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Transition from hexagons to optical turbulence
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We characterize the different dynamical regimes and bifurcations in the transition from a stationary hexago-
nal pattern to optical turbulence. In order to characterize the bifurcations we perform linear stability analysis of
stationary hexagonal patterns and Floquet analysis of oscillating hexagons. The interplay between space and
time leads to a series of bifurcations showing spatial-period multiplying and quasiperiodicity.
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Unlike low dimensional dynamical systems, where differ-where# is the cavity detuning an¥? the transverse Laplac-
ent scenarios for the transition to chaos have been estalan. The homogeneous steady-state solution is given implic-
lished[1,2], in spatially extended systems the transition fromitly by Eq=E1—i(2l;— 6)], wherel,=|E{2. This solu-
regular stationary patterns to spatiotemporal chaotic regimegon presents bistability fo> J3. We will restrict ourselves
is only partially understood. Even the analysis of secondaryo the nonbistable regimé< V3. We considet ¢, directly
instabilities of stationary patterns is not a trivial task. Somerelated with E, by the previous implicit equation, as the
results have been obtained either using amplitude equationgntrol parameter. A linear stability analysis with respect to
[3] or symmetry-based approachb-6]. In the first case spatially periodic perturbations yield44,15
amplitude equations are obtained close to the primary insta-
bility, leading to the formation of the pattern, therefore only 5 5
secondary bifurcations close to this point can be analyzed. o(k)==1=(6+k*=6lg) (215~ 6—K), @)
The second is a very powerful mathematical technique that

classifies the different ways in which the spatial symmetryyyhere o-(k) is the linear growth rate of a perturbation with

can be broken,_however,_ i.t does not discriminafte which ONGave vectok andk= |k|. The instability threshold is located
will take place in a specific system. More detailed analysis

c__ i — o=
can be carried out in coupled map lattidéd, where a si- at ISC 1/2 and the cr|t|'cal wave number'k% 2—0. For
multaneous period and wavelength doubling route to spa|-5>|5' the maximum linear growth rate is for wave vectors
tiotemporal chaos has been reported. with k,= y4ls— 6. Starting from the homogeneous solution

Experimentally, secondary bifurcations of stationary hex-2nd increasing the pump intensity to a value above, but close

agonal patterns have been observed in a sodium cell with &9 threshold, a hexagonal pattern with a wave number
single feedback mirroig] leading to stationary quasipatterns Cl0S€ tok, arises subcritically14,15. Typically, this pattern
and superlattices, in liquid-crystal light valves leading to sta-0Scillates even just above thresh¢lth,16. The amplitude
tionary superlattice§9] and chaotic structuref0], and in of the oscn_latlons d_ecreases with decreashgguntll it be-
hydrodynamic systemgl1] leading to stationary superlat- COMes stationary. Fl_gure(d) shows a stationary hexagonal
tices. Instabilities of one-dimensionélD) oscillatory pat- Pattern for =1 with wavelength \;=2m/k, and ky
terns that give rise to additional wave components have beefi 1-1%. atls=0.46, which is stable until;=0.45 where it
observed in liquid-crystal light valveg2]. decays.to the homogeneous solut[d]. It was |n|t'|ally a
In this paper we analyze the role of the spatial degrees dfonstationary pattern formed &t=1.16¢ (for which k,
freedom in the transition from a stationary hexagonal patterr® 1.15c).
to chaotic hexagons and turbulence in a prototypical nonlin- The stationary hexagonal pattern can be written as
ear optical model. In order to characterize different instabili-
ties we perform semianalytical linear stability analysis of sta- N )
tionary hexagonal patterns and more important, Floquet Eh(i): Z ane’
analysis of oscillatory hexagonal superlattices. n=0
We consider a ring optical cavity filled with a self-
focusing Kerr medium and pumped by an external figyd
In the mean-field approximation, the transverse dynamics
the slowly varying electric-field envelopEa(i,t) is given by
[13]

0
n

3

0\fvhere a, are complex coefficientézg is the homogeneous

mode, andZﬂ (n=1,...,6) are thdundamental modes of
the hexagonal pattern with modullkg. As this is a subcriti-
cal pattern, even at threshold, harmonics have a finite size,
which is enhanced by the Kerr self-focusing effect. There-

HE=—(1+i60)E+iV2E+Eq+i2|E|%E, (1) fore, we take into account up to thekqp (Eﬂ for n

=7,... N=90) harmonics.
Linearizing Eq.(1) around stationary patter(3), we ob-

*URL: http://ww.imedea.uib.es/PhysDept tain for SE(X,t) = E(x,t) — Ep(X) [18]
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FIG. 1. Spatiotemporal regimes of a hexagonal pattern obtained from numerical integration @) E&j7]. From top to bottom:
stationary (=0.46), periodic [;=0.48), quasiperiodicl¢=0.525), chaoticl(;=0.54), and spatiotemporal chadg=0.62). From left to

right: |E(>Z)|2, |E(IZ)|2, time evolution of three hexagonal pealsge text, and power spectra corresponding to the time trace plotted with
a black solid line. The vertical dashed lines in the last column of rdy&nd(c) indicate predicted frequencies;, and w,.

a)

b)

c)

d)

e)

0y SE=—(1+i10) SE+iV26E+i2[2|E,|? SE+EZ SE*], cept those withg and —q, due to the coupling oBE with
(4 SE* in Eq. (4). To know the stability of the solution it is

where the linear operator of the right-hand side has periodigufficient to consider only vectorpinside the first Brillouin
zone of the hexagonal lattice defined by wave veckﬁrsf

coefficients. Its eigenfunctionaf/()z,(i) can be written in a g ]
Bloch form [4]: pattern in Fig. 1a). In fact, due to the hexagonal symmetry it

. is sufficient to consider only 1/6 of the first Brillouin zone.
¥(x,q)=€"9%A(q,x), (5  The 2N eigenvaluesr;(q) of matrix M (a,,q) determine the
stability of the pattern against perturbations with wave vec-
whereA(q X) is a function with the same periodicity as pat- tors k°+q Due to the symmetries dfl, these eigenvalues
tern Ep(x) and therefore, it can be written a8(d,X)  are either real or complex conjugates. We ordefq) as
=3N_ an(q)e "X, The stability ofE, reduces then to the R¢ ¢,(q)]=Rd oy, 1(q)].

study of the eigenvalue problem for coefficientg(q,t) ob- For 0.45<14<0.47, all the eigenvalues have negative real
tained from Eqs(4) and(5) [18]: part, except for two zero eigenvalues corresponding to the
o L neutral modes associated with the translational invariance

M(a,,9)2(q)=0cx(q), (6) (Goldstone moded18,19, so the stationary hexagonal pat-

. R R R . tern is stable. Fot;=0.470, the hexagons undergo a finite
with 3(q)=(ao(q), .. ..an(Q),ai(—q), ... .ax(—q))". wavelength Hopf bifurcatiofFig. 2). The unstable mode has

Note that eigenfunctions with differentare uncoupled, ex- a wave vectorql—(k1+k )/3 located on the vertex of the
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FIG. 2. Largest eigenvalues of the stationary hexagonal patterfhined from Eq(1) and matrixeA(d)Tl is computed integrat-
obtained solving Eq.(6). (a) Below the Hopf instability (g ing Eq. (8) over periodT, [21]. Its 2N eigenvaluegFloguet

=0.46). (b) Just ab the Hopf tabilityl (=0.48). o > . . i
). (b) Just above the Hopf unstabilityl £ ). (© multipliers) m;(q) determine the stability of the oscillating

R ao(ay,dy)] for Is=0.48. The dashed hexagon indicates the first . ; .
Brillouin zone. (d) Transverse cut of Re(dy.dy)] along theg, hexagons under any possible perturbation with wave vectors

axis. Eﬂtﬁ. It is sufficient to explore 1/6 of the first Brillouin
zone of the hexagonal lattice in Fourier space whose funda-

first Brillouin zone (qy|=kn/+3). As a consequence, hexa- Mental wave vectors now have a modulyg y3.

gons do not oscillate uniformly, instead, they are divided in  FOr pump intensities 0.4701,<0.523, all the Floquet
three superlattices of wavelengih = 3\;, corresponding multipliers (except the one corresponding to the neutral
to the unstable eigenmode. The peaks in each superlatti®80de have modulus smaller than one and therefore, the os-
oscillate synchronously. Two of the superlattices oscillate irgzjlgggqur“aexggr?_”z :tree Iiltggleétlzrrk%r:lt%?ezri th%r]en'gna ;g_‘ﬁ%g
antiphase at frequenay; = Im[oo(q,)]1=1.062 with a rela- . X conjuga u itiphiers with vanishi
tively large amplitude while the third oscillates at twice that 'Mmaginary part, Wh.'Ch cr.osses.the unit cirgféig. 3). This
frequency and has a smaller amplitugiig. 1(b)]. Physi- Neimark-Sacker blfurc:':ltloﬂjZ] introduces a temporal fre-
cally, this reflects an exchange of energy between two of theUency @, =Im[In(mo(qy))]/T,=0.220 and therefore, the
superlattices, mediated by the third while the total energyemporal behavior will be quasiperiodic. The frequency pre-
remains practically constant. The high Fourier harmonicglicted from the Floquet analysis is in very good agreement
play an important role in these oscillations. Neglecting orWith the second frequency present in the quasiperiodic time
filtering out successive rings of high harmonics shifts theSeries obtained from numerical simulations of E). [Fig.
bifurcation to larger values of the pump intensity and mayl(c)]- The unstable mode has a wave vector located at the
eventually suppress the bifurcation altogeth2®]. There-  vertex of Brillouin zoneq,=(kJ+k3)/3, k? , being funda-
fore, this oscillation is associated with an energy transfemental wave vectors of this lattice. Since the fundamental

from large scales to small scales. The bifurcation is supefwave vectors have now a modulias/+/3, |§2|:kh/3_ Thus,
critical; close tol;, amplitude of the oscillations grows as this second bifurcation introduces a characteristic wave-
VIs—11, as shown in the inset of the third column of Fig. |ength\ ,= \/§7\1=3)\h [Fig. 1(c)]. At this point, the solution
1(b). Mathematically, this bifurcation is a spatial-period mul- the system displays has three characteristic spatial wave-
tiplying [6]. Stationary instabilities with the same wave vec-|engths and two temporal frequencies. The spatial structure
tor g, have been observed in surface wayes| leading to  of this series of bifurcations is equivalent, in hexagonal pat-
superlattices. terns, to the wavelength doubling bifurcations found in 1D
We next analyze the stability of the periodically oscillat- systemd7]. The temporal behavior, however, does not cor-
ing hexagons. This limit cycle solution of E¢l) can be respond to period doubling but to a quasiperiodic rddfe
written in form (3) with time-periodic coefficientsa,(t The quasiperiodic oscillating hexagons are stable for
+T,)=a,(t), whereT;=27/w,. Including all the Fourier pump intensities 0.5231;=0.528. Note that the parameter
modes that have been excited in the previous bifurcation upange between successive bifurcations decreases. Numerical
to 5k, we haveN=369. Coefficientsa,(q) are now time Simulations done for different system sizes, including very
dependentan(ﬁ,t) and its evolution is given by a set of large systems, indicate that the quasiperiodic hexagons be-

linear differential equations with time-periodic coefficients come unstable fofs~0.528. A close inspection to the far
field shows that the system becomes unstable against long-

wavelength perturbations. A continuous of small wave vec-
tors (Q~0) grow and the whole background of Fourier
modes become excitd€Fig. 1(d)]. Peaks are still located on
"} hexagonal lattice but the spatial structure of the oscillations
S a At is lost, so this is a regime of spatiotemporal chaos on top of
£(9,)=2(q,0P(t)e* ", ® a hexagonal lattice. The continuous of excited Fourier modes
_ have a continuous of associated temporal frequencies that
where P(t) is a periodT; matrix and A(q) is a time- make the oscillations of the peaks temporally chaotic, show-
independent matrix. The limit cycle is numerically deter-ing a broadband power spectruifig. 1(d)]. The temporal

0:3(9,0)=M(an(1),)2(q,1). (7)

So, by the Floquet theorem the general solution has the for
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behavior of the system shows a quasiperiodic route to chada a 1D systeni26], where a temporally chaotic state leads
[1], namely, a chaotic regime is observed after the instabilityto a spatiotemporal chaos regime due to a resonance with an
of a torus. In the study of these routes the spatial dependenestable solution.
is not considered but as we show here, it plays a very impor- In summary, we have analyzed the transition from a sta-
tant role in extended systems. We have shown that each biilonary hexagonal pattern to chaotic hexagons and turbulence
furcation introduces it's own spatial wavelength, making thein the transverse plane of a prototypical nonlinear optical
system spatially more complicated. Chaotic hexagons are ofjtodel. Stability analysis of both stationary and oscillatory
served in quite a broad parameter range (0s528:0.62). hexagonal_ structures proves _the existence of a Hopf bifurca-
Finally, for pump intensities abové,~0.62 a sudden tion associated with a subdivision of the hexagonal structure

change occurs. The spatal order i completely lost and aff, "¢ superlaices and a subsequert Neimar Sacker b
the Fourier modes with wave number closekip become P q y

equally excited Fig. 1()]. This is a regime of spatiotempo- division in three, of each of the superlattices. Chaos appears
qually excl '9. - NS s 9! pali P through a long-wavelength instability, which is present only

ral chaps where peaks at random positions grow and decai¥| extended systems. This instability leads to a spatiotempo-
producing circular waves that propagate in the transversgy chaotic regime in which peaks are still located on a hex-

plane and dissipate awd®2], a behavior somehow like in 400 Jattice. Finally, spatial order is completely lost after a
Langmuir turbulence in plasn{@3]. Equation(1) is, in fact, g hsequent instability and the system enters in a regime of
a modified nonlinear Schdinger equation and the phenom- optical turbulence. We expect the scenario presented here to
enon of wave collapsg24] is behind the oscillation of the g relevant for systems displaying hexagonal patterns whose
peaks in our systeri22]. Collapse is prevented by losses heaks undergo oscillatory instabilities. Also, the sequence of
[25]. This regime of optical turbulence is, for large values of {ransitions up to chaotic hexagons can be relevant for hex-
the pump intensity, the attractor of the dynamics startingagona| lattices of coupled oscillators.

from random initial condition. In fact, it was already an at-

tractor of the dynamics for lower values of the pump inten- The authors acknowledge helpful discussions with M. San
sity, coexisting with the chaotic hexagons. The sudden instaMiguel, E. Hernadez-Gara, O. Piro, M. Matias, and M.

bility of the chaotic hexagons may correspond to a cfis|s

caused by the collision of the chaotic attractor with an un-Project Nos.
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