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Abstract

We study a reaction diffusion system of the activator-inhibitor type with inhomo-
geneous reaction terms showing spatiotemporal chaos. We analyze the topological
properties of the unstable periodic orbits in the slow chaotic dynamics appearing,
which can be embedded in three dimensions. We perform a bi-orthogonal decom-
position analyzing the minimum number of modes necessary to find the same orga-
nization of unstable orbits.
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1 Introduction

Spatiotemporal chaos [1] has been extensively studied within the context
of coupled maps, the complex Ginzburg–Landau equation, the Kuramoto–
Shivashinsky equation and other related equations [2]. However, studies of
spatiotemporal chaos in reaction–diffusion models closely connected to exper-
imental systems are scarce. Here we analyze the characteristics of the chaotic
dynamics recently found in a simple inhomogeneous reaction–diffusion system
[3] of the the type used to describe chemical reactions in gels [4] and patterns
in coupled electrical circuits [5].

Among the main issues in the study of spatiotemporal chaos we can select
those related to clarifying some aspects of the relation between pattern for-
mation and chaos as well as the low dimensional description of the chaotic
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behavior. The latter aspect, that is understanding that physically continuous
systems with an infinity of degrees of freedom (spatially extended systems)
usually show temporal behavior that can be well described by models with
few degrees of freedom, is of extreme relevance. In this context there arise
some questions. For instance, in low dimensional dynamical systems, chaotic
solutions coexist with unstable periodic orbits which constitute the backbone
of the strange attractor: could some orbits be extracted from the time series
of our extended system? and, is the complex time evolution of the system of
a dimensionality small enough to be understood in terms of simple stretching
and folding mechanisms?

In order to investigate these questions within reaction–diffusion systems, we
have analyzed the same simple, inhomogeneous, activator-inhibitor model dis-
cussed in Ref. [3]. It is worth remembering here that reaction–diffusion models
of the activator–inhibitor type have provided a useful theoretical framework
for describing pattern formation phenomena with applications ranging from
physics to chemistry, biology and technology [6–8].

In Ref. [3] by introducing spatial dependence of the parameters of the activator–
inhibitor equations, a system in which different parts of the media do not share
the same reaction properties was modelled. The case considered corresponds
to a finite one dimensional oscillatory medium with an immersed bistable spot.
In that system, in addition to stationary, Hopf–like and Turing–like patterns,
quasi-periodic inhomogeneous oscillations and spatiotemporal chaos were also
found. In Ref. [9], different generalizations of the system (bi-dimensional ver-
sions) have been studied. In the present paper we analyze the dynamics of the
same one dimensional system in the quasi-periodic and chaotic regions. More
specifically, one of our main aims is to understand the topological properties of
the chaotic dynamics. The model is given by the reaction–diffusion equations

u̇ = ∂2
xu− u3 + u− v

v̇ = Dv∂
2
xv + u− γv, (1)

which describe a bistable medium for γ > 1 and an oscillatory one for γ < 1.
In order to model the inhomogeneous situation of a bistable domain immersed
in an oscillatory medium, a spatial dependence of this parameter is introduced
setting γ = γ(x) ≡ .9+5 exp(−10 x4) [10]. This leads to γ ' .9 < 1 for |x| > .8
(oscillatory medium) and γ > 1 for |x| < .8 (bistable medium). As was done
in [3], we here consider a finite one–dimensional domain (−L ≤ x ≤ L) with
non–flux boundary conditions in ±L and homogeneous initial conditions be-
longing to the homogeneous limit cycle that exists for the case γ = .9. This
choice of the initial state corresponds to the description of an initially homo-
geneous oscillatory medium whose reaction properties are suddenly modified
in a localized region.
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In the central bistable region the fields converge rapidly to values close to those
corresponding to one of the two natural states of the bistable medium (u± '
±.8, v± ' ±.14) (chosen depending on the initial condition), and continue
performing small amplitude oscillations around those values. Hence, there is
a spontaneous symmetry breaking which is “inherited” from the properties of
the (uncoupled) bistable medium. Note that the equations of the model are
symmetric under the simultaneous changes u → −u, v → −v. The rest of the
system evolves to different asymptotic behaviors depending on the parameters
L and Dv which are described in [3].

All the numerical calculations have been done as follows. First, the system
of partial differential equations was approximated by a system of coupled
ordinary differential equations, obtained by a finite difference scheme. Then
the resulting equations were solved by a Runge–Kutta method of order 2.
Different space and time discretization schemes were employed in order to
check the results.

The organization of the paper is the following. In the next section we show
that, in the quasi-periodic and chaotic regimes, there are two dynamical time
scales, a fast and a slow one. We show that it is possible to find segments of the
time series of the slow dynamics which approximate unstable periodic orbits
and study the organization of the orbits. In section III, we present the bi-
orthogonal decomposition of the spatiotemporal time series, and show that it
is possible to capture the main features of the chaotic dynamics by considering
a small number of modes. In the last section we present our conclusions.

2 Characterization of the slow chaotic dynamics: analysis of the
unstable periodic orbits.

In [3], a diagram in the (L,Dv)-plane indicating the different spatiotemporal
behaviors was presented. In the non–stationary regions, the time evolution of
the fields u and v was classified as periodic, quasi-periodic or chaotic. Here we
fix L = 72, for which the dynamics corresponds to inhomogeneous periodic
oscillations for Dv < 1, quasi-periodic oscillations for 1 < Dv < 1.3, and
spatiotemporal chaos for 1.3 < Dv < 2. We will mainly focus our attention
on the chaotic region. (For Dv > 2 the quasi-periodic and periodic behaviors
appear again and for Dv > 2.3 stationary Turing patterns arise.)

As a measure of chaoticity, in [3], the sensibility to initial conditions was
computed. It is important to notice that the time series displayed a common
feature: a fast oscillation of the field (at the natural frequency of the oscillatory
medium), eventually modulated by a slow varying amplitude. It is the dynam-
ics of this amplitude what we will analyze here. In order to study this slow

3



-0.4

-0.2

0.0

0.2

0.4

4000 6000 8000

0.2

0.3

 

 

u
(L

)

b

a

 

 

m
a

x[
u

(L
)]

t

-0.4

-0.2

0.0

0.2

0.4

4000 6000 8000

0.25

0.30

0.35

 

 

u
(L

)

d

c

 

 

m
a

x[
u

(L
)]

t

Fig. 1. (a) Evolution of u(L) for Dv = 1.1 (quasi-periodic regime) in a time window
in the asymptotic regime. (b) Slow dynamics: plot of the maxima of u(L) corre-
sponding to the same time window. (c) and (d), ibid figure (a) and (b) for Dv = 1.4
(chaotic regime).

dynamics we record the times tn (n = 1, 2, ...) at which the u–field at x = L
reaches a local maximum as function of t (i.e. when ∂tu(x, t)|x=L = 0 and
∂2

t u(x, t)|x=L < 0 holds simultaneously), and analyze the values of u for these
times at different spatial positions. This is equivalent to taking a Poincare
section, and is a way of averaging the fast time scales.

The difference tn− tn−1 is of the order of the natural period of the oscillatory
medium (τ0 = 14.6), but slightly larger (in general, it fluctuates between τ0

and 20) as the oscillations are slowed down by the presence of the bistable
inhomogeneity. In the periodic region, tn− tn−1 converges to the period of the
motion as n →∞.

Typical time series are shown in Figure 1. In Figure 1a (c), the time evolution
of u(L) is displayed for a parameter value at which the system behaves quasi-
periodically (chaotically). The slow varying amplitude is shown in Figure 1b
(d), where we have plotted the values of the maxima of u(L) as a function of
t (i.e. u(L) measured at times tn).

In general, in low dimensional dynamical systems, chaotic solutions coexist
with unstable periodic orbits which constitute the backbone of the strange
attractor. We will see that, in our system, it is possible to extract approxima-
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tions of periodic unstable orbits from the time series of the mentioned slow
dynamics, and that the analysis of the organization of these orbits shows that
the chaotic dynamics is low–dimensional.

We begin by defining as reconstructed periodic orbits the segments of the time
series which can be used as surrogates of the unstable periodic orbits of the
system. These segments are chosen if they pass a close return test [11]. More
precisely, if y(i) represents the data, a close return is a segment of p points
beginning at the ith position of the file, for which y(i + k) ≈ y(i + k + p) for
k = 1, 2, .... In this notation, p is called the period.

We have looked for unstable orbits at the whole time series of the slow dynam-
ics of the u field (data taken at times tn) at four different positions: x0 = 0,
x1 = 14 (approximately one Turing wavelength away the bistable domain),
x ' x2 = L/2 = 36, and x = L.

In Figure 2a(c) we display a segment of period 2(4) taken from a time series
corresponding to data at x = L. An embedding of the data (a multivariate
environment created using time delays) is shown in Figure 2b(d). In Figure
3a and 3b we show the embedding of two different reconstructed segments
of periods two and three respectively, coming from data at x = x1. It is
worth mentioning that the unstable periodic orbits do not have properties
corresponding to the inversion symmetry of Eqs. (1) because of the symmetry
breaking of the solutions and also because of the “stroboscopic” observation
of the dynamics. In Figure 3c, we show a more complex reconstructed periodic
orbit coming also from data at x = x1. Since we have no elements to conjecture
that the chaotic dynamics can live in three dimensions, it could be argued that
embedding the segments in a three dimensional space might not be useful. Yet,
if the reconstructed shows some kind of geometrical organization it would be
a most valuable indication of the geometric process taking place in a small
dimensional manifold within the available phase space.

It is possible to see that the orbits of figures 2b and 2d wind around each
other as expected if they were related by a period doubling bifurcation. The
topological organization of the orbits is quantitatively described in terms of
their relative rotation rates and self relative rotation rates. These numbers
aim at describing the way in which the orbits wind around each other [12]. In
order to do so, the curves are given an orientation, and in a two dimensional
projection, a record is made of which segments pass over which in the original
embedded orbits. In terms of these indices, the relative rotation rates are
computed as explained in [12]. For the period two orbit of figure 3a, the self
relative rotation rate is srrr = −1

2
, 0, for the period three orbit of figure 3b, it

is srrr = (−1
3
)2, 0, and the relative rotation rate between the orbits of period

two and three was found to be rrr = −1
3
. Notice that this organization is

compatible with a horseshoe mechanism [12], and that this mechanism includes
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Fig. 2. (a) Slow dynamics: values of the field u(L) at times tn for a time window in
which a segment corresponding to a period–2 orbit appears. Note that the segment
is repeated almost twice. (b) Period–2 orbit corresponding to the segment indicated
in (a) obtained from an embedding in three dimensions using time delays (the axis
correspond to the data taken at tn, tn+1 and tn+2). (c) Idem (a) for a period–4 orbit.
(d) Embedding of the segment of figure (c). All the data correspond to a simulation
done for Dv = 1.4.

the signature of period doubling.

A challenge exists in order to find a simple geometrical mechanism responsible
for the creation of the orbit displayed in Figure 3c. This orbit can not be
placed in a horseshoe template. Yet, recently, a classification of templates was
proposed for covering the Smale horseshoe [13]. We have observed that the
orbit of Figure 3c can be placed in one of such geometric objects, which is one
of the four inequivalent four-branched double covers with rotation symmetry
of the Smale. More specifically, the one identified with topological indices
(n0, n1) = (1, 0) [13]. This template can also hold any orbit of the Smale
horseshoe template.

However, it can not be expected that such template correctly describes the
whole dynamics of the slow varying amplitude. This is because it is not possible
that a rotation symmetry appear when using a delay embedding. Hence, the
embedded attractor must have a different symmetry or not symmetry at all,
and it is expected that other unstable periodic orbits exist (different to the
ones we have found and with no rotation symmetry).

Note that, when observing the u–field at times tn, it is found that the scales
over which it varies are quite different at the four studied positions (x0, x1, x2

and xL): at x = L, u(tn) oscillates between .2 and .35 (since we are watching
only the times at which u(L, t) is maximum); at x = x1 and x = x2, u(tn) take
values in a more or less symmetric way between ±.35 (in the whole range of
the free limit cycle); at x = x0 (in the bistable domain) the oscillations are
of much smaller amplitude (typically two orders of magnitude), and are not
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Fig. 3. Periodic orbits reconstructed from data taken at x = x1 ≡ 14 at the times tn
using an embedding of time delays with axis tn, tn+1, tn+2. (a) Period–2 orbit. (b)
Period–3 three orbit. (c) Complex periodic orbit.

centered at zero. We remark that, in spite of these differences in the metrical
properties of the dynamics at the several positions, the organization of the
unstable periodic orbits that we have found is the same everywhere. (In the
four positions we find the same kind of orbits, including the one of figure
3c.) However, there are some differences in the frequency of occurrence of the
orbits: note that, we have orbits with the “small curl” upward (as in Figure
2b) or downward (as in figure 3a). The same two possibilities appear for orbits
of periods three and four. For the cases of the signal taken at x0, x1 and x2, the
orbits of period two and three occur preferably with the small curl downward,
while, for x = L they occur (almost always) with the small curl upward. This
is found independently of whether the fields in the bistable domain converge
to negative or positive values.

The observation that the organization of unstable periodic orbits is more com-
plex, but some how related to the one of the Smale horseshoe, gives a hint
of what kind of periodic orbits can eventually be found as parameters are
changed. For example, it suggest that a period doubling sequence may occur
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Fig. 4. Slow dynamics time series showing a period doubling sequence. Plots of
u(x = L) at times tn for different values of Dv (indicated in the figure) following
the transition from periodic regime to quasi-periodic and chaotic. Figure (a) cor-
responds to the periodic region where a fixed point occurs in the slow dynamics.
Figures (b) to (e) correspond to the quasi-periodic region, orbits of period 1,2,4
and 16 are respectively observed in the slow dynamics. Figure (f) corresponds to a
quasi-periodic regime showing a chaotic-like transient followed by high-period orbit
(not identifiable in the figure). Figures (g) and (h) correspond to the chaotic regime.
Al calculations are for L = 72.

in the transition from the periodic regime to the chaotic regime. With this in
mind, we revisited in detail the transition zone in the phase diagram of the
system (presented in [3]) going form the periodic region to the chaotic one.
Parameter regions were found in which a period doubling of the slow dynamics
can be clearly identified (see figure 4).

The analysis made of the slow dynamics of our extended system showed that
the high dimension of the phase space is not fully explored. On the contrary,
an important collapse of dimensionality takes place. In the next section we
investigate the minimum number of spatial (linear) modes approximating the
spatiotemporal dynamics that are required in order to recover the topological
organization of unstable periodic orbits observed in the slow dynamics.
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3 Bi-orthogonal decomposition.

It is not easy to know a priori which is the number of spatial modes which
are activated as the dynamics becomes non trivial. In our problem, we only
know that at least three modes should be active in order to account for the
complex behavior described in the previous section. A method exists to unveil
the active structures in a spatiotemporal problem: the bi-orthogonal decompo-
sition (BOD) [14,15]. This is the most efficient linear decomposition scheme,
in the sense that there is no other linear decomposition able to capture, with
a smaller number of modes, the same degree of approximation. In our system,
the BOD for the spatiotemporal signal (u(x, t), v(x, t)) is given by

(u(x, t), v(x, t)) =
∞∑

k=1

αkψk(t)~φk(x), (2)

where the α2
k (with α1 > α2 > ... > 0) are the eigenvalues of the temporally–

averaged two point correlation matrix [14], the ~φk(x) = (φuk(x), φvk(x)) are
the corresponding eigenfunctions (called topos), and the ψk(t) (called chronos)
are given by

ψk(t) =
1

αk

L∫

0

(u(x, t)φu(x) + v(x, t)φv(x)) dx. (3)

In the case of periodic motion, in our system, the dynamics can be highly accu-
rately described using only three modes in the expansion (2). The description
of quasi-periodic and chaotic motion requires a higher number of modes. This
can be inferred from Figure 5a, where we show the eigenvalues of the BOD.

In Figure 5b we show the u–fields of the four principal topos. We have re-
constructed the dynamics of the system in the chaotic regime using different
numbers of modes. We observed that the minimum number of modes required
in order to recover the topological organization of unstable periodic orbits
observed in the solution of the dynamical equations is five.

It is important to point out that the extended system under study can in
principle display an infinite dimensional dynamics, and yet, it dynamically
collapses to a five dimensional system which describe the dynamics of the
amplitudes of the linear modes. However, it is remarkable that the fact that
five modes are active does not imply that the dimensionality of the observed
strange attractor is larger than four. On the contrary, the topological orga-
nization of the approximated unstable periodic orbits clearly suggest a lower
dimensionality.
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Fig. 5. Bi-orthogonal decomposition: (a) Eigenvalues for three different values of
Dv corresponding to chaotic, quasi-periodic and periodic regimes. (b) u-field com-
ponents of the four principal topos (corresponding to the four larger eigenvalues)
for the chaotic case with Dv = 1.4.

4 Conclusion

In this work we studied the spatiotemporal solutions of a reaction-diffusion
system of the activator-inhibitor type. Despite the infinite number of possible
degrees of freedom, we have found that the complex dynamics that emerges
can be described in terms of a small number of modes. The activated modes
are coherent structures which were computed from the simulations of this
extended problem. By separating the dynamics over two time scales, we ob-
served that the origin of chaoticity lies in the behavior of the slow time scale
dynamics. The study of these time series showed not only that the system
behaves as a small dimensional dynamical system, but also suggest that this
dynamics may be understood in terms of simple geometrical process related
to the Smale horseshoe. In fact, a branched manifold recently described in
the literature can hold all the approximated unstable orbits that we were able
to reconstruct. However, symmetry reasons indicate that the true mechanism
should not be exactly the one corresponding to that template. The description
of the dynamics in terms of a simple geometric structure not only highlights
the collapse of dimensionality, but it also allowed us to predict the existence
of specific solutions for unexplored regions of parameter space, such as the
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reported period doubling sequence.
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