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ABSTRACT

We study a model consisting of N nonlinear oscillators with global periodic coupling and local multiplicative and
additive noises. The model was shown to undergo a nonequilibrium phase transition towards a broken-symmetry
phase exhibiting noise-induced “ratchet” behavior. Here we review some aspects leading to an ”anomalous–to–
normal” transition in the ratchet’s hysteretic behavior and also show –as suggested by the absence of stable
solutions when the load force is beyond a critical value– the existence of a limit cycle induced by both: multi-
plicative noise and global periodic coupling.

Keywords: Noise induced phenomena, noise induced phase transitions, Brownian motors, anomalous hysteresis,
limit cycle

1. INTRODUCTION

The field of noise-induced transport or “Brownian motors” is now about one decade old.1 In the early works,
a requisite for these devices to operate (besides their obvious built-in, ratchet-like, bias) seemed to be that the
fluctuations be correlated. That requirement was relaxed when “pulsating” ratchets were discovered: in these
it is the random switching between uncorrelated noise sources which is responsible of the rectifying effect.1 A
recent new twist has been to relax also the requirement of a built-in bias2: a system of periodically coupled
nonlinear phase oscillators in a symmetric “pulsating” environment has been shown to undergo a noise-induced
nonequilibrium phase transition (NIPT), wherein the spontaneous symmetry breakdown of the stationary prob-
ability distribution gives rise to an effective ratchet-like potential. The aforementioned mechanism has striking
consequences, such as the appearance of negative zero-bias conductance and anomalous hysteresis. By anomalous
hysteresis we refer to the case where the cycle runs clockwise, in opposition to the normal one (as typified by a
ferromagnet) that runs counterclockwise.

The study of dynamical systems has shown that limit cycles are ubiquitous in a wide range of physical
applications.3, 4 From a physicist’s point of view, limit cycles are thought of as a way to balance the in- and
out- energy flows. Even when those flows are not oscillatory in time, a system’s oscillatory motion can occur
equalizing such flows over one period. Usually, limit cycles arise in dynamical systems described by ordinary
differential equations (ODE),3, 4 but there are several examples where such kind of cycles also arise in partial
differential equations (PDE) or “extended systems”, as for instance, in the ”brusselator” model for the so called
“chemical clocks”.5, 6

Limit cycles arise also in systems with noise. Noise or fluctuations have been generally considered as a factor
that destroys order. However, a wealth of investigations on nonlinear physics during the last decades have shown
numerous examples of nonequilibrium systems where noise plays an “ordering” role. Some examples of such
nonequilibrium phenomena are: noise induced unimodal-bimodal transitions in some zero dimensional models,7
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shifts in critical points, stochastic resonance in zero-dimensional and extended systems,8, 9 noise-delayed decay
of unstable states, noise-induced spatial patterns,10 noise induced phase transitions in extended systems,11 etc.

Here, we discuss an extended system described by PDE’s, where noise plays a key role in both, inducing a
noise induced phase transition and controlling and inducing a limit cycle. The model that we analyze here is
the one used in2, 12 to study a ratchet-like transport mechanism arising through a symmetry breaking, noise–
induced, nonequilibrium phase transition. In a recent paper13 a system showing a NIPT, based on a model that
is a variant of Kuramoto’s model for coupled phase oscillators14; was analyzed. In addition to the phenomenon
of anomalous hysteresis, evidence of the existence of a limit cycle for a given parameter region was also shown.

The model we analyze consists of a system of periodically coupled nonlinear phase oscillators with a multi-
plicative white noise. Coupled oscillators have been used to model systems with collective dynamics exhibiting
plenty of interesting properties like equilibrium and nonequilibrium phase transitions, coherence, synchroniza-
tion, segregation and clustering phenomena. In this particular model a ratchet-like transport mechanism arises
through a symmetry breaking, noise–induced, nonequilibrium phase transition,2 produced by the simultaneous
effect of coupling between the oscillators and a multiplicative noise. The symmetry breaking does not arise in
the absence of any of these two ingredients. In2 it was also shown that the current, as a function of a load
force F , produces an anomalous (clockwise) hysteresis cycle. Also, by changing the multiplicative noise intensity
Q and/or the coupled constant K0, a transition from anomalous to normal (counter-clockwise) hysteresis is
produced.12 The results were obtained exploiting a mean field approximation.

Here, in addition to a brief review of results on the phase diagram and the character of the hysteresis cycle,
we focus on the time behavior. We exploit a method for detecting the existence of a limit cycle based on the
evaluation of the distance between two solutions separated by a (fixed) time interval.15 In this way, we not only
show the existence of a limit cycle for the loading force overcoming some threshold F > Fc (with Fc the threshold
value), but also determine its period. We also found the time dependence of the probability distribution function
along the cycle and calculate the order parameter of the model vs. t, clearly showing the limit cycle. Next, we
gain insight into its origin through the study of the large coupling limit. Finally, we draw some conclusions.

2. THE MODEL AND MEAN FIELD APPROXIMATION

Here we present a brief description of our model and some useful results. The model is similar to the one used
in Refs.2 and.12 We consider a set of globally coupled stochastic differential equations (to be interpreted in the
sense of Stratonovich) for N degrees of freedom (phases) Xi(t)

Ẋi = − ∂Ui

∂Xi
+
√
2T ξi(t)− 1

N

N∑
j=1

K(Xi −Xj). (1)

This model can be visualized (at least for some parameter values) as a set of overdamped interacting pendulums.
The second term in Eq. (1) considers the effect of thermal fluctuations: T is the temperature of the environment
and the ξi(t) are additive Gaussian white noises with

〈ξi(t)〉 = 0, 〈ξi(t)ξj(t′)〉 = δijδ(t− t′). (2)

The last term in Eq. (1) represents the interaction force between the oscillators. It is assumed to fulfill K(x−y) =
−K(y − x) and to be a periodic function of x− y with period L = 2π. We adopt2, 12

K(x) = K0 sinx, K0 > 0. (3)

The potential Ui(x, t) consists in a static part V (x) and a fluctuating one. Gaussian white noises ηi(t), with zero
mean and variance 1, are introduced in a multiplicative way (with intensity Q) through a function W (x). In
addition; a load force F , producing an additional bias, is considered

Ui(x, t) = V (x) +W (x)
√

2Qηi(t)− Fx. (4)

SPIE USE, V. 1 5114-34 (p.2 of 8) / Color: No / Format: A4/ AF: A4 / Date: 2003-03-17 05:53:26

Please verify that (1) all pages are present, (2) all figures are acceptable, (3) all fonts and special characters are correct, and (4) all text and figures fit within the
margin lines shown on this review document. Return to your MySPIE ToDo list and approve or disapprove this submission.



In addition to the interaction K(x− y), V (x) and W (x) are also assumed to be periodic and, furthermore, to
be symmetric: V (x) = V (−x) and W (x) = W (−x). This last aspect indicates that there is no built-in ratchet
effect. The form we choose is2, 12

V (x) = W (x) = − cosx−A cos 2x. (5)

We introduce a mean-field approximation (MFA) similar to the one used in Ref.12 The interparticle inter-
action term in Eq. (1) can be cast in the form

1
N

N∑
j=1

K(Xi −Xj) = K0 [Ci(t) sinXi − Si(t) cosXi] . (6)

For N → ∞, we may approximate Eq. (6) in the Curie-Weiss form, replacing Ci(t) ≡ N−1
∑

j cosXj(t) and
Si(t) ≡ N−1

∑
j sinXj(t) by Cm ≡ 〈cosXj〉 and Sm ≡ 〈sinXj〉, respectively. As usual, both Cm and Sm should

be determined by self-consistency. This decouples the system of stochastic differential equations (SDE) in Eq.
(1) which reduces to essentially one Markovian SDE for the single stochastic process X(t)

Ẋ = R(X) + S(X)η(t), (7)

with (hereafter, the primes will indicate derivatives with respect to x)

R(x) = −V ′(x) + F −Km(x)
= − sinx(1 +K0Cm + 4A cosx) +K0Sm cosx+ F, (8)

(where Km(x) = K0[Cm sinx− Sm cosx]) and

S(x) =
√

2{T +Q[W ′(x)]2} =
√

2{T +Q[sinx+ 2A sin 2x]2}. (9)

The Fokker-Planck equation (FPE) associated with the SDE in Eq. (7) (in Stratonovich’s sense) is

∂tP (x, t) = ∂x

(
−[R(x) +

1
2
S(x)S′(x)]P (x, t)

)
+

1
2
∂xx

[
S2(x)P (x, t)

]
(10)

where P (x, t) is the probability distribution function (PDF).

Since sinx is an antisymmetric function, as was indicated in Ref.12 , and in order to find the curve that
separates the ordered phase from the disordered one, given that on that curve Sm is still zero, we should solve
the following system:

∫ L/2

−L/2

dx cosxP st(x,Cm, 0) = Cm, (11)

∫ L/2

−L/2

dx sinx
∂P st

∂Sm

∣∣∣∣
Sm=0

= 1. (12)

Figure 1 shows (on the same scale as Fig. 1b of Ref.2 , with which it fully coincides) the phase–like diagram
in the plane (K0, Q), obtained by solving Eqs. (11) and (12). The transition curve, separating the region where
the hysteresis cycle is anomalous from the one where it is normal, is also indicated. To the left of the dashed
line we have the ”interaction driving regime” (idr) while the ”noise driving regime” is located to the right of the
line.

In the region above the full line (“ordered region”) the stable solution has Sm 
= 0. Notice that this noise-
induced phase transition is reentrant : as Q increases for K0 = const., the “disordered phase” (Sm = 0) is met
again. The multiplicity of mean-field solutions in the ordered region, together with the fact that some of them
may suddenly disappear as either K0 or Q are varied (a fact that is closely related to the occurrence of anomalous
hysteresis) could hinder the pick of the right solution in this region. A detailed analysis could be found in.12
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Figure 1. Phase diagram of the model for T = 2, A = 0.15 and F = 0. The ordered region lies above the full line. Above
the dashed line there is anomalous hysteresis, while below it there is normal hysteretic behavior. The squares represent
states that have been investigated with K0 = 10 and Q =1, 3, 6, 9, 12, 16 and 21 respectively.

The appearance of a ratchet effect amounts to the existence of a non zero drift term 〈Ẋ〉 in the stationary
state, in the absence of any forcing (F = 0). As discussed in2 , the cause of this spontaneous particle current is
the noise-induced asymmetry in P st(x).

As was shown in12 , for the particle current we have

〈Ẋ〉 =
∫ L/2

−L/2

dx

[
R(x) +

1
2
S(x)S′(x)

]
P st(x,Cm, Sm), (13)

with the final result

〈Ẋ〉 = J L =
{
1− eφ(L)

2N
}

L. (14)

Hence 〈Ẋ〉 has the sign of J and can be also regarded as an order parameter.

Figures 2(a) to 2(d) present a sequence of 〈Ẋ〉 vs F plots, varying Q across the dashed line of Fig. 1. For
Q = 5.97 (Fig. 2(a)) two (unstable) solutions meet at 〈Ẋ〉 = 0 for F = 0. The progressive withdrawal of one
of them out of the F ≈ 0 region with increasing Q until its complete disappearance (Figs. 2(b) to 2(d)) can be
traced back (through their corresponding branches) to the disappearance of solutions for Sm = 0. Moreover, it
is only after this solution has completely disappeared that the stable solution begins to exist for larger values of
F and thus normal hysteresis sets in (Fig. 2(d)).

3. LIMIT CYCLE

In12 we have shown that in the so called ”interaction driven regime” (IDR) –where the hysteretic cycle is
anomalous– and for each F value, in addition to the two stationary stable solutions with the corresponding
values of current there are other three unstable ones. Two of them merge with the two stable, yielding a closed
curve of current vs. F . Beyond a critical (absolute) value of the load force F , indicated by Fc, those stable
solutions disappear. This does not happen for the ”noise driven regime” (NDR) –where the hysteretic cycle is
normal–, where for each F value, one stationary stable solution exists (for small |F | even two stationary stable
solutions and an unstable one exist).

It is worth remarking here that the absence of a stationary stable solution, beyond the critical value Fc in
the IDR, suggest the possibility that a limit cycle exists. Already in2 , in a strong coupling analysis (that is
considering the limit K0 → ∞), it was indicated that for very large |F | the probability distribution function
approaches a periodic long time behavior.
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Figure 2. (a) Vm = 〈Ẋ〉 vs F for K0 = 10 and Q = 5.97 (just on the left of the dashed line of Fig. 1). (b) Same as for
Q = 6.0: one of the unstable solutions has receded from the F ≈ 0 region. (c) Same as for Q = 6.1, showing a complete
recession from the F ≈ 0 region. (d) Same as for Q = 6.5: not until the dotted line has completely disappeared do
solutions in the stable branch appear for |F | > 0.5 and normal hysteresis sets in.

In order to analyze the existence of a limit cycle, we exploit a novel method used in Ref..15 It is based on the
measurement of the distance between different solutions of a system and evaluating its evolution in time. The
approach applied in Ref.15 uses a generalization of the known Kullback-Leibler information function,16 which is
based on the nonextensive thermostatistics. Within such a formalism, the exponential and logarithmic functions
are generalized according to the following definitions15

expq(x) = [1 + (1− q)x]1/(1−q)

lnq(x) =
x1−q − 1
1− q

. (15)

The distance can be measured between an evolved initial condition and a known stable stationary solution,
or between two solutions at different times (separated by a time interval ∆τ which is fixed along the whole
calculation). In this work we choose the later. In Ref.15 the following definition for the distance between two
solutions of a reaction-diffusion equation was adopted (valid for both indicated criteria)

Iq(Pt+∆τ , Pt) = −
∫

Pt+∆τ (x, t+∆τ) lnq

[
Pτ (x, t)

Pt+∆τ (x, t+∆τ)

]
dx, (16)

where P represent a (probability-like) distribution (necessary to use the information theory formalism), evaluated
at t and t+∆τ , according to the criterion that we have chosen. We used this definition of distance, and evaluated
Iq(Pt+∆τ , Pt), using for P the PDF obtained solving the FPE Eq. (10). We adopted q = 2, as it is the value
for which the sensibility of the method seems to be a maximum.15 The FPE was numerically solved with a
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Figure 3. vm and Sm vs. time (t) for A = 0.15, T = 2, K0 = 10, Q = 3 and F = 1.5 (for this set of parameters there is
no stationary stable solution). Thick line for vm and thin line for Sm.

Runge-Kuta method, using a time step δt = 6.25 10−7 and a space interval δx = 0.02944. We have tested that
variations in both steps, δt and δx, produce no changes in our results. Remembering that Cm and Sm should
be determined self-consistently, at each time step both were calculated with the modified PDF. As our initial
condition we adopted one stationary solution for F < Fc calculated as in Ref..12 The integral in Eq. (16) was
calculated simultaneously. Furthermore, we also obtained vm –the particle mean velocity– according to Eq. (13),
which is adopted as the order parameter like in.12

3.1. NUMERICAL RESULTS AND STRONG COUPLING ANALYSIS
Figure 3 shows vm and Sm vs. t for A = 0.15, T = 2, K0 = 10, Q = 3 and F = 1.5 (a set of parameters for
which a stationary stable solution does not exists: see Fig 6 in Ref.12). They have a time periodic behavior, at
variance to the case F ≤ Fc, where vm (
= 0) and Sm (
= 0) are both constants in time. We have also verified
that the transition to the limit cycle occurs just at Fc (in this case Fc = 1.2).

In order to understand the origin of the periodic behavior and gain some insight, we have performed an
asymptotic strong coupling analysis. That is, we consider K0 → ∞, P → δ(x− xm), hence Eq. (16) transforms
into

ẋm = R(xm) +
1
2
S(xm)S′(xm). (17)

A simple calculation shows

ẋm = − sinxm[1 + 4A cosxm][1−Q cosxm − 4AQ(1− 2 sin2 xm)] + F. (18)

This equation can be analyzed considering an effective potential U(xm), given by

U(xm) = V (xm)−QW ′2(xm)/2− Fxm, (19)

that allows us to rewrite Eq. (14) as

ẋm = −∂U(xm)
∂x

. (20)

It is possible to analyze the solution of Eq. (18), ẋm vs. t, for both situations: just below and above Fc,
and observe that while for F < Fc, after a transient, the solution becomes stationary, for F > Fc it becomes
oscillatory. In the first case xm is constant in time but it does not imply vm = 0 because, it should be calculated
with Sm = sin(xm) 
= 0, not as in the case with ẋm. Figure 4 shows the effective potential U vs. xm for the same
cases, and also for F = 0. It is apparent that in the first case (F < Fc) the potential has only one minimum
while for the second one, both possible minima are washed out. The latter happens just when the transition to
the oscillating regime occurs. It is worth remarking here that, if K0 → ∞, the hysteresis cycle is anomalous and
closed, and a critical load force establishing a threshold for a limit cycle transition always exists.
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Figure 4. U vs. xm just below and above of Fc = 1.2. Also the case F = 0 is shown. The parameters are A = 0.15,
K0 = 10, and Q = 3. It is observed that in the first case (F < Fc) the potential has at least a minimum, while for the
second one both possible minima are washed out. The solid line indicates the case just above Fc (Fc = 1.2), the dotted
one indicates the case F < Fc and the dashed one the case F = 0.

4. CONCLUSIONS

A wealth of papers have reported on research where, by changing a control parameter, a transition to a limit
cycle occurs.17 However, studies on the existence of limit cycles under (or induced by) the influence of noise
are scarce.13, 18, 19 Such an aspect was analyzed here, where we have studied a system of periodically coupled
nonlinear oscillators with multiplicative white noises, yielding a ratchet-like transport mechanism through a
symmetry-breaking, noise–induced, nonequilibrium phase transition.2, 12 The model includes a load force F ,
used as a control parameter, so that the picture of the current vs. F shows hysteretic behavior.

We have shown, as discussed in detail in,12 that in the IDR the cycle is anomalous, yielding a closed curve
current vs. F when the stationary stable solutions merge with two of the three unstable ones. For F > Fc (force
value at which a stable solution merges with an unstable one) there are no stationary stable solutions. Here
we have shown, by analyzing the time evolution of the distance between different solutions, that at F = Fc a
transition to a limit cycle occurs. Such a distance shows, for F > Fc, a typical periodic behavior evidencing a
limit cycle.15 Focusing on the analysis of the time behavior, the evolution of both the PDF and the current can
be studied, showing in both cases the time periodicity (a time evolution of the PDF resembling a wave). In order
to understand the origin of this transition, we have made a ”strong coupling” limit analysis, indicating that the
minima of the effective potential are ”washed out” as F is increased and all the stationary stable solution are
removed with them. The existence of such limit cycle is a new feature of those systems showing a ratchet-like
transport mechanism arising through a NIPT. Also, it is another example where the presence of a multiplicative
noise contributes to build up some form of order.

As indicated in the introduction, limit cycles balance the in– and out– energy flows –even when those flows
are not oscillatory in time– through a system’s oscillatory motion that equalize such flows over one period. In
the present case we have found a limit cycle in a dynamical system described by PDE’s, where the energy inflow
is provided by both the load force F and the noise terms, while energy is lost (as the system is an overdamped
one) proportionally to the particle’s velocity. A remarkable aspect is the fact that it is the multiplicative noise
intensity the parameter controlling the bifurcation towards the limit cycle.

It is worth here remarking again that it is the simultaneous effect of multiplicative noise and coupling that
yields the NIPT. If we have only coupling without fluctuations, or the opposite situation, that is fluctuations
without coupling, there is no macroscopic effect: neither noise–induced transition7 nor NIPT. The dynamical
mechanism –a short time instability– originating the NIPT that we have discussed so far was, till recently, though
to be the only, paradigmatic, one. However, a recent work has shown that noise–induced nonequilibrium phase
transitions can also arise through a different mechanism, more akin to noise–induced transitions.20 One can rise
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the question wether such a new mechanism can also induce a ratchet and/or a limit cycle. These problems are
currently under study.
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