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Polarization quantum properties in a type-Il optical parametric oscillator below threshold
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We study the far-field spatial distribution of the quantum fluctuations in the transverse profile of the output
light beam generated by a type-Il optical parametric oscillator below threshold, including the effects of trans-
verse walk-off. We study how quadrature field correlations depend on the polarization. We find spatial
Einstein-Podolsky-Rosen entanglement in quadrature-polarization components. For the far-field points not
affected by walk-off there is almost complete noise suppression in the proper quadratures difference of any
orthogonal polarization components. We show the entanglement of the state of symmetric, intense, or macro-
scopic, spatial light modes. We also investigate nonclassical polarization properties in terms of the Stokes
operators. We find perfect correlations in all Stokes parameters measured in opposite far-field points in the
direction orthogonal to the walk-off, while locally the field is unpolarized and we find no polarization squeez-

ing.
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[. INTRODUCTION rate of production of photons pairs, increasing the gain and
providing active filtering of the frequency bandwidth
Polarization[1] and transverse spatig?] degrees of free- [12,13. The spatial distribution of the quantum fluctuations
dom of light beams interacting with nonlinear media haveclose below to threshold is dominated by weakly damped
been extensively studied in the last decade. The selection @fiodes that become unstable at the threshold of the OPO, as
special spatial modes of the transverse profile of a light beardiscussed in Sec. Il. This fluctuating spatial structure, known
down-converted by a quadratic crystal provides an interestas “quantum image,” has been extensively studied for type-|
ing example of a polarization entangled stfsé In these OPO, where polarization does not play any important role
kinds of experiment$3] the fluorescence, or rate of photon [14—-16. Here we analyze the spatial quantum fluctuations
pair production, is low(single-photon regime Recently, for type-Il phase matching, considering the polarization and
there has been an increasing interest for polarization erthe transverse spatial degrees of freedom. We also study the
tanglement in continuous variable regimes, where intenseffects of the transverse walk-off between the orthogonally
light beams, with high fluxes of photons, are generated. Ipolarized signal and idler down-converted fields.
this case the detection no longer resolves single-photon The characterization of the spatial and polarization prop-
eventq4,5]. The interest in such macroscopic or multiphotonerties of the down-converted light is given in two different
systems is partly due to possible applications of continuousvays, discussed in Sec. lll and in Sec. IV, respectively. In
variables in quantum communicatiof®, quantum informa- Sec. Il we study Einstein-Podolsky-Ros€¢BPR correla-
tion [7], mapping from light to atomic medig], and quan- tions [17] between polarization-quadrature components. A
tum teleportation[9]. Most works on continuous variable precedent of macroscopic EPR experiments in OPO are
regimeq4—10] are concerned only with temporal features of those of Refs[18,19, but they do not refer to spatial EPR,
light beams, while our aim in this paper is to study polariza-distinguishing signal and idler by their polarization. Spatial
tion entanglement between spatial modes of intense lighEPR was theoretically considered in Rdf20,2]] in type-I
beams when intensities are continuous variables. OPO. We build on these results by considering the polariza-
Interesting polarization effects arise in type-ll phasetion degree of freedom and including the walk-off effects in
matching when a pump field is down-converted in a qua-our treatment. Our main finding is that for the intersection
dratic crystal in two orthogonally polarized fielfi3]. Para-  points of the far-field rings there is noise suppression much
metric down-conversiorfPDC) can be increased using an below the standard quantum limit in the proper quadratures
intense pump pulse or by means of a resonant optical cavitgombinations of any orthogonal polarization components of
The case of an intense pump is considered in Reff]. In  the critical modes. We show that the entanglement observed
this paper we study the situation of an optical cavity, that isjn the single-photon regime] survives for the multipohoton
an optical parametric oscillatd©PO). In the OPO the fields state generated by an OPO near below threshold.
resonate in a cavity and therefore an intense laserlike beam is In Sec. IV we analyze the issue of macroscopic polariza-
down-converted above threshold. The cavity enhances thgon entanglement in terms of Stokes operators. These opera-
tors are related to the intensity of different polarization com-
ponents of light. There is a recent experimental observation
*Present address: Department of Physics and Applied Physicef polarization squeezing in three of the four Stokes param-
University of Strathclyde, 107 Rottenrow, Glasgow G4 ONG, eters[22], while macroscopic polarization entanglement in
Scotland, UK. terms of Stokes parameters has been considered in[&Hef.
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and demonstrated in Reff5]. The situations considered in
Refs.[22,4,9 do not involve transverse spatial degrees of p=
freedom. Quantum properties of Stokes operators taking into
account the spatial transverse dependence of light seem to be _
first considered here and in RgL1]. We study both the local and the matrices

properties of Stokes parameters in the transverse far-field R

profile of the down-converted beatBec. IV A) and the pos- ( y1(1+iA(k 0)) —VY1Y2R0 ) -

sibility of entanglement between spatial far-field mo¢@sc. - _ AF 1—i >
. . v —iAy(—k,—
IV B). As a main result we show that there exists macro- Y1%2Ro 72( 2( ©))

ik ) -
Az(_k,_w)

AT(K,©)
Aint " ’ (6)
A2 (_kv_w)

scopic polarization entanglement between the beams mea- N
sured at the intersection points of the far-field rings. We find F:( N ) )
perfect quantum correlation at zero frequency in all Stokes 0 V27,)"
operators.
with
II. INPUT /OUTPUT RELATIONS AND FAR-FIELD > -
O CHARACTERISTICS Ajkw)=A+ 2|k + piky = wl ;. ©

We consider a type-Il OPO below threshold, in the unde-Using the input/output relations®'=Tv—»'" [23] we ob-
pleted pump approximation. In this approximation the pumptain the output fields
field is described by a fixed classical varialg. In the

- Aout _ " Al " " Al "
mean-field approximation the signaf\{, ordinary x polar- A(iuz(k"")_Ul,z(k"")Allrjz(k’“’)+V1,2(k"")A'2rjl(_k’_‘*’)-

ized) and the idler A,, extraordinaryy polarized fields obey (10
the following Heisenberg operator equatidas]: The coefficients of the input/output transformation are
GAL= = y1(1+iA =12, V24 p1dy)As+\y172A0A] Uy (K )= 2[1-iAy(—k ~ )]
1 l - R = R - -4,
+2y,Aln, 1) [1+iA(Ko)][1-i1A5(—k —w)]—|Aol?
IA2= = ya(1+i8,-18,V2+ pady) Ag+ \y172A0A] Vi(R.o) 2A,
. 1 !w = . — . > 1
+2y,AN, ?) [1+|Al<k,w>][1—|A2<—k,—w)]—|Ao|2(12

where vy; are the cavity linewidths for the signal and idler andU,, V, are obtained interchanging the indices 1 and 2 in
fields,A; are the cavity detuning§,? is the two-dimensional Egs.(11) and(12).

transverse Laplacian that models the effect of diffraction in Assuming that the input signal and idler fields are in the
the paraxial approximation, and; are the diffraction yacyum state, it is immediate to obtain the nonvanishing

strengths. In type-Il phase matching a transverse walk-ofs:ond-order moments of the output fields
arises between the signal and idler fields. It is described by

the drift termsp;d,A; . A" are the input field operators, de- (AU (K, ) ASUY(K "))
scribing the fluctuations of the signal and idler modes enter- . o
ing through the partially transmitting cavity mirror. =|Vi(k,0)[?5(k—k)d(w—w"), (13

From the Fourier transform A A
<AC2)UI T(k,w)AgUt(k, ,(,L)l)>

- Ak [ do oo oo i o
A(X,t)z‘[ﬁf \/?el(l«x wt)A(k,w), (3) :|V2(k,a))|25(k—k')ﬁ(w—w'), (14)
n
) (A%U(K,w)ASU(K',w"))
AT()Z t):JﬂJ d_wei(E»i—wt)AT(_lz —w), (@ UK e - ,
’ 2] 2@ o =Uy(K,0)Va(—K,— 0)8(k+k') 8(0+ ')
(15

we obtain the following algebraic linear relation, giving the

intracavity mode operatorér(lz,w) in terms of the input and the corresponding Hermitian conjugate ones. From these

moments, quadrature and intensity correlations can be ana-

fields " (k, w): lytically calculated for a transversally homogeneous pump
o Ao. These calculations can be simplified considering the uni-

Ly=T"v", (5 tary conditiong(see, for instance, Reff15]) and the symme-

tries of the system. From Eq&l3) and (14) we obtain the

where we have introduced the operator vectors local far-field (FF) intensity. From Eq(15) it is evident that
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correlations between signal and idler are nonvanishing only 1.0 e
between symmetric points of the far field. Such two-mode
correlations are due to the quadratic form of the Hamiltonian 0.5 =
describing, within a linear approximation, the OPO below
threshold. In the following, and in order to avoid unphysical & 0.0
divergenced24], we consider that the fields are integrated
over a detection regioR;; of areao: 0.5
o I 0
A% (k) — | dk'A°U(K"). (16) -1.0
Rk 1.0 —0.5 00 05 1.0

k

At the threshold for signal generatioAK‘z 1), and for a
negative total detuning)(A;+ y,A,<<0), an instability at FIG. 1. (Color online Far-field intensity, Eq.(19) for A,
finite wave number and with nonzero frequency appears, as0.99. Space is scaled with diffraction strength=a, and time is
extensively discussed in Refl25,26. The modes that be- scaled with cavity decay, =y, [33], as reported in Ref§14,16].
come unstable at threshold are determined by the relatior@ther parameters ar&,=A,=—0.25, p;=0, p,=1. The same

A1 (K, wy4(K)=0 andA (K, w(k))=0, where parameters will be used for all figures, unless another choice is
specified. The lowetuppe) ring corresponds to the intensity of the
Y1Y2 field 1(2).

k)= A=A+ (ay—ay) [K|2+ (py+ po)k
n(k) [81782% (=)™ (prtp2) 2 the cavity case there is a threshold above which a pattern

17 appears in the transverse profile of the fields. The modulus of
, the wave vector of such a pattern at threshold is identified in
is the frequency that becomes undamped at threstpf  the nojsyprecursorbelow threshold27]. The existence of a

Y1t v

bifurcation. N _ _ selected wave number is an effect of the optical cavity, its
The unstable critical modes lie on two rings of the farygjue being determined by the cavity detun[2g).
field given by The main contribution to the integrals in E4.9) are the

R most intense frequency components given by Eb7).
Y181+ ¥20 o+ (y181+ v222)|K[2 = (y1p1— ¥2p2) ky=0. Hence the intensity at the Hopf frequency
(18)

(AT (K, wn(KDA! (K, wn(K))
If the relative walk-off y;p,— v,p, vanishes, Eq(18) de- . R A .
scribes a single far-field ring. Therefore, in the absence of +ASM T (K, wn (KA (K, wn(K)))
walk-off the signal and the idler far-field distributions are is very similar to the one of Fig. 1. This picture of the FF
superimposed, and an intense ring Is observed. The two "M% ows that the intensity reaches the highest value at the in-
of Eq. (18) are clearly identified in Fig. 1, where we repre-

) . . . tersection points of the two rings, where ordinary and ex-
sent the stationary mean intensity close to the threshold: . X ; o)
traordinary fields are superimposed. From E) it is im-

(AU (R ) AUR 1)+ AU T(K, 1) AQU(K 1)) mediate to obtain the coordinates of these crossing points:
- . —y1A1— 724,
o - - *ky=(=k$0), with ki{=/——FFF—.
- | dolvikwlP+ VAR a9 W (O TN e

This figure is similar to the well-known experimental im- In our calculations we will also consider the FF modes on the
age obtained when there is no cavity, in spontaneous paraings for which the influence of the walk-off is stronger.
metric down-conversiof3,11]. We want to point out that the These are the four points of intersection of the two rings and
cavity introduces fundamental differences: in particular, inthey axis, with ordinates

+KE !

=% - + - 2—4(y,A 1+ oA a;+ y.ay) |. 21
y+ 2(71a1+72a2)[ (Y1P1~ ¥2P2) \/(71P1 Y2P2) (71411 7y245)(y1a1+ v2a2) ] (21)

We define the two external points byky, = (0,* ky.), with k., obtained from Eq(21) with both + signs.
For simplicity in the following we shall omit the labelut, indicating with ALZ the output fields, described by Egs.
(13)—(15).
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ll. SPATIAL EPR ENTANGLEMENT BETWEEN if we place the detectors in the FF likg=0, the variance
QUADRATURE-POLARIZATION FIELD COMPONENTS results independent of all angles, includig We find
The vectorial field is a superposition of linearly polarized o
components: f dte Y Ato ((ky,0), DAL ((Ky,0),0)
A=Aje+Ase,. (22 = [ 1+ |V1((k0),0)|*+ V1 (0, — )],

By means of a wave retarder In other words, fork,=0, the level of fluctuations is in-

dependent of the choice of the polarization state and quadra-
We 1 0 23 ture, depending only on the positidg.

“lo €T ( Next, we consider the correlations between the field com-

ponents detected from two spatially separated FF points.
and a polarization rotator Such correlations are not vanishing only fymmetrickFF
pointsk and —k. We will show that the correlations between
quadratures measured from these two positions of the trans-
verse plane show EPR entanglement. A two-mode state is
here defined to be EPR entangled if, for two orthogonal

we can obtain a field,=WPAin any polarization state  quadraturesX; and ¥; in each modei(i=1,2), the condi-
tional variancesV,,{X1|X,) and VS, Y1]Y,) are both

Aro=(A;c0s0 +AeTsin®)é, less than 1, as discussed in RE§]. The conditional vari-
ance is defined by

(29)

cos® sin®
—sin® cos® )/’

+(—A;sin®+AecosO)e, .

. | o aia L V(AxgB)
With a linear polarizer Viond AlB) =min——, (28
g V(Asy
1 0 A .
L= 0 ol (29 V(A) being the variance an¥l(Ag,) the shot-noise level.

The factorg is introduced to optimize noise reduction and is
we can select a field polarization component, and, integratingxperimentally obtained by an attenuator and a delay line

over a detection regioRy, we obtain [18,21]. The valuea_giving the minimum in Eq(28) is gen-
erally less than oneg=1 being only for perfect correlations
Ar@(lz,t)=f dk'[AL(K',t)cos® +A,(k’,t)e''sin®]. betweenA andB [28]. In general, we note that
Ry

. X, — X5) < V(X
By homodyne detection we can select a quadrature com- VX =Xp) <V(Xysn

ponent of this polarization component. We define the quadraénd
ture ¥ by

Alo()=Are(De™ +(Arg) (e ™. (26) VYY) <V(¥asn @9
is a sufficient condition for EPR entanglement, correspond-

In any FF point, the arbitrary quadrature-polarization, e e,
component(26) has a vanishing mean value and a spectralng to the choiceg=1. The definition of EPR entanglement

variance which depends only @, but it is independent of used herd6] provides a sufficient condition for thesepa-
the choice of the phase factots éndF Integrating over a rability criterion recently discussed for continuous variable

) . ) . systems in Ref[29].
gg:}egggﬂe rgf%?r;ﬁ‘véf z\;/tvrgao(gtarir:]uch smaller of the varia For a single-mode type-ll OPO below threshold, in which
I [l

transverse effects are not considered, EPR correlations be-
tween signal and idler modes of different polarizations have

f dte Y Afe(K,1)AFe(K,0)) been predicted and experimentally demonstrd@@]. Re-
cent investigations show the possibility of EPR entanglement
= o[ 1+coSO(|Vi(K, o) |2+ |Vi(K, — »)|?) between spatial regions of the transverse profile of the signal
field of a degenerate optical parametric oscillaf20,21].
+5sirPO (| V(K ) |2+ VoK, — 0)|D)], (270  For type-ll phase matching we can consider two symmetric

far-field modes withx andy polarizations, respectively. Ne-
whereo fixes the shot-noise level. Therefore, in any far-field glecting walk-off effects we would then find results equiva-
point the variance of an arbitrary quadrature-polarizatiorient to the degenerate case in type-I phase matdi@ag1.
component is above the shot-noise lewelWe observe that In addition to considering the effect of the walk-off, the
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uniqueness of our discussion here for type-Il OPO is that we
can also consider how these correlations change with the
polarization state.

As an indicator to look for EPR entanglement in our case,
we introduce the spectral variance of the difference of
guadratures

I+

Vy( E,w;cﬁ):fdteiwt<[A}"®(|Z,t)—g*A}P,'®,(—|Z,t)]

X[Afo(K0)—gAl 6, (—K0)1), (30
where the vectob=(I',0,¥,['’,0’,¥') is the set of pa-

rameters determining the polarizatioflewer label$ and
guadraturesupper labelsof the symmetric FF modes under

detection
y polar.

PHYSICAL REVIEW A 68, 063809 (2003

K,

a

detection
x polar.

x polarization

—— y polarization

consideration. The value @ giving the minimum variance

(30) is

j dte (AT, (—KOAY (K.0)

9=

f dtel wt<AI\I~,/,®/( - IZ,t)A}*I,/’@/( - E,O))

and depends ok, w, ®, andd’.
From the output moments, Eqd.3)—(15), we obtain

Va(*K,0;®) = of[e'" "+ (c0s0) Uy (k,0)
—g*(sin®)' Vi (—k,— w)|?
+]e TV g* (5in@) U, (K, — w)
—(cos®)V3 (—K,w)|?
+] Y D (6in@) U, (—K, — w)
—g*(c0s0)' V3 (k)
+]e Y Dg* (cos®)' Uy (— K, )
—(sin@)V3 (K, — w)|?]

with shot-noise levelo(1+]|g|?). A variance below this

FIG. 2. FF signal(black and idler(gray rings and detection
scheme not influenced by the walk-off: Tleandy polarizations
are detected at the pointsIZH where the rings intersec¢square
symbols.

depends on independent variationd’'candI”’ only through
their sum with the sum of the quadrature phades V'’
means that it is equivalent to vary the selected quadrature
changing the phase of the local oscillator or to shift both
signal and idler fields by a proper phase with the phase re-
tarders.

In order to study how correlations change in different spa-
tial regions of the FF we consider two detection schemes,
with detectors in symmetric FF points, which represent the
following possible extreme cases.

(1) In the first detection scheme the field is detected in the

crossing pointst IZH of the signal and idler rings in the FF,
as represented in Fig. 2. These points being in the Kipe
=0, they are not affected by the transverse walk-off. In Fig.
2 we indicate the case in which at one point the polarization
componenix is selected and in the symmetric point the po-
larizationy is selected. In Sec. lll A we will show that for
these special points of the FF any change in the selection of
the polarization does not influence the results given by Eq.
(32.

(2) In the second arrangement, shown in Fig. 3, the detec-
tors are located in a couple of symmetric poiniEV on the

shot-noise level is a signature of squeezing. We are lookingine k,=0, where the walk-off effect is more pronounced. In

for the more stringent condition(®8) discussed above: EPR
entanglement imposes the requirement th}’giilz,w;@)
goes below the shot-noise level Af'y [that is, we should
find Vy( £k, w;®) < o] simultaneously for two combinations

of orthogonal quadraturd$].

The general resul{32) depends on many parameters.

Sec. Il B we will consider the effect of changing the polar-
ization state selected. We can distinguish two extreme cases:
Fig. 3@ shows the arrangement in which the most intense
polarization components on the rings are detected. We name
this scheme as “vertical bright scheme.” FigurébBshows

the case in which thg (x) polarization component is selected
on the intense loweftuppe) x(y) polarized ring. We name

However, it is important to note thag, only depends on the
phasesV, V' ,I",I'" through the independent combinations
(P+V¥'+T) and W+W¥'+TI'"). The dependence on the
sum of quadratures anglds andW¥’ is well known in other
contexts. It is easily understood taking into account that mea-
suring by a single homodyne detector the noise in a quadrao-ﬁ

this scheme as “vertical dark scheme.”

A. EPR between far-field modes unaffected by walk-off

In the linek, =0 there is no effect of the transverse walk-
and the coefficients given by Eq®), (11), and(12) have

ture (¥ +W')/2 of the difference of the spatiatk and po- the following reflection symmetry:

larization (",0,I'",0') modes is equivalent to the noise
measurement described by HG0) [30]. The result that/,
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delcc!iun,:\ detection 1.50 |
Yy polar. i x polar.
0.75} 1 m’

i 0.00f C
7N\ >
-0.75¢
0.1
—1.50 .
-3.24 0.00 3.24

detectioné detection T @
% ROl @ y polar. b) FIG. 4. (Color onling Vy_y(*ky,0;®)/c for &

=(m,0¥,0,7/2¥') as a function of¥ +¥’ (rad and the fre-
quencyw. EPR entanglement is obtained for values less than 1

FIG. 3. FF signal and idler rings and detection scheme influ ) " i >
(dark line. Values above 1 outside this line are not displayed.

enced by the walk-off(a) The x andy polarized fields are detected
in the points+ IZV indicated by the square symbols, on the intexnse

polarized(black andy polarized(gray) rings (bright detection (b)) =72, andl’' =2, so thatAfy =AY andAﬁ','@), =A7, and
In the same points- ky, (square symbojsthe orthogonal polariza- varying the quadrature angleg, ¥'. There is no loss of

tionsy andx are detecteddark detectiohn generality in this choice of and® since Eq.(36) is inde-
pendent of®, and the phasd’ can be absorbed in the

V;(ky,ky=0)=V;(—ky,k,=0), (33  quadrature angle¥ +¥'. As discussed previous[pee Eq.

(29)], EPR entanglement is guaranteed—for some quadra-
with j=1,2. The results presented in this section are stronglyures ¥ +¥')—if both the “position” and “momentum”
dependent on this symmetry, generally present also in previperators
ous treatments of spatial EPR correlations and squeezing.

Even with this symmetric form of the coefficients the AY(ky)—AY (—Ky)

. . . . . 1 H 2 H
variance given by Eq:32) is a complicated function of many
parameters. For the sake of simplicity we first consider Eq. =[A(ky)eY+H.c]-[Ax(—kye¥ +H.c],
(32 in the case ofg=1 [see EQ.(29)]. The microscopic 3
process of generation of twin photons with linear orthogonal (37)

polarization @ =0 and®'= 7/2) suggests a natural choice Mt O
for the relative phases of the polarizers. Hence we considera A1 " 2(Ku) +A7 “™2(—Ky)
case in which the polarizers in the symmetric poinIEH AR el N AR &
have a relative phase fixed by [iAL(kp)e T+ H.cl+[IA(—ky)e™ +H.c]
(38)
0'=0+m7/2. (34
. . . show simultaneously a variance below the reference walue
Using this relation betwee®’ and ©, Eq. (32 becomes This value corresponds to the shot-noise level of both
independent o® for g=1 when the additional choice AZI,(RH) and A‘l"*”’Z(IZH). Using Eq.(32) it turns out that

=T+ (35) Egs.(37) and (38) have the same spectral variance. There-
fore, in the following we only consider E432) normalized

is also made. With these particular choices of parameters, E& the shot-noise levet for the position operatdig. (37)],

In Fig. 4 we represent the normalized variangg.
Vye1(*Ky,o;[T,0,9,+ 7,0+ 7/2,¥']) (=Ky ,0;®)/o for the points+ky. When this normalized
T R . X variance is less than 1, we find EPR entanglement. We see a
=of|e'l Uy (Ky o)+ V3 (K, — o) maximum noise reduction fo +W¥'=0 and for w=0.

(AT . ) Figure 5 shows a cut of Fig. 4 foP +W¥'=0 (continuous
+|e Ui(ky, =)+ V3 (ky,o)|*]. (36)  plack line. A variation in the quadrature angle results in a
mixing of squeezed and unsqueezed quadratures degrading
the entanglement: strongest degrading effects are evident at
Small frequencydashed black in Fig.)5

Equation(36) explicitly shows that the fluctuations in any
qguadrature of the difference of symmetric spatial mode

=Ky , with relative polarizations fixed by Eqg34) and(35), The fact that there is maximum noise reduction fbr
are independent of the choice of the polarization reference.\y'—o can be understood by analogy with the result for
0. the single-mode nondegenerate OPO discussed in[ B&f.

With the above motivation for the relations between phasgn fact, for the case of vanishing detunings of the signal and
parameters, we analyze the EPR correlations in tHe, idler and for real pump, which was the one considered in
points (Fig. 2 fixing the parameter® =0, I'=7, O’ Ref. [30], the squeezing direction corresponds to the real
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1.5 ' " ' plotted for ¥ +W¥'=0 in Fig. 5: for small frequencies the
results are very similar, while for increasing values of the

frequencies the choiog=g allows one to observe EPR en-
tanglement even when this effect is lost fpe 1.

Our strong EPR correlations have been obtainedor
=0+ 7/2. As already mentioned, this phase relation corre-
sponds to the underlying process governing the creation of
twin photons with orthogonal polarizations. In addition, for
g=1 we have obtained that the EPR correlations are inde-
pendent of®. If we decrease the relative angle betwén
0.0 and®’, we observe a progressive reduction of the entangle-

’ ment. In the limiting casé@=0' the correlation between
-3.0 -1.5 3 . ; s : : : P :
ymmetric spatial modes is vanishing avig>o. In fact in
@ this case no twin photons are detected.

1.0

0.5

FIG. 5. (Color onling Vy(*ky ,w;®)/o for ¥+¥'=0 andg
=1 (dark continuous ling for ¥ +W¥'=0 andg=g (light continu- B. EPR between far-field modes in the walk-off direction

i +¥'=0. = [ ; i i
ous ling, and for'y'+=0.06 rad any=1 (dashed ling In this section we study possible EPR entanglement for

. i symmetric points of the far-field along the walk-off direction
quadratures'=v"=0). In our case we find an analogous \ iy the arrangements shown in Fig. 3. An important effect
result because we are also considering a real pump, and t%? the transverse walk-off is breaking the reflection symme-
effective detunings, given by Eq9), also vanishA;(k=  try in the far-field. This symmetry is generally broken for
+Ky,0=0)=0. ky#0. For the points shown in Fig. 3,

Our calculations allow us to search for EPR entanglement
considering any couple of symmetric FF modgsstin-
guished by their transversal wave vegtand selectingany
polarization. We have found EPR entanglement for the Vi(ke=0Kk,) #V(ky=0,—k,) j=1,2. (40)

modes= ky, for any choice of the polarization component in

B k',* (vary’mg@), ifin +ky we seIeF:t the grthogonal polar- Following the considerations in the preceding section, we
ization (@' =06+ 7/2). In these far-field points ki, which il also consider here the case of phase polarizations
are not affected by the walk-off, any mixing of the signal andg @' " 1"’ fixed by Egs.(34) and (35). For this special

idler fields detected in a point is entangled with the field ingpgice of phase relations, the varian@®) for arbitrary g
the symmetric point, if this is also properly mixg€gs.(349)  (educes to

and (35)].
So far we have considered the cage 1l and we have L
found that a sufficient condition to guarantee EPR entangleYy( =K, w;®)
ment betwegn'the mode.skH is fulflllled [seg Eq'.(ZSE]. If — o{co2O[|e T DU (K 0) + g* VA (=K — ) 2
we now optimize the noise reduction considerimgg we

Uj(ke=0ky) £ U (k,=0,~k) j=1,2, (39

obtgin the result§ showp in Fig.-6. Comparing the normglized + |ei(‘l'+‘l"*r)g* U1(|Z, —w)+Vi(— E’w)|2]
varianceVy- (Fig. 4) with Vg (Fig. 6) we observe that with
the choiceg=g, EPR entanglement is observed in a larger +sirtO[|e Y U (K, — 0) +g* Vi (K,0)|?

frequency bandwidth. For a more direct comparison of the

— i(V+Ww'+T " " 2
variances obtained foy=g and g=1, both quantities are +T NG U (—kw)+ V3 (K —w)PTh (4D

1.50 ‘ The lack of reflection symmetry implies that the variance
Vy(=K,w;®) depends now on the ang®, and a simple

G 75\ result analogous to Eq36) cannot be obtained whek,
5 #0. Equation(41) depends on the sunlr +W¥'+1I": there-
Z 0.00¢ fore, without loss of generality, we can absorb the effect of
the wave retarder in the phase of the local oscillator, fixing
—0.75 T the angld™= 7 as in Sec. Il A. In the following we consider
50 | 0.1 the dependen_ce _of Ed41) on the angle®. Varying 0,
'_3 Py .00 324 different polarization components are selected locally. We

will see that the selection of different values ®f can im-
prove or degrade EPR entanglement. In particular, we con-
FIG. 6. (Color onling Same as in Fig. 4, but for the choige  sider two values for the angl® (=0,7/2) leading to very

=g. different situations.

[}
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1.50 1.5
0.75} 1 1
B
A
-0.75¢1 1
0.1 0.5
—1.50 ‘
-3.24 0.00 3.24
(]
FIG. 7. (Col ling  Vy_i(+ky,w;®)a for & 0.0 ' J '
.7 olor onlin g—1(Fky,0;®)/c  for
=(m,wl2¥,0,m,¥') as a function of¥ +¥' (rad and the fre- -3.0 -1.5 0.0 1.5 3.0
quencyw. The detection scheme is the one shown in Fig). EPR w

entanglement is obtained for values less thafdrk ling. Values

above 1 outside this line are not displayed. FIG. 8. (Color onling Dependence oVy(=ky ,w;®)/o on the

frequencyw for ¥+ W¥'=0 andg=1 (dark continuous ling for

: : ; ; v+W¥'=0 and g=5 (light continuous ling for ¥+W¥’
First, we consider the case represented in Fig),3n -
b @ =0.06 rad andg=1 (dark dashed line and for ¥+W¥’

which the polarizer is oriented so that the most intense linear . _
polarization component is selected locally. We are selecting”0-06 rad andy=g (light dashed ling

two critical spatial modesAy(—ky) and Ay(ky), whose o cace for the points ky,. The effects of the Hopf fre-
guantum fluctuations are weakly damped. This is the “verti- found forn=1 di foa=a. A cl diff
cal bright” detection scheme. In order to detect the intenselU€NCY found forg=_ disappear fog=g. A clear difier-

larizati K. the phased be fixed ence with respect to the variantg_y obtained in Sec. Ill A
2? arization components atky the phasé) must be fixe is the level of maximum noise suppression reached. Even if

in both cases we observe strong EPR entanglement, in this
vertical bright arrangement the quadrature correlations are
reduced, as can be seen comparing Figs. 5 and 8. This reduc-
tion is caused by the walk-off. The fields in the critical

=/ (42

and, given EQq.(34), ®'=1. Therefore, the phases to be 2 o
considered ar@:(mmz,\kom,qﬂ)_ We first consider modes * ky—not affected by walk-off-have vanishing ef-

the caseg=1. We look for EPR entanglement between thefective detunings(9) for the threshold frequencyy(Ky)

position and momentum quadratures =0; while the fields in the critical modeslz\,—in the walk-
off direction—have vanishing effective detunin@ for the
Al (—=ky) =AY (ky), A} T —ky)+Ay T (ky). threshold frequencyy(*ky)#0. The fact that the detun-

(43)  ings do not vanish forw=0 seems to be the mechanism
responsible for the reduction of squeezingest O for the

}{/r\]/g v(;/:![Ih(())nI())/nzﬁ]o(;/lv1 éhEeYr?rlaer]CEiv(gletEte W:'tf&a?ﬁaglgaéureer’][nodesi ky . On the other hand, also the unsqueezed quadra-
9 =ing €q - : - “.ture is influenced by this effect, showing a reduced amplifi-
tanglement, as shown in Fig. 7. Maximum noise reduction is

obtained for¥ + W' =0. The varianca’,_ normalized tor cation with respect to the values obtained for the points

and for¥ +¥'=0 is represented as a function of the fre- +ky,. Comparing Figs. 6 and 9, we see that in this vertical
quency in Fig. 8: the best entanglement is observed forPright arrangement the variance is less sensible to deviations

»=0. Also in this case a variation in the quadrature angle®f the guadrature phases selected, with respect to the opti-

P+’ results in a mixing of squeezed and unsqueeze(finum choiced + ¢’ ,:0.' _In Fig. 9 we observe a bro:id inter-
quadratures degrading the entangleni&ig. 8. We note an V&l of phasest’+W" giving EPR entanglement fav=0.

important difference with respect to the case thH: in 1.50

Fig. 5 the largest degradation of entanglement ot W’

#0 was observed for vanishing frequenay=€0), while in 0.75 1

Fig. 8 we see that for vanishing frequency the entanglement 5,

is only partially degraded. The largest degradation occurs Ea 0.00}

now for o= *0.4045(two peaks in Fig. 8 This value of

frequency coincides with the Hopf frequeneyy for the -0.75}

modeky, as can be easily checked by E{7). ! 50 0.1
In Fig. 9.we show the optlmlzedg(z 0) vgnancevg:g. _3.94 0.00 3. 24

(41) normalized to the shot-noise. We obtain EPR maxi- o

mum entanglement fo +¥'=0 and for small frequen- R R
cies. Both the minimum and maximum fluctuations are ob- FIG. 9. (Color onling Vy_g(+ky,w;®)/o as in Fig. 7, but for
tained in a bandwidth of frequencies centered in zero, as ithe choiceg=g.
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407

NN

O N W AN NN

-8.0 -—-1.5 0.0 1.5 3.0

FIG. 11. (Color onling Dependence oPy(*Ky ,w;®)/a on the
frequencyw for ¥ +W¥'=¥ andg=1 (dark continuous ling and
for ¥+ W' =¥ andg=g (light continuous ling ¥=0.81 rad.

FIG. 10. (Color online Vy_i(*ky,0;®)/c for &
=(m,0¥,0,m/2,¥") as a function of +W" (rad and frequency mgoye from the detection scheme of Fig. 2 to the vertical
. The detection scheme is the one shown in Fig).3 bright and vertical dark schemes of Figsa3and 3b). We

. ) ) also show the effect of increasing the walk-off: we can see
Next, we consider the detection scheme of Fih)3In  {hat EPR entanglement in the vertical dark and bright

this case the phase of the polarizeriaky is fixed at schemes get worst increasing the walk-off strength. Obvi-
ously the results for the detection scheme of Fig. 2 are not
®=0, (44)  influenced by walk-off.

and® = (7,0W,0,77/2,¥"). With this selection of the phases
of the polarizers the intense field component is filtered out.
In this vertical dark detection scheme, the detected modes In the preceding section we have seen how the selection
[(A;(ky) and Ay(—ky)] have low intensities. The main Of different polarization components in the far-field influ-
point is that now we are considering noncritical modes thagnces the quadratures EPR entanglement between symmetric
are strongly damped at any frequentsee Sec. )| We  FF points. The results we have obtained also show the effects
evaluate again the spectral variances of the position and m@f the transverse walk-off. In this section our aim is to char-
mentum quadratures. In this case the results obtaineg for acterize the polarization properties of a type-Il OPO, when
-1 andg=5are completely different. We start considering transverse vv_alk-(_)ff is take_n into account. The polarization
Eq. (41) for g=1. We obtain thav,_, is always larger than state of the flgld in any point of the transverse plane can be
o, therefore no EPR entanglement is obser(szk Fig. 10 cha(acter|zeq In terms of the Stokes parame(@t$ An op- .

In the same way, that in the vertical bright scheme, the Ialrggeratlonal definition of the Stokes parameters can be given

est fluctuations are observedat 0. Figure 11 shows a cut using polarizers an_d retardef81,33. In the quantum f_or-_
) — - ) ~ . malism there are different ways to describe the polarization
of Fig. 10 for the quadratur@, for which there is a mini-  4jying the same classical limi84,35. Here we consider the

mum in the directionV +¥'. P L
We now consider the varianddl) for the best choiceg quantum Stokes operatogi(k,t) (j=0.1,2,3), for each FF

IV. STOKES OPERATORS

=§ We find that)y, represented in Fig. 12, is reduced 1.50
below the shot-noise level for a large region of parameters. |
Therefore, with a proper choice gf EPR entanglement is 0.75 & 1
obtained also in this case. From Fig. 12 we also see that for )
¥ +W¥'=0 only small entanglement would be observed, in > 0.00
the region of large frequencies. In fact, the quadrature at 2
which strong EPR effects are observeddist W' =¥ +#0. _o0.75F'
Figure 11 shows/y for this choice of¥# +¥'. Changing the 0.1
walk-off parameter we have found thidtt increases with the —1.50 :
walk-off. -3.24 0.00 3.24
In Fig. 13 we show a comparison of the best EPR en- @
tanglement §=g, optimum ¥ +W¥') found for the three FIG. 12. (Color onling Same as in Fig. 10, but for the choice of

detection schemes considered, namely, Figs(&@,81d 3b).  g=g. EPR entanglement is obtained for values less thadatk
We observe that the correlations are less important when wine). Values above 1 outside this line are not displayed.

063809-9



ZAMBRINI et al.

1.0

0.0 b)
-3.0

-1.5 1.6 3.0

FIG. 13. Spectral variancg; as a function of frequency, for the

detection schemes represented in Figlight line), Fig. 3a) (dark
continuous ling and Fig. 3b) (dark dotted ling The angles¥
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0.5
< 00
0
-0.5
—-1.0

-1.0 -0.5 0.0 0.5 1.0
k

z

FIG. 14. (Color onling Stationary average of the Stokes opera-
tor (5,(K)) in the FF[Eq. (52)].

A28, (k,)AZ5,(k,t") = ([S1(K, 1), S,(k,t") )]
=|(Ss(k,0)28(t—t"). (5D

The Stokes vectoB=(5,;,S,,S;) can be represented in a
quantum Poincarsphere, with a radius defined I()ASO> (see,

+%¥’'=0,0,0.81 rad are selected, respectively, for each detectiofor instance, Ref[4]). Given the fluctuations of5, the

scheme(a) Walk-off p,=1; (b) Walk-off p,=1.5.

quantum states are not defined by points on the surface of
this sphere, but rather they are defined by different volumes,

modek, obtained replacing by creation and annihilation op-such as spheretcoherent statesor ellipsoids (squeezed
erators the corresponding observables in the classical defirtate$. These quantum uncertainty volumes on the Poincare

tions (see Ref[36] and references thergin

So(k, ) =Al(K, DA (k) + ALK DA(K L) (45)
is the total intensity operator,
Su(k, ) =Al(K, DAL (k) —AYK DA(K L)  (46)

gives the difference between theandy linear polarizations,

sphere have been confirmed by recent experin{@2s The
transformations, Eq$23) and(24), introduced in the preced-
ing section can be also visualized in the Poincspkere. In
fact, they correspond to a rotation in the Poincspaere of
an angle ® around theS; axis and of—I" around theS;
axis.

A. Far-field local properties

Given Egs.(13)—(15), we obtain the stationary value of

the average of the Stokes parameters. The averadg isf
given in Eq.(19), and for the others Stokes parameters we

gives the difference between the 45° and 135° linear polarfind

izations, and

Si(k,t)=—i[Al(k,DAL(K,H) —AS(K,DAL (K, D] (49

gives the difference between the right-handed and the left-

handed circular polarizations componeh8s]. The defini-

tions (45)—(48) correspond, except for a constant, to the the

Schwinger transformation of the modas(k,t) andA,(k,t)
giving operators satisfying angular-

relations[38]:
[So(k,1),5,(K",t")]=0, (49)
[éj(E,t),ék(lZ',t')]:ziejklél(lz,t)a(t—t’)aagg,,( )
50

<él(|Z,t>>=%J dof[Vi(K o)~ [Va(K,0)[?], (52

(Sa(k, 1)) =(Ss(K,1))=0. (53)

The average o8, andS; vanishes in any point of the far-
field, because any signal or idler photon has the same prob-

momentum commutation, it 1o be measured along the 45° and 135° polarizations

directions. The same is true for the left and right circular
polarizations. The equal average intensities at the output of
the beam splitters are subtracted, giving vanishing values of
(S,) and (S;) independent of the relative intensity of the
signal and the idler. In Fig. 14 we show the far-field spatial

profile of (S;): the lower ring region is dominated by the

with j,k,1=1,2,3[39]. The precision of simultaneous mea- linear polarizatiorx while the upper one is dominated by the
surements of the Stokes operators is limited by the Heiseny polarization. If there was no walk-offS;) would vanish in

berg principle. For instance, we have

all the FF, while in our casepf,p,#0) it only vanishes
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there is ahidden polarizatior{40], which has been observed

1.0 7.0 experimentally recentlf36]. We note that similar hidden
o polarization should be observed locally in the transverse
0.5 near-field plane of a type-ll OPO. Our interest here is in the
0.6 far-field plane, where twin photons are spatially separated.
< 00 In order to characterize the far-field polarization proper-
04 ties, we proceed to evaluate the variance of the Stokes pa-
5.3 rameters. We define the spectral correlation function
_05 .
ol LA FER0)= [ dte® (S KDSK 0) - (B(KD)
-1.0 -0.5 0.0 0.5 1.0
k, X(Si(k",0)]. (56)

FIG. 15. (Color onlineg Second-order polarization degree  Given the moment$13)—(15), and using the moments
P,(k,t) defined in Eq.(54). The two circles of double continuous Eheoiem[44], we obtain nonvagishing contributions only for
line show the signal and idler maxima intensities. k' =k (self-correlation and fork’ = —k (twin-photon corre-

) lation). For =0, corresponding to integration over a time
along the directiork,=0. Therefore, in ther ky, points we interval long enough with respect to the cavity lifetime, the
have an intense fieltseeS, in Fig. 1) with vanishing aver- ~ self-correlation ofS; is
age of the Stokes vectds and with variances ofﬁ not

limited by the Heisenberg principle, since from E&1) rl(E,E,O)ZUZJ' d—w[|Ul(lZ,w)|2|V1(I2,w)|2
KISi(Kk,1),5(K',t')])|=0, i#j. In other words, in these 2m

points there are no minimum uncertainty states in the Stokes +| U (K, )2 Va(K, 0)]2] (57)
operators. 20 2 '

~ The parameter that corresponds to the classical charactehile the twin-photon correlation for symmetric FF points is
ization of the polarization state of a quasimonochromatic

field is the second-order polarization degree I'y(k,—k,00=—T(k,k,0). (58)
S 5 It can be easily shown that the second and the third Stokes
]2::1 (Sj(k,t)) operators have equivalent variances:
Po(kt) = ——=— (54) . .
(So(k,t)) Ik k" w)=T3(k k" o). (59

varying fromP,=0 for unpolarized light, td®>,=1 for com-  For the self-correlations we obtain
pletely polarized light full size In Fig. 15 we observe how
the polarization degree, that reduces to

(So)

varies in the FF: In particular, the intense FF rings are alway

. dow _ .
P kK0 =02 | S2TIUK V(K o)

, (55) +|U1(K,0) [ Va(K,w)[?], (60)

gnd for the twin-correlations

polarized except around the ling=0, whereP, vanishes. o dw ) )
Therefore, the field in the points ky is unpolarized in the F2'3(k,—k,0):02f E[U’f(k,w)Ul(—k,—w)
ordinary sense. However, the concept of polarized and unpo-

larized light needs to be generalized in quantum optics XVA(—K,—0)Vy(k,w)+c.cl. (61)

[40,36,38,41,4R The fact that(éj>=0 (j=1,2,3), so that o _

P, vanishes, does not guarantee to have an unpolarized state For symmetry reasons Eqe7) and (60) give identical
from a quantum point of view. Rather one has to consider theesults in the crossing points of the rings k,, (see Fig. 1%
values of the higher-order input momentsf In Ref.[40]  Since the fluctuations are isotropically distributedSnno

it was shown that in the single-mode type-ll PDC, thehidden polarization is observed in these points. Let us now
squeezed vacuum is unpolarized in the ordinary sefse ( consider the possibility of quantum effects. First, the shot-
=0) due to the diffusion in the difference of the signal andngjse level for all the Stokes parametdi., I';(k,K,0)
idler phases. On the other hand, due to the twin-photon cresyaluated on coherent stalds given by the average total
ation, there is complete noise suppression in the 'Ptens'%tensity(éo(lz,t)}a [see Eq(19)] [4,40]. Inspection of Egs.
difference of the two linearly polarized modes, i.e.,35  (57) and(60) shows that all the Stokes operators hates-
leading to polarization squeezir|@3]. Due to this aniso-  sjcal statistics in any FF point, as shown in Fig. 16. In these
tropic distribution of the fluctuations in the Stokes vec®r diagrams we represent the normal ordered variances. These
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ek OO TasB O, =|Ux(—k—w)* and |Vy(k,0)|*=|Vy(~k —0)[? so that
o5 from Egs.(52) and(53) we obtain that
0 @ I (k) + 8K 0)= (KD -§(K 0)=0 (64
-0.5
1 » (i=0,2,3). Therefore Eq$62) and(63) actually define vari-
-1-0.5 0 05 1 -1-050 05 1 ances.

. From Egs.(57) and (58) we obtain
FIG. 16. (Color online Normal ordered varianceE(k,k,0)

andT', (k,k,0) normalized to the shot-noigé=(Sy(kt))a. D,(K,—K,00=T;(k,K,00+ T';(—K,—K,0)+ 'y(—k,k,0)

are obtained from the variances EqS7) and (60), after +T,(k,—k,0=0 (65)
subtraction of the corresponding shot-noise. We see that R
these are positive quantities in all the far-fields, i.e., no pofor anyk. There is complete noise suppression in the sum of

larization squeezing apped#s3]. The physical reason is that the Stokes paramete® evaluated in symmetric regions of

twin photons are emitted with symmetric wave vect@sm-  the transversal field. Therefore the normal ordered variance
metric FF pointg while locally no correlations between or- s equal to minus of the shot noise, taking nonclassical nega-
thogonal polarizations are observed. This motivates us tgye values. In conclusion, due to the twin beams intensity

consider in the following section the correlations betweencorrelations we find entanglement 8 evaluated in any

the Stokes operators of twin be_ams. ... symmetric FF points and for any pump intensity.

n conclgsm_n, when there is Wal.k'Oﬁ.the polarization The Stokes operators generally cannot be simultaneously
stateP, varies in the FF, the fluctuations in the Stokes pa- easured with infinite precisiofsee Eq.(51)]. Also, the
rameters are above the classical level in all the far fields an uperpositions of Stokes operators involved in 5563), and
no polanzatlo*n squeezing is observed. kpr-0 and in par- (63) are, in principle, limited by the Heisenberg relations.
ticular for +ky, P,=0 and fluctuations are isotropically However, we have
distributed in all Stokes parameters so that the field is com-
pletely unpolarized This result would apply to all the FF ([51(k,)+5,(— K, 1),S,(k,t') = S,(—Kk,t)])
planes if there was no walk-off.

=2io(S5(K,t) — S3(— Kk, 1)) 8(t—t')=0,  (66)

as follows from Eq(64). Therefore, there are superpositions

From Eqgs.(58) and(61) we see tha$, for symmetric FF  of the Stokes operators whose measurement is not limited by
modes isanticorrelated while 3, and S, are positivelycor- ~ Heisenberg relations because the average of their commuta-
related The physical reason for the sign of these correlationdr vanishes. In the same way, also the other superpositions
is always the underlying twin-photon process, which create§f Stokes operators for any couple of symmetric points can
pairs of photons with symmetric wave vector and orthogonalP® Simultaneously measured with total precision. This result
polarizationsx andy, leading to a positive correlation of the OPens the possibility to observe noise suppression not only in
corresponding beam intensities. the first Stokes operator superpositi5), but also in the

These considerations suggest to look for noise suppre€ther superpositions, Eqe3). However, we obtain
sion in the following superpositions of Stokes operators

B. Far-field correlations

D,(k, —k,00=T5(k,k,0)+ '5( —k,—k,0)—'»(—k,k,0)

Dl(E.IZ’,w)=f dte ([ Sy(K, 1)+ Sy(—K',1)] —T5(k,—K,0)#0, 67)
X[5,(K,00+5,(—k’",00])} (62)  so thatD,(k,—k,0) generally does not vanish for arbitrary
k. The profile of the normal ordered,(k, —k,0) is repre-
and sented in Fig. 17: we observe that in most part of the far-field

where there is large light intensity this quantity is positive,

. ' o . giving classical statistics. However there is a bandwidth of
Di(k,k’,w)=f dte“Y([S(k,t)—Si(k’,1)] small wave vector&,~0 for which the normal ordereD,
is negative and therefore quantum effects are observed. This
X[5(K,00— S (k’,00])} (63  small bandwidth becomes smaller when increasing the walk-

off, as can be seen comparing Fig. 17—obtained vgith
=1—with Fig. 18—obtained wittp,=0.5.

with i=0,2,3. We note thab (k,k’,®)=Do(k.k’,w) [see In particular, along thek,=0 line, we obtain that

the definitions, Eqs(45) and (46)]. In addition, it follows D,(k,,—k,,0)=0. This result easil
. , ,0)=0. y follows from the sym-
from Egs.(60) and (61) that D,=Dj. These quantities are mzetr;; i Exq.(33). Therefore, along thie,—0 line we have

nonvanishing for symmetric points’ = —k. From the uni-  p,=D,=D,=0 which indicates perfect polarization en-
tarity of the transformatior{10) we know that|U(k,w)|>  tanglement between symmetric FF modes. In summary, in
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FIG. 17. (Color onling D,(k, —k,0) normal ordered normalized FIG. 18. (Color onling Same as in Fig. 17, but with walk-off
to the shot noise. The white contour line shows the boundarieg2=0.5.
between classical and quantum statistics. The two circles of double
continuous line show the signal and idler maxima intensities. schemeg we still find EPR entanglement, but correlations are
reduced and there is also a rotation of the quadrature angle
the direction orthogonal to the walk-ofk{=0), we show giving the best squeezin@ec. IIl B).
complete noise suppression in properly chosen symmetric Our study of EPR quadrature correlations identifies how
modes superpositions @l the Stokes parameters. Along these correlations depend on the polarization state. We have
this line the two pointst Kk, are of special interest because further investigated nonclassical polarization properties in
they have a large photon number. terms of the Stokes operators. The properties of the Stokes
We finally point out that the situation studied here is dif- Parameters in a single point of the far-field do not show any
ferent from the case of bright squeezed light considered iffonclassical behavidiSec. V). Fork,=0, where there are
Ref. [4] and that the perfect correlations obtained betweedl0 Walk-off effects, we have shown that the average of the
Stokes parameters cannot be used here to obtain an EFFokes vector vanishes, and all the Stokes operators can be
paradox: in fact from Eqs(51)—(53) we obtain that the ™Measured with perfect precision. All Stokes operators are

Heisenberg principle imposes no limits in the local variance/€"y noisy(above the level of coherent statesd the fluc-
of the Stokes parameters. tuations are not sensitive to polarization optical elements: in

fact the field is completely unpolarized, i.e., there is no “hid-
V. CONCLUSIONS den” polarization. Quantum effects are observed when con-
: sidering polarization correlations between two symmetric

We have investigated the EPR entanglement betweeRoints of the far-field. Still in the direction orthogonal to the
quadrature-polarization components of the signal and idlewalk-off (k,=0) we showperfectentanglement o#ll the
fields in symmetric FF points of a type-Il OPO below thresh-Stokes operators measured in symmetric FF regions. This
old, paying special attention to the effects of walk-off. We result is independent of the distance to the threshold. These
have analyzed the effects of selecting different polarizatiorfesults fork,=0 would apply in all the FF for vanishing
components: when walk-off vanishes or in the far-field re-walk-off. When there is walk-off and fdt,# 0 the entangle-
gion not affected by walk-off K,=0), there is an almost ment in the second and third Stokes operators is lost, but for
complete suppression of noise in the proper quadratures di, andS, there is still perfect correlation between two sym-
ference ofany orthogonal polarization components of the metric points of the FF, reflecting the twin-photon process
critical modegSec. Il A). Selecting nonorthogonal polariza- emission.
tion components the correlations are reduced, vanishing for
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