsically unstable against fluctuations.
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Figure 1. Scheme of the experimental setup of two mutually
coupled SCL with polarizer (Pol), neutral density filter (NDF),
optical spectrum analyser (OSA) and electrical spectrum analyser
(ESA).

2. Experimental setup

Figure 1 depicts a schematic of the experimental setup. Two
device-identical SCL are mutually coupled with a delay via
their coherent optical fields. The distance between the lasers
determines the coupling delay by the propagation of the light
between the lasers. In experiments, the one-way coupling
delay amounts to τ = 4–5 ns. The lasers are two uncoated
Hitachi HLP1400 Fabry–Perot SCL produced from the same
wafer in order to achieve the highest possible degree of
symmetry in the system. The temperature of each laser
is stabilized to better than 0.01 K, and selected such that
the free-running frequencies of the two lasers match with
an accuracy better than 1 GHz. The polarizer guarantees
a coherent coupling between the lasers via the dominant
transverse electric (TE) mode of the optical field. A neutral
density filter placed between the two SCL controls the coupling
strength. In the present experiment, a maximum amount
of 5% of the output power of each laser is injected into
its counterpart. In the detection branch of the setup, two
photoreceivers with a bandwidth of 6 GHz are used to detect the
intensity dynamics of both lasers simultaneously via their rear
facet emission. The signal of the photoreceivers is analysed
by a fast digital oscilloscope of 3 GHz analogue bandwidth
recording the temporal waveforms, and an electrical spectrum
analyser recording the corresponding rf-spectra. In addition,
the optical spectra of the lasers are monitored with a grating
spectrometer with a resolution of 0.1 nm. Finally, the time
averaged output power of both lasers is detected by two p–i–n
photodiodes.

3. The model

In a general case, the optical propagation in three coupled
cavities determines the coupling between the lasers of figure 1.
The coupling terms have quite involved expressions [18].
However, the problem can be reduced to a bidirectional
injection problem with time delay in the limit of weak coupling
conditions [14]. Each laser can be then described by means of
rate equations for the electric field and the total carrier density.
In contrast to previous studies of coupled solid-state lasers [19],
the carrier rate equations are independent since the lasers are
spatially separated. The weak coupling limit is justified since
the concept of synchronization is intrinsically linked to weakly
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Table 1. Symbols, meanings and numerical values. The dimensionless gain constant is a ≡ gNt/γ and the threshold current is
I sol

th = It(1 + 1/a) ≈ 60 mA.

Symbol Meaning Value Dimensions

α Linewidth enhancement factor 4.0 —
γ Cavity loss rate 243 ns−1

g Differential gain 3.2 × 10−6 ns−1

κ Coupling rate ∼20 ns−1

τ Coupling time 4–5 ns
γe Carrier decay rate 1.66 ns−1

Nt Carrier number at transparency 1.5 × 108 —
ε Gain suppression 10−1 —
βsp Spontaneous emission factor 10−5 —

interacting subsystems [20]. Otherwise the system of figure 1
should be considered as a single compound-cavity laser. In a
practical situation, the amount of injected light from one laser
to its counterpart is controlled by varying the transmittivity of
an optical coupler located within the interlaser spacing (the
neutral density filter in figure 1).

The dynamics of the slowly-varying amplitude of the
electric fields A1,2(t) and the respective carrier inversions
D1,2(t) (scaled to the transparency density) is governed by

dt A1,2(t) = 1
2 (1 − iα)γ [G1,2(t) − 1]A1,2(t)

+ κcei�0τ A2,1(t − τ) + FA1,2 (t), (1)

dt D1,2(t) = γe[µ − D1,2 − G1,2|A1,2|2], (2)

G1,2(t) = aD1,2

1 + ε|A1,2|2 , (3)

with κc being the coupling rate, τ the one-way coupling time
and the suffices 1, 2 being used to label the lasers. Analysing
equation (1) we find an interpretation of the terms κc A2,1(t−τ):
they describe the mutual delayed injection from one laser
to its counterpart. The injection current normalized to the
transparency value It ≡ eγe Nt is given by µ ≡ I/It − 1.
The current is also commonly referred to the solitary threshold
current by means of p = I/I sol

th . Finally, we have included
Langevin noise terms to the field equations in order to account
for spontaneous emission processes. These terms have zero
mean, 〈FA1,2(t)〉 = 0, and correlation 〈FAi (t)F∗

A j
(t ′)〉 =

2βspγ δi, j(Di + 1) δ(t − t ′), with βsp the spontaneous emission
factor. In simulations, we consider identical parameters in both
SCL. Hence, the equations are perfectly symmetric under the
interchange of the lasers, except for noise terms. The meaning
and numerical values of the parameters, taken from the actual
experimental conditions, are given in table 1.

The optical coupling is coherent in the sense that it depends
on the amplitude and, more importantly, the optical phase of
the electric fields. This fact becomes evident when expressing
equation (1) as equations for the optical intensity and phase,
through A1,2(t) = √

P1,2(t)eiϕ1,2(t), which finally leads to

dt P1,2(t) = γ [G1,2(t) − 1]P1,2(t)

+ 2κc

√
P1,2(t)P2,1(t − τ) cos(η1,2(t) + ϕ0)

+ 4βspγ (D1,2 + 1) + FP1,2(t), (4)

dtϕ1,2(t) = −α

2
γ [G1,2(t) − 1]

+ κc

√
P2,1(t − τ)

P1,2(t)
sin(η1,2(t) + ϕ0) + Fϕ1,2(t), (5)

where η1,2(t) ≡ ϕ2,1(t − τ) − ϕ1,2(t) stand for the injection
phases from laser 1 to laser 2 and vice versa, whereas ϕ0 ≡
�0τ mod 2π is the optical phase accumulated in one-way
propagation. FP1,2(t) and Fϕ1,2(t) represent four independent
real Langevin noise sources. A generic monochromatic
solution can be expressed as ϕ1(t) = −�t and ϕ2(t) =
−�t + φ, so the injection phases lock to η1(t) = �τ + φ

and η2(t) = �τ −φ, respectively. The equations are invariant
under addition of multiples of 2π to η1,2(t), as a result of the
invariance under time translations. The relative phase shift
between lasers can be described by 
η(t) ≡ η1(t) − η2(t) =
2φ. The relevance of the injection phases shall be addressed
in section 6.

It is worth recalling that several hypotheses are implicit
in the derivation of these equations: single-longitudinal mode
operation and a common emission frequency �0 of the free-
running lasers, and weak coupling. The equations are only
valid to lower order in ξ (coupler transmittivity) and neither
passive feedback reflections involving terms like A1,2(t − 2τ)

nor higher-order corrections, for example, are accounted for
at this order of approximation. We notice that although the
higher-order terms are always present, their relative influence
diminishes when the coupler transmittivity approaches zero.
Although the coupled lasers exhibit multimode-emission in the
experiments we will show that the single-mode approximation
is sufficient to explain the synchronization scenario.

4. Synchronization scenario

We centre our discussion on the instabilities that arise under
weak to moderate coupling conditions (a maximum of 5% of
the light emitted is injected) and long coupling delay times.
We explore the behaviour of the system under variations of
two easily accessible parameters, namely, the coupling rate κc

and the current injection that we consider to be the same in
both lasers.

Operating close to the solitary threshold and when the
coupling rate exceeds a certain value κ I

c, the two laser
intensities display a behaviour that consists of irregular
pulsations with little correlation between them. This
point defines the onset of the coupling-induced instabilities.
Increasing the coupling strength further, the instabilities
reshape into similar pulsations but now accompanied by
sudden power dropouts followed by a gradual recovery of the
optical power. The interesting fact is that the pulsations in both
lasers start to display a good correlation only beyond a second
threshold for the coupling rate κ II

c .
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Figure 2. Numerical and experimental comparison of the maximum
degree of correlation achieved as function of the coupling strength.
Parameters from table 1 except τ = 4 ns and p = 1.

In order to better characterize this twofold threshold
behaviour, we introduce the crosscorrelation function [21, 22]
S(
t) between two variables x1(t) and x2(t) (with mean values
being subtracted) as

S(
t) = 〈x1(t)x2(t + 
t)〉√
〈x2

1 (t)〉〈x2
2 (t)〉

, (6)

where 〈·〉 means time average. We look for the time shift

t where the maximum correlation of the laser intensities,
max{S(
t)}, referred to as correlation degree, is achieved.
In figure 2, we observe that, as the coupling strength is
increased, the correlation degree increases very rapidly from
zero until it reaches a saturation value. Above this critical
value, the correlation degree does not significantly increase,
displaying a plateau with a relatively high value, ∼0.9. The
maximum coupling rate accessible in the experiment roughly
corresponds to κmax ≈ 25 ns−1. It is worth noting the excellent
agreement between theoretical and experimental dependences,
demonstrating that a large degree of synchronization is possible
for a wide range of coupling strengths. High correlation
degree (0.8–0.9) persists for injection currents typically below
twice the solitary threshold current. These results indicate that
large degree of synchronization is achieved when both lasers
operate in the equivalent regime IV of a laser with optical
feedback [23]. The correlation degrades when the injection is
increased beyond this value, where the optical spectra display
a broad band of frequencies (∼20 GHz wide) indicating that
they are operating within a fully-developed coherence collapse
regime [24].

The large correlation between the intensities motivates us
to further investigate the transition towards synchronization of
the coupling-induced instabilities. A typical example of the
dynamics beyond the second coupling threshold (κc > κ II

c )
is depicted in figure 3. In numerical simulations we took
a coupling rate of κc = 20 ns−1, in line with experimental
conditions. We represent the intensity traces of laser one in
black and laser two in grey lines. When they operate close
to the solitary threshold current, as depicted in figure 3(a),
we find that the low frequency dynamics consists in power
dropouts that display a good correlation between the two
lasers. Power dropouts appear in a wide range of coupling
rates and injection currents close to the solitary laser threshold.

Figure 3. Numerical time traces of the laser intensities for injection
current (a) p = 0.98 and (b) p = 1.17. The coupling rate is
κc = 20 ns−1 and τ = 4 ns.

Figure 4. Experimental time traces of the intensity emitted by the
two lasers when running under same conditions as figure 3.

For higher injection currents, power dropouts disappear and
the system enters a coherence collapsed (CC) regime (see
figure 3(b)). These numerical results are in good agreement
with experimental traces shown in figure 4. The mean time
between dropouts, the dependence on the injection current and
the transition to the CC regime are also well reproduced by the
rate equation model.

5. Achronal synchronization

5.1. Characterization

Zooming up into nanosecond timescales, we observe that the
optical intensities are organized in a sequence of fast irregular
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Figure 5. Subnanosecond synchronized dynamics between two
consecutive power dropouts for (a) numerical and (b) experimental
results. The time shift between the lasers has been compensated for.
The same conditions as figure 3 apply except p = 1. The numerical
traces have been filtered at 3 GHz bandwidth corresponding to the
analogue bandwidth of the experimental detection setup.

pulses, as depicted in figure 5. This fast pulsating behaviour
appears to be well correlated only if one series is shifted with
respect to the other by a time, τ , that precisely corresponds
to the coupling time. The solution where the dynamics of the
lasers occurs with such a time shift is referred to as leader–
laggard operation [12] or achronal synchronization [17]. The
dynamical properties of the achronal state are particularly
interesting because they originate from the bidirectional
coupling of perfectly symmetric subsystems. It is worth
noting that the achronal state is not a perfectly synchronized
solution of our system; it would only be possible for a periodic
oscillation. Consequently, the maximum correlation degree
attainable is a consequence of a fundamental limitation of the
system. Next, we characterize this solution using two standard
techniques, namely, crosscorrelation functions and generalized
return plots.

A standard tool for detecting the dependences between
the two laser intensities is the crosscorrelation function S(
t)
defined in equation (6). The crosscorrelation function obtained
from numerical traces, figure 6(a), displays dominant peaks at
odd resonances of the coupling time, that is to say, 
t = ±nτ

with n = 1, 3, 5, . . .. Consequently, successive peaks are
separated by a distance 2τ that corresponds to a roundtrip in the
interlaser space. The correlation at the successive peaks decays
when the index n increases while it is almost vanishing near
the zero shift 
t = 0, indicating that fluctuations occurring at
the same time are independent. The experimental correlation
function, obtained from the time traces in figure 4, is shown
in figure 6(b). The function displays the same features as
described above: the peaks are located at the correct positions
with similar values of correlation degree as those obtained

Figure 6. (a) Numerical and (b) experimental crosscorrelation
function. Parameters: τ = 4.8 ns, κc = 20 ns−1 and p = 1.

numerically. These results are found for a wide range of
injection currents close to threshold.

The quality of the synchronization can be also studied by
plotting the intensity of laser 2 versus the intensity of laser 1.
We note that we need to time shift one signal, otherwise only a
cloud of points is obtained. In order to decide which is the most
suitable direction for the time shift of the series we calculate
the crosscorrelation function. The latter exhibits two maxima
located at 
t = −τ and τ . These two maxima have the
same amplitude if we take long enough time series. This fact
indicates that we can arbitrarily shift one series with respect
to the other by a time −τ or +τ and get the same correlation
degree, although we stress that the series are not periodic. If
we take a short time series, e.g. including a few dropouts, the
crosscorrelation function is asymmetric, determining a suitable
direction for the shift. When a signal is moved in this direction,
a squeezed cloud of points arranged around a 45◦ straight line
is obtained. As can be seen in figure 7, experimental and
numerical characteristics are in agreement. The dispersion
of the points with respect to the linear tendency is linked to
the maximum correlation degree achieved. We recall that
the maximum degree of correlation increases from zero very
rapidly when the coupling strength is increased until it reaches
a saturation value, as discussed for figure 2.

5.2. Instability of the isochronal solution

We have performed deterministic numerical simulations to
decide whether the achronal state appears as a general property
of the system or is just a consequence of the noise sources
always present in the experiment and explicitly included in
the equations. In figure 8, we artificially switch off the
noise and we prepare both lasers to start from identical initial
conditions. We find that the system evolves in an isochronal
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Figure 7. (a) Numerical and (b) experimental generalized return
plots for the same conditions as figure 6. The maximum correlation
degree is ∼0.85 in both cases.

Figure 8. Deterministic numerical simulation describing the
destabilization of the isochronal solution due to an external
perturbation applied at t = 200 ns. (a) Intensity time traces filtered
at 3 GHz and (b) the dynamics of the injection phases. Parameters:
τ = 5 ns, κc = 20 ns−1 and p = 1.

state (P1(t) = P2(t), D1(t) = D2(t)) until a small perturbation
is externally introduced at t = 200 ns (the intensity of laser 1
is modified by 1%). In spite of the absence of noise for
t > 200 ns, this small perturbation is able to destabilize
the isochronal solution, and the system evolves towards the
achronal state. Since the system remains in the achronal state
for any arbitrarily long integration times, we give evidence
that the isochronal solution is unstable in our system, and that
the spontaneous emission prevents the observation of such a
state. The rest of the paper is devoted to providing an intuitive
explanation of (i) the instability of the isochronal solution and
(ii) the properties of the achronal state.

Previous studies [16, 17] suggested that the mechanisms
leading to the instability of the isochronal solution are related
to the role of the optical phases. In order to clarify this
point, we track the injection phases, η1,2(t), defined previously
in section 3. During the initial transient and before the
perturbation is applied, the two injection phases evolve in an
identical fashion, η1(t) = η2(t), as can be seen in figure 8(b).
The injection phases move close to the fixed points of the

Figure 9. (a) Detail of two different power dropouts and respective
recovery transients and (b) the dynamics of the relative injection
phases. Parameters: τ = 5 ns, κc = 20 ns−1 and p = 1.

compound system [14], displaying a chaotic itinerancy towards
low frequencies very similar to what happens in SCL with
optical feedback [25]. Power dropouts produce a rapid increase
of the injection phases, consequently shifting the emission to
higher frequencies. When the perturbation is applied, this
operating mode turns out to be unstable and the two injection
phases separate. This fact confirms the existence of a phase
instability that we shall discuss in section 6.

5.3. Change of role

In this section, we analyse the relationship between the leader–
laggard roles of the lasers and the phase dynamics. We shall
concentrate the discussion on the achronal solution that occurs
for currents close to the solitary threshold. After a careful
analysis of figures 3 and 4, we observe that power dropouts
do not occur simultaneously in both lasers but with a time lag
τ0. In figure 9(a), we show two arbitrary dropouts taken from
a long time series. In event (I) laser two drops first, whereas
in case (II) laser one drops first. Interestingly, the difference
between the injection phases, 
η(t), has the intrinsic dynamics
shown in figure 9(b). Large variations in 
η(t) occur at the
power dropouts, whereas
η(t) is approximately steady during
the two consecutive dropouts. The difference in injection
phases suddenly increases (decreases) when laser one (laser
two) drops first. This behaviour can be understood if we realize
that the effective coupling between the lasers is asymmetric
during dropouts. In example (I), only laser 2, which drops
first, continues receiving light from laser 1 during the period
τ0. The lack of feedback light after this time initiates the drop
of laser 1. The scenario in example (II) is equivalent to (I),
simply changing the labels of the lasers. During the recovery
process, both laser intensities gradually increase making the
coupling again symmetric so the lasers may compete for the
leading role. The change in role of the lasers is also found in
the experiments, as shown in figure 4(a).

In order to better understand the change in order of
the power dropouts, we perform a statistical analysis [26].
Comparison with experiments is not available here because
we did not take sufficiently long time series to allow for a
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Figure 10. Probability density function of the time shift between
power dropouts of the two lasers, τ0, for τ = 5 ns, κc = 20 ns−1 and
p = 1.01.

significant statistical analysis of dropout events. We define
a time lag by means τ0 ≡ τ k

1 − τ k
2 , where τ k

j stands for
the kth dropout time of laser j . To decide whether a power
dropout occurs or not, we look at those events where the laser
intensity crosses below a predefined threshold. Hence, positive
(negative) τ0 means that laser 1 drops before laser 2. The
probability distribution function of τ0, shown in figure 10,
is obtained from a large number of power dropouts (�104

events). We find that most of the dropouts occur at times
τ0 ≈ ±τ , whereas larger times are unlikely. The probability
of synchronized dropouts, i.e. τ0 ≈ 0, is rare although non-
vanishing. The probability distribution function is symmetric
around τ0 = 0, indicating that the number of events where
laser 1 drops first is, on average, equal to the number where
laser 2 drops first. This fact indicates that the statistical
quantities, computed over long time intervals of an achronal
state, are invariant under the interchange of the lasers, although
at any time the leader and laggard roles are clearly defined.

5.4. Influence of noise

Spontaneous emission noise can have an influence on the
dynamics, in particular during the power dropouts where the
laser intensities reach low levels. Hence, different sequences of
spontaneous emission will have different effects on a particular
power dropout, e.g. the order in which the lasers drop and
the later decision on the leader–laggard role. In order to
study this effect, we perform Monte Carlo simulations of the
rate equation model. By considering {
η(t)} as a stochastic
variable, we are able to discern the effect of noise on the change
of role. Each noise realization resembles the trace shown in
figure 9(b), but the direction of the phase jumps changes with
the realization. Figure 11(a) shows the mean value 〈
η(t)〉
(solid curves) and the variance σ 2(t) ≡ 〈
η2(t)〉 − 〈
η(t)〉2

(bold curves) of the relative injection phase. Now 〈·〉 means
average over 100 noise realizations. The phase difference
displays an approximately zero mean, 〈
η(t)〉 ≈ 0, when
averaging over the different realizations. Hence, we deduce
that 
η(t) takes positive and negative values with the same
probability. Moreover, we can observe a linear increase of the
variance of {
η(t)} in time, σ 2(t) ∼ t . From these results
we conclude that the large jumps of the phase difference,
associated with power dropouts of the achronal solution, can
be regarded as a random walk driven by fluctuations [27].

Time [ns]

σ2 (t)

 ∆η

 ∆η

Ση

< (t)>

(a)

0 200 400 600 800 1000
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Figure 11. (a) Statistical properties of the injection phases under
symmetric operation of the lasers, I1 = I2 = I sol

th . (b) Movement of
a Brownian particle in the thermodynamic potential given in
equation (10).

6. Physical mechanisms

The interesting findings in section 5 motivate us to further
investigate the mechanisms that cause the asymmetric roles
of the two subsystems. In particular, it has been mentioned
already that the governing equations are symmetric under the
interchange of the lasers owing to the symmetric operating
conditions. Thus, one might wonder why the solution where
both lasers evolve at the same time (the isochronal solution)
does not appear? The main observations can be summarized
in the following points:

(i) The system spontaneously selects a state of achronal
synchronization.

(ii) The isochronal solution is unstable for any small
perturbation.

(iii) A change in the leader–laggard roles of the lasers may
occur, in particular during power dropouts.

We are interested in finding a minimal description that
simultaneously explains the above-mentioned features and,
more importantly, that allow us to gain an insight into the
underlying dynamics. We tackle the problem by introducing
the idea of a thermodynamic potential. For the sake of
simplicity, we neglect amplitude fluctuations in equations (4)
and (5) to arrive at

dt ϕ1,2(t) = κc

√
1 + α2 sin(η1,2(t) + ϕ0 + arctan α) + Fϕ1,2(t),

(7)
which describes the dynamical evolution of the phases
associated with each oscillator as in Kuramoto’s model with
time delay [28]. Next, we assume small and slow variations of
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the phases over a time τ , justifying the approximation [29]:

dt ϕ1,2(t) ≈ −η1(t) + η2(t)

2τ
− 1

2
dt η1,2(t). (8)

The resulting equations can be written more conveniently in
the potential form

d

dt
η1,2(t) = − 1

τ

d

dη1,2
U (η1, η2) + Fη1,2(t), (9)

U (η1, η2) = 1
2 (η1 + η2)

2 − 2C[cos(η1 + ϕ0 + arctan α)

+ cos(η2 + ϕ0 + arctan α)], (10)

with C = κcτ
√

1 + α2. For convenience, we express the
potential in sum and difference variables, i.e. �η = η1 +η2 and

η = η1−η2. A typical shape of the thermodynamic potential
U (�η,
η) is shown in figure 11(b). In spite of the simplicity
of equation (9), it can provide an insightful interpretation of the
underlying mechanisms. It is worth recalling that the extrema
of the potential correspond to the monochromatic solutions.
Let us consider a Brownian particle moving under the action
of this potential. The movement is confined in the direction �η

because of the parabolic shape of the potential. The movement
in such a direction is associated with the gradual decrease of
both injection phases during consecutive power dropouts, as
observed in figure 8(b). However, the potential is horizontal in
the orthogonal direction, 
η, indicating that the particle can
arbitrarily jump back and forth towards positive and negative
values of 
η due to fluctuations. Large amplitude fluctuations
occur at the point of the power dropouts. Hence, the observed
jumps in phase difference 
η(t), in figure 9(b), stem from
large excursions in the valley of the potential. Moreover,
since the potential is horizontal in that direction, the particle
undergoes a random-walk-like movement and the kicks on
the particle can shift 
η to higher or lower values with the
same probability. This fact agrees with the results obtained
from Monte Carlo simulations of the variable 
η explained
in section 5.4. Finally, the absence of any force pushing the
particle towards the 
η = 0 manifold intuitively explains the
instability of the isochronal solution that would require the
manifold to be stable against fluctuations.

7. Concluding remarks

In conclusion, we have presented a detailed numerical and
experimental investigation of the synchronization scenario that
arises from the mutual optical coupling of two semiconductor
lasers. We have found a two-threshold behaviour that appears
upon variation of the symmetric mutual coupling strength. We
obtained a first threshold, associated with the onset of coupling-
induced instabilities, and a second threshold indicating the
transition to synchronization. Despite the high degree of
symmetry in the system, the solution spontaneously selected
corresponds to an achronal state, i.e. a time shift between
the dynamics of the two laser intensities is present. We
have characterized the achronal solution using crosscorrelation
analysis. We have found synchronization with a time shift
of the subnanosecond pulsation of the laser intensities. This
time shift corresponds to the coupling delay between lasers.
The generalized return plots present a linear tendency only
when a signal is time shifted. The attainable degree of

synchronization is about 0.8–0.9. Although the achronal
solutions distinguish between the lasers, statistical quantities
(probability distribution, crosscorrelation etc) computed over
long time intervals are invariant under the interchange of the
lasers. The above-mentioned results are quite generic features
that appear in a wide range of coupling strengths and injection
currents covering the low frequency fluctuation and coherence
collapse regimes.

It is worth remarking that the operation conditions
occur within the (bidirectional) injection locking regime, as
demonstrated by the existence of phase-locked monochromatic
solutions [14]. However, our results indicate that the phase-
locked operation associated with the isochronal solution
becomes unstable, leading to a generalized (achronal)
synchronization. This paper provides an intuitive explanation
in terms of a thermodynamic potential. In this framework,
this phase instability can be explained as the absence of
any deterministic force pushing the system towards the
synchronous state. Under symmetric operation, the presence
of fluctuations induces a drift of the injection phases towards
the direction of each of the lasers with same probability. The
case of asymmetric operation treated in [10] is an interesting
issue that deserves further investigation. Asymmetries can
make the coupling more effective in one direction. Then, the
driven system is pulled towards the driver. We have found that
a preferential injection in one laser (>1% current difference),
allows us to define a persisting leader that corresponds to the
laser with larger injection. Then, a net drift on the difference in
injection phases appears towards the direction of the laser with
larger pumping. A similar behaviour can be also generated by
slightly detuning (�1 GHz) the emission frequency of the free-
running lasers.
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[2] Schäfer C, Rosenblum M G, Kurths J and Abel H H 1998
Nature 392 239

[3] Ernst U, Pawelzik K and Geisel T 1995 Phys. Rev. Lett. 74
1570

[4] Roy R and Thornburg K S Jr 1994 Phys. Rev. Lett. 72 2009
[5] Mirasso C R, Colet P and Garcı́a-Fernández P 1996 IEEE

Photon. Technol. Lett. 8 299
[6] Fischer I, Liu Y and Davis P 2000 Phys. Rev. A 62 011801
[7] VanWiggeren G D and Roy R 1998 Science 279 1198
[8] Jagher P C D, van der Graaf W A and Lenstra D 1996

Quantum Semiclass. Opt. 8 805
[9] van Tartwijk G H M and Lenstra D 1995 Quantum Semiclass.

Opt. 7 87
[10] Hohl A, Gavrielides A, Erneux T and Kovanis V 1997 Phys.

Rev. Lett. 78 4745
[11] Hohl A, Gavrielides A, Erneux T and Kovanis V 1999 Phys.

Rev. A 59 3941
[12] Heil T et al 2001 Phys. Rev. Lett. 86 795

104



Synchronization scenario of two distant mutually coupled semiconductor lasers

[13] Fujino H and Ohtsubo J 2001 Opt. Rev. 8 351
[14] Mulet J, Masoller C and Mirasso C R 2002 Phys. Rev. A 65

063815
[15] Mirasso C R et al 2002 Phys. Rev. A 65 013805
[16] Javaloyes J, Mandel P and Pieroux D 2003 Phys. Rev. A 67

036201
[17] White J K, Matus M and Moloney J V 2002 Phys. Rev. E 65

036229
[18] Agrawal G P and Dutta N K 1993 Semiconductor Lasers

(New York: Van Nostrand-Reinhold)
[19] Fabiny L, Colet P, Roy R and Lenstra D 1993 Phys. Rev. A 47

4287
[20] Pikovsky A S, Rosenblum M and Kurths J 2001

Synchronization: a Universal Concept in Nonlinear
Sciences (New York: Cambridge University Press)

[21] Rosenblum M G, Pikovsky A S and Kurths J 1996 Phys. Rev.
Lett. 76 1804

[22] Rosenblum M G, Pikovsky A S and Kurths J 1997 Phys. Rev.
Lett. 78 4193

[23] Tkach R W and Chraplyvy A R 1986 IEEE J. Lightwave
Technol. 4 1655

[24] Lenstra D, Verbeek B H and den Boef A J 1985 IEEE J.
Quantum Electron. 21 674

[25] van Tartwijk G H M, Levine A M and Lenstra D 1995 IEEE J.
Sel. Top. Quantum Electron. 1 446

[26] Mulet J and Mirasso C R 1999 Phys. Rev. E 59 5400
[27] San Miguel M and Toral R 2000 Stochastic effects in physical

systems Proc. Instabilities and Non-Equilibrium Structures
vol 6, ed J M E Tirapegui and W Tiemann (Dordrecht:
Kluwer–Academic) p 35

[28] Yeung M K S and Strogatz S H 1999 Phys. Rev. Lett.
82 648

[29] Mørk J, Semkow M and Tromborg B 1990 Electron. Lett. 26
609

105


