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Abstract

We use Tsallis’ information measure and the recently advanced “escort-Tsallis” one in order
to investigate the stochastic resonance (SR) phenomenon. In particular, on the basis of these
generalized information measures (GIM), both characterized by a non-extensivity parameter q,
we study the e8ect of modifying the type of noise. The GIM are used to measure SR phenomenon
comparing the input and output probability distributions, 9nding that for the range of noise
intensities enhancing SR, q → 0 gives the optimum measure. An important advantage of using
GIM instead of Shannon’s measure is the possibility of detecting smaller signal amplitudes with
the former than with the latter one.
c© 2003 Elsevier B.V. All rights reserved.
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1. Introduction

Since its discovery, the phenomenon of Stochastic Resonance (SR) has been the sub-
ject of growing interest. SR reveals the counterintuitive character of noise in non-linear
systems, as @uctuations can be exploited so as to boost the output response of a system
subjected to a weak, periodic external signal. The broad range of phenomena—indeed
drawn from almost every 9eld of scienti9c endeavor—for which this mechanism can
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o8er an explanation is extensively discussed in many review articles. We cite, for in-
stance, the excellent presentation given in Ref. [1], possibly the most comprehensive
one in this respect, for a scanning of the state of the art.
Di8erent manners of characterizing SR have been advanced, namely, (i) signal-to-

noise ratio (SNR) [2], (ii) the spectral ampli9cation factor (SAF) [3], (iii) the residence
time distribution [4], and, more recently, (iv) information theory based tools [5,6]. SR
measurements often involve gathering data over long time intervals so as to attain
reliable results. A tendency evidenced in recent papers, and determined by the possible
SR technological applications, points towards achieving an enhancement of the system’s
response (that is, obtaining a larger output SNR) by means of the coupling of several
stochastic resonance units in what conforms an extended medium [7,8]. Forms of
controlling this phenomenon have also been investigated [9].
Many studies on SR have been carried out with the help of a paradigmatic system:

a bistable one-dimensional double-well system, the noise being of a Gaussian nature
[10]. However, some results associated to the sensory system [11], particularly for a
cray9sh [12], yield strong indications on the possibility that noise sources could have a
non-Gaussian character. Such a point of view is supported by results obtained in a re-
cent contribution [13], which focuses attention upon a particular class of Langevin (and
its associated Fokker–Planck) equations whose stationary solutions are non-Gaussian
distribution functions [14]. The work in Ref. [14] is based on the generalized ther-
mostatistics advanced by Tsallis [15,16] that has been successfully applied to a wide
variety of physical systems [16,17]. It is pertinent to mention here recent works [14,15]
connecting information measures [18] with equations of the Langevin type and sug-
gesting that non-Gaussian noises seem to be governed by statistics di8erent from the
orthodox Boltzmann–Gibbs one. In such a spirit, the present e8ort analyzes the ef-
fects on the SR phenomenon on the nature of the concomitant noise using generalized
information measures (GIM). These are characterized by a non-extensivity index q,
and we intend to ascertain its optimum value. Such a value will be the one mak-
ing the information measure the most sensitive one to small changes in the system’s
parameters.
This paper is organized as follows: the next section brie@y introduces the information

theory-based treatment used in connection with SR systems, and generalizes it to a
non-extensive Tsallis setting [15,16]. Section 3 presents the model to be employed
together with the results of our numerical simulations. Finally, some conclusions are
drawn in Section 4.

2. Information measures

2.1. Information theoretical treatment

One of the 9rst works advancing the idea of quantifying SR using information theory
tools was [6]. The ensuing SR characterization compares two probability distributions
functions (pdf): one associated to the input signal and the other to the output signal.
A relevant related contribution is in Ref. [19] and references therein.
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The classical SR formulation in terms of the output SNR is subjected to some prob-
lems, as detailed in Ref. [19]. The mutual information between the input signal and
the output one advantageously replaces the classical measure [19]. SR is now de;ned
as a peak in the mutual information versus noise relation [7]. It is our intention here
that of generalizing this viewpoint. There is an in9nite number of mutual-information
measures, but previous studies have restricted themselves to just one of them: Kull-
back’s relative information measure [20]. It surely makes sense to consider alternatives
and here we will discuss generalized information measures [16].
Consider an external signal of frequency � (period 2�T−1=�). We take the temporal

interval T , divide it into n parts and examine the concomitant n time-samples of a given
system’s quantity V(t). Out of these samples we construct the vector Ṽn =(v1; : : : ; vn),
with vi ∈{+;−}; ∀i = 1; : : : ; n, determined according to

vi =

{
+ if V(ti)¿ 0 ;

− if V(ti)¡ 0 :

We assume that a stationary distribution P(Ṽn) gives the occurrence probability for
the binary sequence (of length n) Ṽn. We will encounter below a case in which all
sequences have the same probability.
We are here concerned with an SR measure that quanti9es the degree of synchroniza-

tion between (i) the input signal (as represented by the vector Ṽ i
n ) and (ii) a system’s

output, de9ned for an isolated set of points as indicated above, to be denoted by Ṽ o
n .

One is interested in evaluating the Kullback’s relative information measure [20] for
these two vectors

K1[P(Ṽ i
n )P(Ṽ

o
n ); P(Ṽ

io
n )] =

∑
Ṽ io

n

P(Ṽ io
n ) ln

P(Ṽ io
n )

P(Ṽ i
n )P(Ṽ o

n )
: (1)

Here P(Ṽ io
n ) is the probability for the joint appearance of a given input–output pair,

and one normalizes things according to

W1[P(Ṽ i
n )P(Ṽ

o
n ); P(Ṽ

io
n )] =

K1[P(Ṽ i
n ) · P(Ṽ o

n ); P(Ṽ
io
n )]

Hn[P(Ṽ i
n )P(Ṽ o

n )]
6 1 ; (2)

where Hn stands for Shannon’s entropy [20], which measures the degree of order in
sequences of length n. In this respect one has

Hn[P(Ṽn)] =−k
∑
Ṽn

P(Ṽn) ln P(Ṽn) ; (3)

with k = ln 2. In [6], it was shown that such an SR characterization results useful
only for large signal amplitudes. We will see that using GIM we can overcome this
limitation.

2.2. Generalized information measures

We will now extend the preceding considerations to a non-extensive Tsallis setting
by recourse to the GIM Sq, characterized by a real, positive index q(q¿ 0), discussed
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in Refs. [15–18,21], i.e.,

Sq =−k
∑
Ṽn

P(Ṽn)× lnq P(Ṽn) : (4)

In this work we will employ the so-called generalized q-logarithmic function
[15,16,18,21]

lnq(x) ≡ xq−1 − 1
q− 1

; (5)

with q∈R. Obviously, for q= 1 this function becomes the ordinary natural logarithm
and, as a consequence, S1 ≡ H . The case q = 0 will be seen to be of relevance.
Of course, lnq=0(x) ≡ 1 − 1=x. If the sum in Eq. (4) contains N terms, then Sq=0 =
−k(N − 1), no matter what the pdf P(Ṽn) might be.
Tsallis’ measure is characterized by a special property: pseudo-additivity, i.e., for

two independent systems A, B [15,17,18,21],

Sq(A⊕ B) = Sq(A) + Sq(B) + (1− q)Sq(A)Sq(B) : (6)

We have super-additivity if

Sq(A⊕ B)¿ Sq(A) + Sq(B) ; (7)

and sub-additivity otherwise. The case q = 0 yields the maximum possible super-
additivity (minimum allowable q-value).
The generalized relative information (counterpart of Eq. (1)) is now

Kq[P(Ṽ i
n )P(Ṽ

o
n ); P(Ṽ

io
n )] =−

∑
Ṽ io

n

P(Ṽ io
n )[lnqP(Ṽ

i
n ) + lnq P(Ṽ o

n )

+(1− q)lnqP(Ṽ i
n )lnq P(Ṽ

o
n )− lnq P(Ṽ io

n )] : (8)

It is clear that Eq. (8) reduces to Eq. (1) for q= 1. For q= 0, the contribution to Kq

of the term∑
Ṽ io

n

P(Ṽ io
n )lnq P(Ṽ

io
n ) ;

is constant (independent of the nature of the associated pdf), but the other three terms
do not necessarily exhibit such a feature. Normalization proceeds according to

Wq[P(Ṽ i)P(Ṽ o); P(Ṽ io)]

=
Kq[P(Ṽ i

n ):P(Ṽ
o
n ); P(Ṽ

io
n )]

−∑
Ṽ io

n
P(Ṽ io

n )[lnq P(Ṽ i
n ) + lnq P(Ṽ o

n ) + (1− q)lnq P(Ṽ i
n )lnq P(Ṽ o

n )]
:

(9)

Our main objective is that of ;nding an “optimal q” (denoted by q∗), such that the
gradient of Wq is, for q = q∗, the largest possible one. The corresponding q-statistics
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Wq∗ is, among all the Wq, the most sensitive one to small changes (due, for example,
to variation in the system’s internal parameters) that a8ect the correlation between the
random variables P(Ṽ i

n ) and P(Ṽ o
n ).

2.3. A new information measure

In Ref. [22], it was shown that a new information measure of the Tsallis kind,
originally introduced in Ref. [23], seems to be more sensitive to a variation of relevant
parameters of complex systems than the original measure in Eq. (4). Here we extend
such a measure (in what follows called escort-Tsallis measure) [22,23] in the sense of
introducing its associate relative (Pa la Kullback) measure, to be abbreviated as the GK
one. Here we exploit the ensuing relative measure for the study of SR.
At this point we introduce the useful concept of escort probabilities (see Ref. [24] and

references therein). One introduces the following transformation between an original,
normalized probability distribution (PD) r and a new one R

r → R ; (10)

with

Ri =
rqi∑
i r

q
i
; (11)

q being any real parameter. We reiterate: r is the original PD one is concerned with.
For q = 1 we have R ≡ r and, obviously, R is normalized to unity. General global
quantities formed with escort distributions of di8erent order q, such as the di8erent
types of information or mean values, will give more revealing information than those
formed with the original distribution only. Changing q is indeed a tool for scanning
the structure of the original distribution [24]. Given the Tsallis’ information measure
constructed with some probability distribution r one may think of computing the Tsallis
measure that results from replacing r by R. This was investigated in Ref. [23]. If, in
terms of r, one has Eq. (4) expressed as

Sq =
1

q− 1

∑
i

[ri − rqi ] ; (12)

then the associated escort-Tsallis, as a functional of the original measure, reads

Sesc
q =

1
q− 1


1−

[∑
i

r1=q
]−q


 : (13)

Returning now to the context of our SR discussion, the pertinent escort-Tsallis mea-
sure reads

Hn[P(Ṽn)] =
1

q− 1


1−

∑
Ṽ io

n

P(Ṽn)1=q




−q

; (14)
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while its associated relative measure is

Kq[P(Ṽ i
n )P(Ṽ

o
n ); P(Ṽ

io
n )] =

1
q− 1


−


∑

Ṽ io
n

P(Ṽ io
n )

1=q




−q

+


∑

Ṽ io
n

P(Ṽ io
n )[P(Ṽ

i
n )P(Ṽ

o
n )]

(1=q)−1




−q
 : (15)

Normalization, as in the preceding Section, yields

Wq[P(Ṽ i
n )P(Ṽ

o
n ); P(Ṽ

io
n )]

=
−(

∑
Ṽ io

n
P(Ṽ io

n )
1=q)−q + (

∑
Ṽ io

n
P(Ṽ io

n )[P(Ṽ
i
n )P(Ṽ

o
n )]

(1=q)−1)−q

−(
∑

Ṽ io
n
P(Ṽ io

n )1=q)−q + (
∑

Ṽ io
n
[P(Ṽ i

n )]
(1=q)−1[P(Ṽ o

n )]
(1=q))−q

: (16)

We show below that the escort-Tsallis measure can be advantageously employed in an
SR context.

3. Model and results

We start by studying a particular class of Langevin equations whose stationary distri-
bution functions are of a non-Gaussian nature [25]. We consider the following problem:

ẋ = f(x; t) + g(x)!(t) ; (17)

!̇=−1
"

d
d!

Vq(!) +
1
"
#(t); (18)

where #(t) is a Gaussian white noise of zero mean and correlation 〈#(t)#(t′)〉 =
D%(t − t′), and Vq(!) is given by [25]

Vq(!) =
1

&(q− 1)
ln
[
1 + &(q− 1)

!2

2

]
; (19)

where & = "=D.
The function f(x; t) is derived from U (x; t), a double-well potential, and a periodic

signal S(t) ∼ ( cos(�t), i.e., f(x; t)=−9U=9x=−U ′
0 + S(t). In absence of the driving

signal (( = 0), this corresponds to the case of di8usion in a potential U0(x), induced
by !, a colored non-Gaussian noise.
We have here studied three di8erent noise sources within the context of this model,

namely

1. Gaussian noise: Clearly, when q → 1 we recover the limit of ! being a Gaus-
sian colored noise (Ornstein–Uhlenbeck process). For the particular case " → 0
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we recover !G(t), the usual white noise, with stationary distribution given by

P(!) =
e−!2=D
√
�D

:

2. Lorentz noise: For q¿ 5
3 , the distribution’s second moment becomes in9nite. An

interesting case within this range is q=2 in the limit " → 0. This corresponds to a
noise !L(t) with a Lorentzian distribution given by

P(!) =
�
,

1
!2 + ,2

;

where , is related with the distribution width.
3. Tsallis’ distribution: As has been shown in Ref. [26], the stationary probability

distribution for the random variable !Ts is given by

Pst
q (!) =

1
Zq

[1 + &(q− 1)!2]−1=(q−1) :

In particular, if the parameter q∈ (−∞; 1) the distribution has a compact support:

Pq(!) =

{ 1
Zq [1− ( !w )

2]1=(1−q) if |#|¡w ;

0 if |#|¿w ;

where Zq is the normalization factor and w = [(1 − q)&=2]−1=2. The distribution
function is an even function with zero mean and standard deviation given by 〈!〉2 =
2=&(5− 3q).

The possibility of the SR phenomenon in a system with a noise of in9nite variance
has not been studied in Ref. [26]. It is thus appropriate to start delving into the case
of a Lorentzian Noise. In order to obtain our results we (numerically) integrated Eq.
(17), using the Heun [27,28] algorithm. The time step is h= 10−5, and one averages
over 5000 realizations in order to achieve the results depicted below. As we have
chosen "¡h, from a practical point of view we can assume "= 0. A larger " do not
qualitatively changes the results.
Firstly, we show results obtained using two standard techniques, namely, (i) the SNR

[2] and (ii) the spectral ampli9cation factor (SAF) [3].
Fig. 1(b)–(d) depict the power spectra for di8erent noise intensities ,. The SR

phenomenon is clearly seen. In Fig. 1(a) we exhibit both R, the SNR, and #, the
spectral ampli9cation factor. The ampli9cation e8ect on the weak external signal is
apparent. Such an e8ect vanishes if the noise intensity becomes strong enough. In the
limit of zero noise the SNR grows without bound (corresponding to the intra-well
response [2]) while # vanishes.

3.1. Information measures and results

We consider now the results obtained in the case of a Gaussian noise source. We
numerically integrated the equations, with a time discretization of h= 10−3.
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Fig. 1. (a) Signal-to-noise ratio, R and spectral ampli9cation factor # (squares) versus a function of ,, with
!(t) = !L(t). The signal is characterized by the values � = 1:00=� and ( = 0:15. Graphs (b), (c), and (d),
depict, for di8erent ,-values, the power spectrum density of the system when the noise intensity is varied
while keeping both the frequency and amplitude of the signal 9xed at the values given in (a). The ,-values
are: (b) , = 2× 10−5, (c) , = 10−3, and (d) , = 3× 10−2.

We focus our attention upon an input signal of the form Vs(t) = ( cos(�t) + !(t)
for which we compute the corresponding output signal. It is worthwhile noting here
that this is the only measure that can be experimentally measured. Fig. 2(a) and (b)
depict Wq as a function of either the noise intensity D (for the Gaussian case) or the
parameter , (for the Lorentz one). A clear maximum in the input–output transmitted
information becomes apparent. The SR e8ect can be appreciated even for very small
modulation intensities. We took n = 12 and the computation proceeded by making
5× 105 copies of the vectors Ṽn.

We emphasize the fact that the SR phenomenon is detected by the two GIMs in-
troduced in this work. The Shannon measure, instead, can only be used for large
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Fig. 2. Kullback–Tsallis generalized information measure as a function of the noise intensity: (a) Gaus-
sian noise, (b) Lorentzian noise. In the two cases one has � = 1:0=� and (0 = 0:7. The input signal is
Vs(t) = ( cos(�t). In both cases the trans-information reaches a maximum for a given (intermediate) value
of external noise, which is the typical signature for a stochastic resonance phenomenon.

amplitudes, i.e., (¿ 0:18 for the system under consideration (cf. Ref. [6]), although
conventional quantities (like the SNR, SAF or time-residence distribution) detect the
existence of the phenomena even for signal amplitudes as small as (= 0:01. This fact
limits the possible use of Shannon-based treatment of SR phenomena. Although the
pertinent results are not shown here, extensive simulations show that GIM-based mea-
sures detect the peak of SR for the range (¿ 0:03, if the q-index ful9lls the condition
q¿ 3. This range is almost the same as that corresponding to the use of the conven-
tional measures indicated above. The GIM feature we are discussing here signi9cantly
increases the range of application of information theory-based techniques in an SR con-
text. In addition, it is worth remarking here that information theory approaches o8ers
the possibility of analyzing the SR phenomenon with arbitrary input signals while the
SNR and SAF methods deal with periodic ones.
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Fig. 3. Normalized escort-Tsallis generalized information measure, Wq, for di8erent values of q: (a) Gaussian
noise source, (b) Lorentzian noise. Notice the maximum for an intermediate value of external noise strength.
One takes � = 1:0=� and (0 = 0:3. The input signal is Vs(t) = ( cos(�t).

Fig. 3(a) and (b) depict results for the information measures under consideration. Wq

is plotted as a function of the noise intensities (D or ,). Again, the stochastic resonance
peak is quite noticeable. These curves were obtained using a time-discretization that
employs just n= 4. The number of realizations is 104.

The di8erent speeds of convergence to the 9nal result for the distinct information
measures merit special mention. When Shannon-based information measures are used
to determine whether or not an SR phenomenon is present, very long time-runs are
required so as to achieve enough statistics in order to build the appropriate histograms.
Evaluating the convergence speed of the two generalized information measures intro-
duced in this work requires the prior introduction of the quantity

Er =
max(Mq)−min(Mq)

〈Mq〉 ; (20)
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Fig. 4. Errors for the di8erent information measures. The symbols represent: (i) (�) q = 2; (ii) ♦ q = 4;
and (iii) ( ) q=5. Grey symbols and dashed lines correspond to the escort-Tsallis’ generalized information
measure and n = 4. Finally, white and black symbols are associated to Tsallis’ generalized information
measure, for n=4 and 12, respectively. It is apparent that the escort-Tsallis generalized information measure
reaches the steady error regime in a time two orders of magnitude shorter than Tsallis’ original GIM (see
the text).

where Mq is the generalized information measure for which one wishes to determine the
measurements’ “con9dence” and 〈Mq〉 stands for its average value. In order to evaluate
such a degree of con9dence we computed 1000 times the pertinent information measure
for a given set of system’s parameters.
Fig. 4 depicts Er as a function of the time discretization parameter n. We plotted

the escort-Tsallis measure for n = 4 and di8erent values of q-parameter (q = 2; 4; 5).
These results are compared with those obtained using the original Tsallis measure for
the same set of q-values and two di8erent time discretization parameters: n = 4; 12.
Considering n=4 for both GIMs, it is apparent that the escort-Tsallis GIM exhibits a
standard deviation for its transmitted information measure that is signi;cantly lower
than that of its original-Tsallis counterpart. We can even assert that Tsallis’ GIM
cannot give account of the phenomena we are interested in precisely due to the size
of the @uctuations that we report here. The same picture arises from simulations for
n= 6; 8.
On the other hand, if we compare escort-Tsallis’ results (n=4) with original-Tsallis’

ones (n = 12), it is apparent that the escort-Tsallis measure yields convergence to a
steady error value for the transmitted information measure two orders of magnitude
faster than in the case of the original-Tsallis measure. Although this fact could be
attributed to the di8erence between the concomitant time discretization parameters n, it
is worthwhile remarking here that, for values n¡ 12, the Tsallis transmitted information
error is always greater than the corresponding escort-Tsallis one (with n = 4). We
conclude that, in order to reach a given precision in trans-information determination,
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Fig. 5. Contour plots of the escort-Tsallis’ measure Wq as a function of "∈ [0:01; 100] (horizontal axis)
and D∈ [0:01; 50] (vertical axis). In each row the noise source q is constant, being in the 9rst q= 1 and in
the second q= 0:25. The value of non-extensivity parameter, used to measure the phenomena is constant in
each column, being in the 9rst one qm = 0:25 and in the second qm = 3.

the escort-Tsallis measure requires processing times signi;cantly smaller than the
Tsallis one.
We now consider noise sources following the Tsallis’ distribution. Fig. 5 shows

contour plots for noise sources with q = 1 and 0.25 using the escort-Tsallis mea-
sure. All these plots were obtained with n = 6 and N = 104. First of all, from these
plots it is apparent that (as shown in the previous 9gures) the higher the qm-value
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Fig. 6. Optimal value of q, q∗, as a function of D, for a system driven by a Gaussian noise source. The
input signals in each plot are Vs(t), Vn(t), and Vns(t).

(the particular parameter q value chosen for the generalized measures), the higher is
the value of trans-information. We remark that, for q�1 and very low values of ",
the SR phenomenon vanishes. For values of " large enough (i.e., "¿ 1), the SR phe-
nomenon still exists. This is so because such parameter appears in the denominator of
Eq. (18). Finally, the response of the system for q and D variable and 9xed " = 1
shows that the lower the noise, (i) the more pronounced the SR peak and (ii) the less
dependent on D its localization becomes.

3.2. Optimal q

We have studied the dependence of our Wq results upon the index q, that quanti9es
the di8erence between generalized information measures and Shannon’s one. We notice
that, for 9xed system’s parameters, Wq grows in monotonic way with q, and that
limq→∞ Wq = 1. Our interest lies in the optimal value q = q∗, such that the gradient
of Wq is the largest possible one.
In Figs. 6 and 7, we plot q∗ as a function of the noise intensity (D or ,). In these

graphs we take � = 1:0; ( = 0:3, and n = 12. In order to compute the information
measures we considered as the input signal Vsn(t)=( cos(�t)+!, the noise realization
plus a periodic signal. However, and in order to check limiting behaviors, we also
discuss two other cases where the input consists only of (i) pure signal (Vs(t)) or (ii)
just noise (Vn(t)). Let us 9rst discuss the results for these two limiting cases.

• Input signal Vs(t).
◦ For both types of noise, != !G and != !L, q∗ attains a minimum for noise

intensities such that the SR e8ect is greater, i.e., for q ∼= 0. This is the situ-
ation anticipated in Section 2.2. It corresponds to maximum super-additivity.
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Fig. 7. Optimal q (q∗) as a function of the Lorentzian noise strength ,. The input signals considered are
Vs(t), Vn(t), and Vns(t).

As we saw in Section 2.2, the GIM become independent of the probability
distribution for q=0. But that is not necessarily so for the relative measures Pa
la Kullback that are the subject of interest here. As remarked in that section,
just one of the terms of, say, the Kq measure, becomes a constant, but not
necessarily the other three (cf. Eq. (8)). These read

lnq P(Ṽ i
n ) + lnq P(Ṽ o

n ) + (1− q)lnq P(Ṽ i
n )lnq P(Ṽ

o
n ) :

What we see here is that the di8erence between these terms and the one
involving the P(Ṽ io

n )-probability distribution function becomes a maximum
for q= 0, which is reasonable. In such an instance, a change in the system’s
parameters a8ects only the three terms above, but not the constant one, so
that the di8erence between the pertinent terms involved in the evaluation of
Kq can grow, and, indeed, it does.

◦ In the limit in which the noise intensity grows without bound we see that q∗

also grows.
◦ In the limit of no external noise q∗ grows as well.

The last two cases involve situations in which the input and output are less
correlated than in the instance that precedes them. Indeed, if the noise inten-
sity grows inde9nitely, the dynamics of the system will be governed just by
noise.
From Eqs. (4) and (6) we gather that for uncorrelated input and output signals∑

Ṽ io
n

P(Ṽ io
n )lnq P(Ṽ

io
n ) = Si

q + So
q + (1− q)Si

qS
o
q : (21)
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which implies, according to (8), that Kq ≡ 0. As the input–output correlation de-
creases, fewer and fewer “input–output pairs” 1 possess probabilities that signi9-
cantly di8er from the product probability that characterizes zero correlation. The
relative importance of these special pairs grows with q [17]. For both large-noise
and vanishing noise intensities, relative measures involving low q values are quite
small, and slight modi9cations in the system’s parameters do not a8ect their value.
Conversely, for large enough values of q, the value of Wq is higher, and so are
variations due to slight parameters’ changes.

• Input signal Vn(t). In the limit on a diverging noise intensity q∗ tends to an
asymptotic value q∗asint .
◦ For a Gaussian noise q∗asint = 2.
◦ For a Lorentz noise q∗asint = 5.

• Input signal Vsn(t). The relevant limits are
◦ For a noise much stronger than the signal, q∗ approaches the values obtained

when the signal is Vn(t).
◦ For a vanishing noise, q∗ behaves as in the Vs(t)-case.

These limits are easily understood, as the system’s dynamics is ruled either by
noise (in the case of diverging noise intensity), or by the periodical signal (in the
opposite limit).

Finally, Fig. 8 depicts q∗ versus (i) D and (ii) the q-parameter of the noise source.
Notice that, interestingly enough, for D-values such that the SR phenomenon is greater,
as in the previous cases, we obtain q∗ = 0.

4. Conclusions

The main original contribution of the present work is that of having performed an SR
study by exploiting generalized information measures. Two such measures have been
employed in this respect: (i) the well known Tsallis one and (ii) the new escort-Tsallis
measure [23]. Three (discretized) input signals have been considered: (i) noise, (ii)
periodic external modulation, and (iii) the sum of both, while as output we consider
the position of a particle, discretized as well. Clearly, the relevant (real) case is the
last one, the other two being mainly used for checking limiting behaviors.
The SR e8ect is seen to be measurable no matter the value of the GIM’s charac-

teristic index q. The generalized measures exhibit an important advantage over that of
Shannon’s: employing them, the SR phenomenon is detected even if the modulation
intensity is very small. Moreover, of the two GIMs here considered, the escort-Tsallis
seems to be the most convenient one. For it, the speed of convergence to acceptable
values of transmitted information is much faster than either in Tsallis’ or Shannon’s
cases. Hence, one can anticipate that such an information measure will be the most
adequate to an “on-line” control of a signal detection system.

1 Remember that P(Ṽ io
n ) is the probability for the joint appearance of a given input–output pair.
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Fig. 8. A contour plot of q∗ for D∈ [0:1; 10] and noise’s q∈ [0:1]. The noise intensity D is given by the
vertical axis, the source of noise q in the horizontal one. White areas corresponds to q∗ =0 and black areas
to q∗ ¿ 5.

We have also investigated the existence of an optimal value of q (q = q∗), such
that the corresponding measure is the most sensitive to variations in the system’s
external parameters. If the input signal is the periodic modulation we 9nd that, for
intensity values that yield the largest SR e8ect, q∗ → 0, no matter what sort of noise
is involved. Hence, in this case, super-additivity favors the detection of the SR e8ect. If
the input signal is just noise that grows inde9nitely, governing by itself the concomitant
dynamics, we 9nd q∗ =2 for a Gaussian noise, and q∗ =5 for a Lorentz one. Finally,
for the relevant case of periodic modulation plus noise, we have found that q∗ = 2
for a Gaussian noise, while q∗ seems to grow as the intensity grows in the case of
Lorentz noise. Inspection of Fig. 3a and b, leads to the following conclusion: in the
noise intensity (D or ,) regime for which a maximum of the information measure
is found, the respective values of q∗ remain almost constant. This fact underlines
the usefulness of determining such optimum q-value (that in both cases is of the
order of q∗ = 2:5). Indeed, processing the relative information with the associated
q∗-generalized information measure we 9nd the most eScient manner of detecting the
SR phenomenon.
The present study is only a 9rst step towards the analysis of the e8ect of non

Gaussian noises on the SR phenomenon. Clearly, the use of alternative forms of noise
opens new possibilities for the SR phenomenon. For instance, if a systematic form of
studying non Gaussian noises is developed, it could be possible to determine which is
the most convenient degree of departure from “Gaussian-character” as to enhance the
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system’s response. The extension to other (for instance, Tsallis like [15]) probability
distribution functions will be the subject of further work.
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