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Transition from hexagons to optical turbulence
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We characterize the different dynamical regimes and bifurcations in the transition from a stationary hexago-
nal pattern to optical turbulence. In order to characterize the bifurcations we perform linear stability analysis of
stationary hexagonal patterns and Floquet analysis of oscillating hexagons. The interplay between space and
time leads to a series of bifurcations showing spatial-period multiplying and quasiperiodicity.
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Unlike low dimensional dynamical systems, where diffe
ent scenarios for the transition to chaos have been es
lished@1,2#, in spatially extended systems the transition fro
regular stationary patterns to spatiotemporal chaotic regi
is only partially understood. Even the analysis of second
instabilities of stationary patterns is not a trivial task. So
results have been obtained either using amplitude equa
@3# or symmetry-based approaches@4–6#. In the first case
amplitude equations are obtained close to the primary in
bility, leading to the formation of the pattern, therefore on
secondary bifurcations close to this point can be analyz
The second is a very powerful mathematical technique
classifies the different ways in which the spatial symme
can be broken, however, it does not discriminate which
will take place in a specific system. More detailed analy
can be carried out in coupled map lattices@7#, where a si-
multaneous period and wavelength doubling route to s
tiotemporal chaos has been reported.

Experimentally, secondary bifurcations of stationary he
agonal patterns have been observed in a sodium cell w
single feedback mirror@8# leading to stationary quasipattern
and superlattices, in liquid-crystal light valves leading to s
tionary superlattices@9# and chaotic structures@10#, and in
hydrodynamic systems@11# leading to stationary superla
tices. Instabilities of one-dimensional~1D! oscillatory pat-
terns that give rise to additional wave components have b
observed in liquid-crystal light valves@12#.

In this paper we analyze the role of the spatial degree
freedom in the transition from a stationary hexagonal patt
to chaotic hexagons and turbulence in a prototypical non
ear optical model. In order to characterize different instab
ties we perform semianalytical linear stability analysis of s
tionary hexagonal patterns and more important, Floq
analysis of oscillatory hexagonal superlattices.

We consider a ring optical cavity filled with a sel
focusing Kerr medium and pumped by an external fieldE0.
In the mean-field approximation, the transverse dynamic
the slowly varying electric-field envelopeE(xW ,t) is given by
@13#

] tE52~11 iu!E1 i¹2E1E01 i2uEu2E, ~1!
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whereu is the cavity detuning and¹2 the transverse Laplac
ian. The homogeneous steady-state solution is given imp
itly by E05Es@12 i (2I s2u)#, where I s[uEsu2. This solu-
tion presents bistability foru.A3. We will restrict ourselves
to the nonbistable regimeu,A3. We considerI s , directly
related with E0 by the previous implicit equation, as th
control parameter. A linear stability analysis with respect
spatially periodic perturbations yields@14,15#

s~k!5216A~u1k226I s!~2I s2u2k2!, ~2!

wheres(k) is the linear growth rate of a perturbation wit
wave vectorkW andk5ukW u. The instability threshold is located
at I s

c51/2 and the critical wave number iskc5A22u. For
I s.I s

c , the maximum linear growth rate is for wave vecto
with ku5A4I s2u. Starting from the homogeneous solutio
and increasing the pump intensity to a value above, but c
to, threshold, a hexagonal pattern with a wave numbek
close toku arises subcritically@14,15#. Typically, this pattern
oscillates even just above threshold@14,16#. The amplitude
of the oscillations decreases with decreasingI s until it be-
comes stationary. Figure 1~a! shows a stationary hexagon
pattern for u51 with wavelength l152p/kh and kh
51.15kc at I s50.46, which is stable untilI s50.45 where it
decays to the homogeneous solution@17#. It was initially a
nonstationary pattern formed atI s51.16I s

c ~for which ku

51.15kc).
The stationary hexagonal pattern can be written as

Eh~xW !5 (
n50

N

aneikWn
0
•xW, ~3!

wherean are complex coefficients,kW0
0 is the homogeneous

mode, andkWn
0 (n51, . . . ,6) are thefundamental modes o

the hexagonal pattern with moduluskh . As this is a subcriti-
cal pattern, even at threshold, harmonics have a finite s
which is enhanced by the Kerr self-focusing effect. The
fore, we take into account up to the 5kh (kWn

0 for n
57, . . . ,N590) harmonics.

Linearizing Eq.~1! around stationary pattern~3!, we ob-
tain for dE(xW ,t)5E(xW ,t)2Eh(xW ) @18#
©2003 The American Physical Society01-1
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FIG. 1. Spatiotemporal regimes of a hexagonal pattern obtained from numerical integration of Eq.~1! @17#. From top to bottom:
stationary (I s50.46), periodic (I s50.48), quasiperiodic (I s50.525), chaotic (I s50.54), and spatiotemporal chaos (I s50.62). From left to

right: uE(xW )u2, uE(kW )u2, time evolution of three hexagonal peaks~see text!, and power spectra corresponding to the time trace plotted w
a black solid line. The vertical dashed lines in the last column of rows~b! and ~c! indicate predicted frequenciesv1 andv2.
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] t dE52~11 iu!dE1 i¹2dE1 i2@2uEhu2 dE1Eh
2 dE* #,

~4!

where the linear operator of the right-hand side has perio
coefficients. Its eigenfunctionsc(xW ,qW ) can be written in a
Bloch form @4#:

c~xW ,qW !5eiqW •xWA~qW ,xW !, ~5!

whereA(qW ,xW ) is a function with the same periodicity as pa
tern Eh(xW ) and therefore, it can be written asA(qW ,xW )

5(n50
N an(qW )eikWn

0
•xW. The stability ofEh reduces then to the

study of the eigenvalue problem for coefficientsan(qW ,t) ob-
tained from Eqs.~4! and ~5! @18#:

M ~an ,qW !SW ~qW !5sSW ~qW !, ~6!

with SW (qW )[„a0(qW ), . . . ,aN(qW ),a0* (2qW ), . . . ,aN* (2qW )…T.

Note that eigenfunctions with differentqW are uncoupled, ex-
01180
ic

cept those withqW and 2qW , due to the coupling ofdE with
dE* in Eq. ~4!. To know the stability of the solution it is

sufficient to consider only vectorsqW inside the first Brillouin

zone of the hexagonal lattice defined by wave vectorskWn
0 of

pattern in Fig. 1~a!. In fact, due to the hexagonal symmetry
is sufficient to consider only 1/6 of the first Brillouin zone
The 2N eigenvaluess i(qW ) of matrix M (an ,qW ) determine the
stability of the pattern against perturbations with wave v
tors kWn

06qW . Due to the symmetries ofM, these eigenvalues

are either real or complex conjugates. We orders i(qW ) as
Re@s i(qW )#>Re@s i 11(qW )#.

For 0.45,I s,0.47, all the eigenvalues have negative re
part, except for two zero eigenvalues corresponding to
neutral modes associated with the translational invaria
~Goldstone modes! @18,19#, so the stationary hexagonal pa
tern is stable. ForI 150.470, the hexagons undergo a fini
wavelength Hopf bifurcation~Fig. 2!. The unstable mode ha
a wave vectorqW 15(kW1

01kW2
0)/3 located on the vertex of the
1-2
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first Brillouin zone (uqW 1u5kh /A3). As a consequence, hex
gons do not oscillate uniformly, instead, they are divided
three superlattices of wavelengthl15A3lh corresponding
to the unstable eigenmode. The peaks in each superla
oscillate synchronously. Two of the superlattices oscillate
antiphase at frequencyv15Im@s0(qW 1)#51.062 with a rela-
tively large amplitude while the third oscillates at twice th
frequency and has a smaller amplitude@Fig. 1~b!#. Physi-
cally, this reflects an exchange of energy between two of
superlattices, mediated by the third while the total ene
remains practically constant. The high Fourier harmon
play an important role in these oscillations. Neglecting
filtering out successive rings of high harmonics shifts
bifurcation to larger values of the pump intensity and m
eventually suppress the bifurcation altogether@20#. There-
fore, this oscillation is associated with an energy trans
from large scales to small scales. The bifurcation is sup
critical; close toI 1, amplitude of the oscillations grows a
AI s2I 1, as shown in the inset of the third column of Fi
1~b!. Mathematically, this bifurcation is a spatial-period mu
tiplying @6#. Stationary instabilities with the same wave ve
tor qW 1 have been observed in surface waves@11# leading to
superlattices.

We next analyze the stability of the periodically oscilla
ing hexagons. This limit cycle solution of Eq.~1! can be
written in form ~3! with time-periodic coefficientsan(t
1T1)5an(t), whereT152p/v1. Including all the Fourier
modes that have been excited in the previous bifurcation
to 5kh we haveN5369. Coefficientsan(qW ) are now time
dependentan(qW ,t) and its evolution is given by a set o
linear differential equations with time-periodic coefficients

] tSW ~qW ,t !5M „an~ t !,qW …SW ~qW ,t !. ~7!

So, by the Floquet theorem the general solution has the f

SW ~qW ,t !5SW ~qW ,0!P~ t !eL(qW )t, ~8!

where P(t) is a period-T1 matrix and L(qW ) is a time-
independent matrix. The limit cycle is numerically dete

FIG. 2. Largest eigenvalues of the stationary hexagonal pat
obtained solving Eq.~6!. ~a! Below the Hopf instability (I s

50.46). ~b! Just above the Hopf unstability (I s50.48). ~c!
Re@s0(qx ,qy)# for I s50.48. The dashed hexagon indicates the fi
Brillouin zone. ~d! Transverse cut of Re@s0(qx ,qy)# along theqy

axis.
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mined from Eq.~1! and matrixeL(qW )T1 is computed integrat-
ing Eq. ~8! over periodT1 @21#. Its 2N eigenvalues~Floquet
multipliers! mj (qW ) determine the stability of the oscillatin
hexagons under any possible perturbation with wave vec
kWn

06qW . It is sufficient to explore 1/6 of the first Brillouin
zone of the hexagonal lattice in Fourier space whose fun
mental wave vectors now have a moduluskh /A3.

For pump intensities 0.470,I s,0.523, all the Floquet
multipliers ~except the one corresponding to the neut
mode! have modulus smaller than one and therefore, the
cillating hexagons are stable. ForI s50.523 there is a couple
of complex conjugate Floquet multipliers with nonvanishi
imaginary part, which crosses the unit circle~Fig. 3!. This
Neimark-Sacker bifurcation@2# introduces a temporal fre
quency v25Im@ ln„m0(qW 2)…#/T150.220 and therefore, the
temporal behavior will be quasiperiodic. The frequency p
dicted from the Floquet analysis is in very good agreem
with the second frequency present in the quasiperiodic t
series obtained from numerical simulations of Eq.~1! @Fig.
1~c!#. The unstable mode has a wave vector located at
vertex of Brillouin zoneqW 25(kW1

01kW2
0)/3, kW1,2

0 being funda-
mental wave vectors of this lattice. Since the fundamen
wave vectors have now a moduluskh /A3, uqW 2u5kh/3. Thus,
this second bifurcation introduces a characteristic wa
lengthl25A3l153lh @Fig. 1~c!#. At this point, the solution
the system displays has three characteristic spatial w
lengths and two temporal frequencies. The spatial struc
of this series of bifurcations is equivalent, in hexagonal p
terns, to the wavelength doubling bifurcations found in 1
systems@7#. The temporal behavior, however, does not c
respond to period doubling but to a quasiperiodic route@1#.

The quasiperiodic oscillating hexagons are stable
pump intensities 0.523,I s&0.528. Note that the paramete
range between successive bifurcations decreases. Nume
simulations done for different system sizes, including ve
large systems, indicate that the quasiperiodic hexagons
come unstable forI s;0.528. A close inspection to the fa
field shows that the system becomes unstable against l
wavelength perturbations. A continuous of small wave v
tors (q;0) grow and the whole background of Fouri
modes become excited@Fig. 1~d!#. Peaks are still located on
a hexagonal lattice but the spatial structure of the oscillati
is lost, so this is a regime of spatiotemporal chaos on top
a hexagonal lattice. The continuous of excited Fourier mo
have a continuous of associated temporal frequencies
make the oscillations of the peaks temporally chaotic, sho
ing a broadband power spectrum@Fig. 1~d!#. The temporal

rn

t

FIG. 3. Floquet multipliers for perturbations withqW 5qW 2 for
~from left to right! I s50.51,0.52, and 0.525.
1-3
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behavior of the system shows a quasiperiodic route to ch
@1#, namely, a chaotic regime is observed after the instab
of a torus. In the study of these routes the spatial depend
is not considered but as we show here, it plays a very imp
tant role in extended systems. We have shown that each
furcation introduces it’s own spatial wavelength, making t
system spatially more complicated. Chaotic hexagons are
served in quite a broad parameter range (0.528&I s&0.62).

Finally, for pump intensities aboveI s;0.62 a sudden
change occurs. The spatial order is completely lost and
the Fourier modes with wave number close toku become
equally excited@Fig. 1~e!#. This is a regime of spatiotempo
ral chaos where peaks at random positions grow and de
producing circular waves that propagate in the transve
plane and dissipate away@22#, a behavior somehow like in
Langmuir turbulence in plasma@23#. Equation~1! is, in fact,
a modified nonlinear Schro¨dinger equation and the phenom
enon of wave collapse@24# is behind the oscillation of the
peaks in our system@22#. Collapse is prevented by losse
@25#. This regime of optical turbulence is, for large values
the pump intensity, the attractor of the dynamics start
from random initial condition. In fact, it was already an a
tractor of the dynamics for lower values of the pump inte
sity, coexisting with the chaotic hexagons. The sudden in
bility of the chaotic hexagons may correspond to a crisis@1#
caused by the collision of the chaotic attractor with an u
stable manifold. In extended systems, a crisis has been fo
y
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in a 1D system@26#, where a temporally chaotic state lea
to a spatiotemporal chaos regime due to a resonance wit
unstable solution.

In summary, we have analyzed the transition from a s
tionary hexagonal pattern to chaotic hexagons and turbule
in the transverse plane of a prototypical nonlinear opti
model. Stability analysis of both stationary and oscillato
hexagonal structures proves the existence of a Hopf bifu
tion associated with a subdivision of the hexagonal struct
in three superlattices and a subsequent Neimark-Sacke
furcation that introduces another temporal frequency an
division in three, of each of the superlattices. Chaos app
through a long-wavelength instability, which is present on
in extended systems. This instability leads to a spatiotem
ral chaotic regime in which peaks are still located on a h
agonal lattice. Finally, spatial order is completely lost afte
subsequent instability and the system enters in a regim
optical turbulence. We expect the scenario presented he
be relevant for systems displaying hexagonal patterns wh
peaks undergo oscillatory instabilities. Also, the sequence
transitions up to chaotic hexagons can be relevant for h
agonal lattices of coupled oscillators.
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