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Abstract. After the pioneering works of Kolmogorov, Petrovskii and Piskunov
[1] and Fisher [2] in 1937 on the nonlinear diffusion equation and its traveling
wave solutions, scientists from many different disciplines have been captivated by
questions about structure, formation and dynamics of patterns in reactive media.
Combustion, spreading of epidemics, diffusive transport of chemicals in cells and
population dynamics are just a few examples bearing witness of the influence of
those works in different areas of modern science.

1 Introduction

In many natural phenomena we encounter propagating fronts separating dif-
ferent phases. An unfortunately familiar example is the front separating burnt
from unburnt trees in forest fires. Similarly, propagating fronts play an im-
portant role in the speed of epidemics, in population dynamics, or in the
propagation of flames and chemical reactions. Most of these, at first glance
disparate phenomena find their common denominator in the presence of dif-
fusion (allowing the agent of an epidemic or a chemical substance to spread),
and reaction (that is the specific way in which different phases or chemical
components react); they are generically referred to as reaction diffusion (RD)

systems.
The prototypical model for RD systems is the nonlinear diffusion equation
99(1‘ t) = Da—QH(x t)+ F(9) (1)
ot T ox2 Y ’

introduced! in 1937 in the seminal contributions of R.A. Fisher [2] and
A.N. Kolmogorov, together with I.G. Petrovskii and N.S. Piskunov [1] (here-
after referred to as FKPP), as a model to describe the spreading of an ad-
vantageous gene. (1) describes the spatio-temporal evolution of a population

! As mentioned in Murray (see p. 277 in [3]), (1) was already introduced in 1906
by Luther.
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(concentration), 6(z,t), of individuals which diffuse with diffusion coefficient
D, and grow according to a specific rule F'(f). In FKPP it was shown that
(1) admits uniformly translating solutions — traveling waves.

Similar types of propagation phenomena are ubiquitous in Nature. The
concepts and mathematical tools developed in [1,2] stand at the foundation
of a still increasing number of applications of the reaction diffusion equations
in biology, chemistry and physics (see [3-6] and references therein).

The present knowledge on reaction diffusion systems is so vast that it
cannot be presented here in a comprehensive and systematic way. Therefore,
our discussion will be limited to introductory material. The first part of this
chapter is devoted to (1) in one spatial dimension, providing the reader with
the main concepts and simplest mathematical tools necessary to understand
its behavior. In the second part we enlarge the discussion to generalizations
of (1) in moving media with more than one reacting species and, to dimension
higher than one.

2 Front Propagation
in the Nonlinear Diffusion Equation

Perhaps the best way to start our discussion on (1) is to motivate it as ori-
ginally proposed in FKPP. Consider an area populated by individuals of the
same species. Suppose that 8(z,t)(€ [0, 1]) is the concentration of the subset
of these individuals which possess a particular genotype that makes them
favored in the struggle for survival. In particular, assume that the survival
probability of individuals with that character is 1 + « (a > 0) times larger
than that of individuals without it. Then the evolution of the concentration
0 is ruled out by the standard logistic growth model

de
i F(0) =ab(1-10). (2)
The above equation implies that starting from #a0 there is an initial expo-
nential growth 6 ~exp(at) followed by a saturation at §=1 due to nonlinea-
rities. Hence =0 is an unstable state and =1 a stable one.

If, during one generation (the period between birth and reproduction),
individuals move randomly in any direction, the concentration evolution is
given by (1) with F(0) as in (2).

Now if the concentration of individuals with the advantageous genotype
is initially different from zero only in a small region, it is natural to ask how
it will spread over the space. Specifically, following Kolmogorov et al., let
us assume that at ¢ =0 there is a localized region in which the density is
different from 0 and 1, and on the left of this region § =1 while on the right
0 =0. By means of the combined effect of diffusion and reaction, the region
of density close to 1 will expand, moving from left to right. In other words,
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at long times, 6(x,t) can be expressed as
O(z,t) = Oy(z—0t), (3)

meaning that the concentration behaves as a wave with propagation velocity
v and shape O,.

The problem is to find the limiting shape of the density profile and the
limiting rate of its motion. Nowadays, after the efforts of many scientists
who extended and generalized Kolmogorov results to different classes of non-
linear terms and generic initial conditions, this problem is well understood
(see [5,7-9] and references therein). In the following, we present the modern
understanding of it, trying to remain at an intuitive level of discussion.

First of all let us consider the general equation (1), rewritten here for
convenience
0 O(x,t) =D A O(z,t) + FlO(x,t)] (4)
—0(z,t) = D—0(x x,t)].
ot ox2 ’

Without specifying the shape of F(6), we assume two steady states, an un-
stable one (#=0) and a stable one (§=1), i.e. F(0) satisfies the conditions
F(0)=F(1) =0; %)
5
F@)>0 if 0<0<1.

Pulled versus Pushed Fronts

Within the assumptions (5), we can distinguish two classes of nonlinear terms.
The first one, often indicated as FKPP-like, is characterized by having the
maximum slope of F(6) for § = 0 (as for the logistic growth model (2),
see Fig. la). This is the case of the so-called pulled fronts, for which the
front dynamics can be understood by linear analysis since it is essentially
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Fig. 1. a A typical FKPP-like production term (pulled dynamics). b A production
term which produces a pushed dynamics. The dashed and the dotted straight lines
display the linear behaviors F'(0)-6 and (sup, {F(9)/9)}) -0, respectively. See text
for explanation
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Fig. 2. Pictorial representation of FKPP (pulled) and non FKPP (pushed) fronts

determined by the 6(z,t) = 0 region (so the front is pulled by its leading
edge, see Fig. 2). In the second class, non FKPP-like, the maximal growth
rate is not realized at # =0 but at some finite value of 6, see Fig. 1b, where the
details of the nonlinearity of F'(#) are important. In this case front dynamics is
often referred as pushed, meaning that the front is pushed by its (nonlinear)
interior, Fig. 2. In contrast with the previous case, a detailed non linear
analysis of (4) is now required to determine the front speed.

In both pushed and pulled fronts there exists a one parameter family of
traveling wave solutions, ©,,, characterized by their velocity, v. In their work
of 1937, Kolmogorov et al. proved that not all velocities are allowed for pulled
fronts. Indeed the following inequality has to be satisfied

v > vy =24/ DF'(0).

Furthermore, the equality v =g is always realized for localized initial con-
ditions as the one mentioned above. This result was lately generalized by
Aronson and Weinberger [7] to generic production terms F (). They showed
that the minimal allowed front speed, vp,in, is bounded by (see Fig. 1)

2y/DF'(0) < vpin < 2 Dsup{Fég)}. (6)
)

Note that F'(0)/0 is a measure of the growth rate, and that for FKPP dyna-
mics supg{F(0)/0}=F’'(0) which implies Kolmogorov’s result vy, =vp.

Equation (6) bounds the minimal front speed but, in principle, front so-
lutions with v > v, are allowed. Therefore, it is important to determine
the velocity that is actually selected for a given initial condition. This is the
so-called velocity selection problem.
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FKPP-Like Reaction Terms

Here, like Kolmogorov et al., we assume that F'() fulfills the conditions (5)
supplemented by

F'(0)>0 and F'(f) <F'(0) forall 0<6<1, (7)

ensuring that F'(0) =sup,{F(6)/0}. Note that assumptions (5) and (7) are
quite reasonable in biological problems and in some chemical reactions. Then
from (4) by choosing the frame of reference moving with the front, i.e. with
the variable change z=x—uvt, one obtains the equation for the limiting front
profile

d2

d
@@U(Z) + V—

D
dz

Ou(2) + F(6,) =0, (8)
with boundary conditions ©,(—oc0)=1 and O, (+00)=0. In the case of loca-
lized initial conditions, Kolmogorov and coworkers rigorously demonstrated,
using a very interesting constructive proof, that (8) has a positive definite?
solution with speed

vo = 21/DF'(0). (9)

Such a solution exists and is unique, apart from a linear transformation =’ =
x+c which does not modify the front profile.

The fact that many solutions with different velocities appear and that vy
is the minimal one can be inferred by linearizing (4) around # =0 (which is
the important region in the pulled regime)

0 0?

—0(z,t) = D—0(x,t) + F'(0) 6. 1
£0(2,1) = D0, 1) + F'(0) (10)
In the neighborhood of 8(x,t) =~ 0, i.e. in the leading edge region, it is rea-
sonable to expect an exponential profile (this is actually always observed) so
that for x — oo, while ¢ is large but finite, one can write

O0(z,t) ~ e 2@t (11)

where 1/a is a measure of the flatness/steepness of the profile. Substituting
the last expression in (10) one finds the link between asymptotic front shape
and speed,

F'(0)

=D 12
v a+a, ()

2 Notice that if the initial concentration is non negative, > 0, it will remain so
under the dynamics (4). This follows immediately by interpreting (4) as the heat
equation with heat source F'(#), which by (5) is never negative.
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which is the so-called dispersion relation. This equation implies that profiles
with different velocities are allowed and that there exists a minimal velocity,
Umin, realized for

a* = , (13)

corresponding t0 vy, =2+/F’(0)D, which is Kolmogorov’s result (9).

It is possible to show that front solutions with @ > a* are unstable [8-10].
This is a crucial point which is at the core of the speed selection problem.
In fact, one observes that for steep enough initial conditions (a > a*), the
front always relaxes to the one of minimal speed. On the other hand, if the
initial conditions are sufficiently flat, a < a*, the front propagates with a rate
given by (12), thus the broader the front (a — 0) the faster it moves. We will
comment further on the selection mechanism at the end of this section.

Let us now show how, for localized initial conditions, the front always con-
verges to the minimal speed solution [10]. Writing 6(z, t) =exp[F’(0)¢] ¢(z, t),
(10) reduces to the heat equation for the new variable ¢ (9;¢=Dd2¢) which
can be easily solved. In terms of 6 the solution reads

“ exp [~
0(x,t) = exp(F'(0)t) /_ dy 0(y,0) %

Now introducing the coordinate z =xz—vgt with vy given by (9), and assuming
that 0(y,0) is different from 0 only in a small region (say around the origin)
one obtains

(14)

—2+/F'(0)/D — 22/4Dt
0z, 1) = O, (z) o« SRE2VEO)/D = 27/4DY (15)
Vit
This equation tells us that the front shape asymptotically approaches an

exponential profile with steepness £ « 1/a*=+/D/F’(0), and that the front
speed vg is reached as

v(t) — v x 7 (16)

i.e. in an algebraically slow way®>.

Pushed Fronts

For pushed fronts, conditions (7) are not satisfied. This implies that the ma-
ximal growth rate is not realized at #=0 but in the non linear interior of the

3 Actually it has been shown that the prefactor % is universal in FKPP-like fronts

[10]. Here we just stress that the algebraic convergence comes out from the 1/+/¢
prefactor characteristic of the Gaussian propagator.
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front (see Figs. 1b and 2). As a relevant example, we mention thermally ac-
tivated chemical reactions (such as combustion) which are typically modeled
using the Arrhenius production term,

F(0) = (1—0)e %/, (17)

where below the activation concentration, 6., essentially no reaction takes
place.

Contrary to pulled fronts, where the front speed can be determined by
linear analysis, a fully nonlinear treatment is required here. However, there
still exists a minimal velocity v,,;, below which no solutions are allowed. The
point is that now vy, > vo, with vg given by (9).

A simple way to understand how a minimal velocity larger than vy appears
can be found in [9]; here we report the main idea. We have seen that the
leading edge is always exponential, so that for large z=z—vt

O,(2) = AF exp[—ar(v)z] + AY exp[—as(v)2], (18)

where ap(v) and ag(v) (> ap(v)) are the flat and the steep modes, respec-
tively. In the above analysis (see (11)) to derive the dispersion relation (12),
we considered only the flat decreasing mode, because asymptotically it is the
leading one. However, seeing that (8) is a second order equation, a super-
position like (18) is expected in general. The constants A and A depend
on the velocity v, and on the nonlinear part of the front through matching
conditions with the interior. As before, allowed front solutions should be po-
sitive, meaning that at least AL should be positive. For large enough v, front
solutions are allowed since both AY and AL are positive. If, for v=1,,;,, the
amplitude of the leading mode AL goes to zero, then, for continuity, A% will
become negative for v < v, by continuity. As a consequence, the corre-
sponding O, is not an allowed solution. Precisely at v = vy, (18) reduces
to the single fast exponential decrease. Note that for pulled fronts at v=wy,
as(vo)=ar(vy); see [10] for a discussion about this point.

Also in this case, depending on the flatness/steepness of the initial profile,
the asymptotic front speed may be larger than v,,;, or may relax to the
minimal one.

Velocity Selection

For initial conditions steep enough (including localized initial conditions), the
front dynamics is always attracted by the minimal speed solution which, for
pulled fronts, corresponds to the linear prediction (9) and in general satisfies
the bounds (6). The detailed proof of this statement requires a non trivial
analysis which depends crucially on the simplicity of the model under consi-
deration. However, while remaining at the level of a general discussion, it is
interesting here to briefly recall the ideas at the basis of the modern way in
which the speed selection problem is understood.
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The crucial concept is that of stability in the moving frame or marginal sta-
bility condition [5,8,9], which may be formulated as follows. If one adds a
small perturbation to the leading edge of a moving front, then the front is
stable if it outruns the perturbation (it is left behind and readsorbed) and
unstable if the perturbation persists at long times. The natural front is self-
sustained, i.e., the growth of the perturbation from the unstable to the stable
state should be the cause of front propagation. Therefore, the selected front
should be the one which is marginally stable with respect to the perturba-
tion. In this framework, the Aronson and Weinberger result [7] is equivalent
to the statement that the front with the lowest velocity is marginally stable
with respect to local perturbations of the state # =0. This criterion can be
generalized also to the case of pushed fronts [8,9].

2.1 Multiple Steady States

Up to now, we have considered reaction terms having only two steady states.
However, in a broad class of problems in nonlinear chemistry and popula-
tion dynamics, such as enzymatic reactions or insects spreading [3], multiple
steady states may be present, meaning that the production term have N > 3
zeros in [0, 1]
F(6;)=0, for i=1,...,N.

These fixed points can be stable or unstable and more complicated propaga-
tion phenomena can appear.

In order to provide the reader with some basic ideas, let us introduce a
simple and instructive description of the front propagation problem exploiting
an analogy with the dynamics of a point particle [5,8]. To make it evident let
us rewrite (8) as

Dij+vy+ F(y) =0, (19)

where y =60, and the dots indicate derivatives with respect to the variable
z=x—wvt, which here represents time. The reader will recognize that this is
the equation for a classical particle moving in a potential

Vi) - | "4y F(y). (20)

and damped with a friction coefficient v.

By using this analogy, the existence of a minimal velocity below which no
uniformly translating fronts exist has a clear interpretation [10]. Let us re-
consider, for the sake of simplicity, the case of pulled fronts in the framework
of linear analysis (10). We assume a parabolic potential V (y)=—F’(0)y?/2.
Due to the friction term, at sufficiently long times, an exponential decay,
y(t) ~ exp(—at) is expected (i.e. an exponential front profile at large di-
stances). Substituting this behaviour in (19) one obtains that

v+ 4/v2 —4F'(0)D

a(v) = 2D
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(a) (b) '
F(y) V(y)
y Yo }ﬁr
(c) (d)
V(y) V(y)
y Yo Y Y Yo b

Fig. 3. Pictorial representation of the particle in the potential analogy. a Generic
production term with three steady states, two stable (filled circles) and one unstable
(empty circle). b,c,d The potential obtained with (20), see text for explanation on
the different situations

Now if the damping is not strong enough (v < 2,/DF’(0)) the particle will
reach y=0 in a finite time implying that the front becomes negative, which is
not allowed. Therefore, v=2,/DF'(0), is the minimal friction ensuring that
the particle will asymptotically reach y =0, and so the front remains positive
and monotonic.

This analogy becomes very useful in the presence of many steady states.
For example, let us consider a generic function F(y) having three zeros [5] (see
Fig. 3a): an unstable state at yo and two stable states at y4, corresponding
to the minimum and the two maxima of the potential V (y), respectively. A
front (in general any structure connecting two different states) is a trajectory
connecting one of the maxima with the minimum, e.g. y4 with yo.

For the parabolic potential previously examined, for large enough v (say
v > v1), the damping is efficient and yo is reached at ¢ — oo, i.e. the front is
monotonic (see Fig. 3b). Below the critical damping v1, there is an overshoot
before reaching yo and the particle will pass yo going uphill toward y_ before
ending in yg. Below another critical value vy < vy, the approach to the
minimum may be underdamped the particle oscillate for ever in the valley
(Fig. 3c); that is, the leading edge of the front is oscillatory. There also exists
a critical value vs (< v < v1) for which the particle lands precisely at y_,
the front joins two stable states (Fig. 3d). For v < v, the orbit goes to
—o00, which does not represent a finite solution of (19). Notice that contrary
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to fronts propagating from an unstable state to a stable one, for those joining
two stable states there exists a unique solution and not a family of solutions
— only one speed value is allowed.

3 Reaction Diffusion Systems in Physics, Chemistry,
and Biology

In the previous sections we have examined the one-dimensional reaction dif-
fusion equation. Now, after a brief overview on the wide range of applicability
of this equation in different areas of science, we will focus on some specific
issues such as multicomponent chemical reactions, combustion and an ecolo-
gical problem concerning the distribution of plankton in the ocean.

Chemical Reactions

The most natural application of the nonlinear diffusion equation is the study
of chemical reactions taking place in the environment or in living organisms.
In multicomponent chemical reactions, one considers generalizations of (1)
where many species with their interrelations and diffusion constants are pre-
sent. Moreover, depending on the media where the reaction takes place, one
can have either an advection term (reaction in fluid flows), or spatial a de-
pendence in the diffusion coefficient [11] (reaction in heterogeneous media).
In the presence of many species, the problem becomes much more difficult.
Indeed a large range of behaviors, from oscillations to chaos [12], can be fo-
und. As it will become clear in Sect. 3.1, this gives rise to much more complex
spatio-temporal propagation phenomena than in the simple one-dimensional
case (see [3,4,13] and references therein).

Combustion Theory

Among the many chemical reactions, for its theoretical and practical impor-
tance, we mention the problem of combustion [14], which has been the first
application [15] of concepts and tools originally introduced in FKPP. Combu-
stion problems are complicated not only by the presence of many reactants,
but also by the fact that the burning of combustible takes place in a moving
medium, usually a fluid. Hence one has to include in (1) the advection by the
fluid velocity, and we speak about reaction advection diffusion systems. This
increases enormously the complexity and difficulty of the problem because
the fluid motion is usually very complex due to turbulence [16], which is ano-
ther fundamental aspect of Kolmogorov’s interests (see Chaps. 7 and 8). In
Sec. 3.2, we will discuss in details this problem.

Population Dynamics and Ecology

The contributions of Fisher and Kolmogorov on the reaction diffusion equa-
tion had a prominent role in the development of mathematical tools in popula-
tion dynamics and ecology (see, e.g., [3,6]). Indeed (1) and its generalizations
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are at the basis of many studies ranging from the rate of advance of invading
species [3] to human genetics and expansion [17]. Closely related to these
works, and building upon them, has been the development of models to ex-
plain patchiness in the distribution of organisms [6], which is an important
issue in the study of plankton and zooplankton in oceans [18]. In Sec. 3.2 we
will provide the reader with a brief overview on this ongoing research area.

Pattern Formation and Developmental Biology

Finally, it is important to mention that RD systems do not only give rise
to propagation phenomena but also to standing-patterns. Steady heteroge-
neous spatial structures, or patterns, appear in nature running from the very
small scales, like in colonies of bacteria, to astronomical ones, like the spiral
structure of some galaxies [3,5]. The interest is then in understanding pattern
formation.

A central role in pattern formation studies was played by another great
scientist, namely A. Turing* who, in a classic paper [19], showed that pattern
forming instabilities may arise when considering RD mechanisms. Even if
there is no room here to properly treat this problem, we mention that already
from the early work of Turing it was realized the potentiality of RD modeling
for developmental biology [3]. Probably the most striking example in this
context is offered by morphogenesis, i.e., the development of patterns and
forms from the initially homogeneous mass of cells in the embryo of many
animals. For instance, think of the richness and beauty of patterns in animal
coats or butterflies leaves [3].

Nowadays, many different formation mechanisms have been identified,
and pattern formation in RD systems is a very vast and important area in
the study of non-equilibrium physical and chemical systems [5].

3.1 Multi-components Reaction Diffusion Systems

The general mathematical expression for a multicomponent reaction diffusion
system is just an extension of (4) to an N-components vector field 8 =
(01,...,0n),

00;

87; = DiV?0; + Fy(01, . ..,0n), (21)
where F;(01,...,0N) is the reaction term for the i-th species, and D; its
diffusivity. Very complex behaviors appear now depending on the intrinsic
reaction dynamics given by the F;’s. To illustrate the phenomenology of these
systems, we will use two paradigmatic examples: the celebrated Belusov-
Zhabotinskii (BZ) chemical reaction [12], and the predator-prey (PP) systems
[6], with many applications in populations dynamics and ecology.

4 From a historical point of view it is interesting to know that Turing was not aware

of the works of Kolmogorov, Petrovskii and Piskunov [1], which was poorly known
in the West for many years.
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The BZ reaction is probably the most widely studied, both theoretically
and experimentally, oscillating (it can also have excitable or chaotic beha-
vior) chemical reaction. It involves more than 40 elementary reactions which
result in changes of several dozens of intermediate substances. The basic me-
chanism consists of the oxidation of malonic acid by bromate ions, catalyzed
by, e.g., ferroin and ferriin. For some values of the reagent concentrations,
periodic oscillations are observed in these catalysts, producing a periodic co-
lor change oscillating between red (ferroin) and blue (ferriin). More details
can be found, for example, in [12]. Concerning the PP systems, the simplest
model involves two components, predators and preys (the concentrations of
which are denoted by v and u, respectively), and can be written

du U 9

i ru(l — u—o) —cvf(u) + DV-u, (22)
dv 9

pr = avf(u) —bv+ DV-v, (23)

where 7, ¢, a,b,uy are positive parameters and D is the diffusivity. The first
term on the rhs of (22) indicates the intrinsic birth-death of the preys; in the
second term, f is the prey consumption function per predator. Analogously,
the first term on the rhs of (23) is the benefit from predation and the second
one models predators’ death.

It is important to remark on the universality of behavior in this class of
systems: similar wave patterns to those found in the BZ reaction (see below
Figs. 4 and 7) or the PP model appear also in many other reaction diffusion
systems having the same dynamical behavior.

Let us start with the case in which the Fj;’s give rise to an oscillatory
dynamics, inducing a periodic evolution of the ©; fields in time. A front
may develop, for example, if the oscillation of any part of the system is
perturbed, and traveling wave trains move through the system. In the context
of predator-prey systems, these periodic traveling waves can be originated
by the invasion of a predator population into the prey population. In one
dimension, wave train solutions are of the form

0;(z,t) = O;(wt — kx), (24)

where w is the frequency, k the wavenumber, and ©; is a periodic function of
the phase. Therefore the advancing front leaves behind it a spatially periodic
pattern. In two spatial dimensions, these wave trains are concentric circles,
referred to as target patterns (see Fig. 4 for an example appearing in the BZ
reaction).

Other interesting behaviors appear in excitable systems, which are charac-
terized by the presence of activator and inhibitor components. The activator
has a catalytic effect both on itself (autocatalysis) and on the inhibitor which,
in turn, depletes the activator production. At the end, the system has a stable
fixed point as the only attractor for the dynamics. Examples of excitable sy-
stems may be found in semiconductor lasers with optical feedback [20], neural
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sioail

Fig. 4. Target patterns for the BZ reaction

communications (3], and populations dynamics [3]. Moreover, for some values
of the parameters, the BZ reaction and PP models also behave as excitable
systems.

The main feature of this kind of systems is the way in which they res-
pond to perturbations. Typically there exists a threshold value such that if
the perturbation goes above it the system reaches the fixed point only after
a long excursion in the phase space. This behavior usually appears when the
activator has a temporal response much faster than the inhibitor, so that
it takes some time before stopping the growth of the activator. The thres-
hold property is characteristic of cubic nonlinearities in the reaction term, as
exemplified by the Fitzhugh-Nagumo (FN) equations,

ou 0%u

en :u(a—u)(u—l)—v—i—D@,

o (25)
5= bu — v,

originally introduced as a mathematical model for neural activity [21], where
u is the activator, v the inhibitor, and a, b, 7 are positive parameters.

The threshold property can be understood by studying the nullclines of
the system (Fig. 5), which are obtained by equating to zero the rhs of (25)
with D=0. If the value of u is smaller than the threshold a, u quickly returns
to the origin (the stable fixed point) and the spatial perturbation dies out.
On the contrary, if the perturbation is larger than the threshold, the fixed
point is reached after a large excursion in both u and v passing through the
points 0BC' DO.
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02 : ‘ —

Fig. 5. Phase trajectories for v and v depending on whether the perturbation is
larger than or smaller than the threshold a. Solid lines are the nullclines

50 ‘ 0.0 ‘ 5.0

Fig. 6. Pulse-like front solution for a one-dimensional excitable medium

The propagation of the excitation through neighboring points, coupled
diffusively, generates traveling pulses as the one shown in Fig. 6. In two
dimensions we have circular propagating waves. Pulse waves have been shown
to exist in generic excitable models, but the values of the propagation velocity
and the shape of the pulse depend on the specific reaction term. In particular
for the FN system, one can show [3] that, in the limit of small b and =,
the wave speed is given by ¢ = /D/2(1 — 2a). In two dimensions, when
a propagating pulse is broken at a point, it begins to rotate around the
ends, producing spiral waves (see Fig. 7 for a typical example in the BZ
reaction). There are also many other relevant occurrences of spiral waves in
natural systems. Just to name a few, let us mention fibrillating hearts, where
small regions contract independently and the spreading through the cortex
of damaged brains [3].
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Fig. 7. Spiral waves observed in the BZ reaction

However, the phenomenology can be much more complicated. For exam-
ple, target patterns can also be formed in an extended excitable medium if the
pulses are emitted periodically, and spiral waves can be formed by breaking
target waves by stirring the medium, or by noise-induced effects.

Let us now briefly comment the case of chaotic reaction dynamics (see
[4,5] for more details). An interesting case, widely observed in predator-prey
systems, appears when periodic wave trains become highly disordered, loosing
their periodicity. In this case, very irregular spatial patterns appear behind
the front. Moreover, spiral waves may become highly disordered and organize
themselves in chaotic sets that continuously form and decay (the so-called
transition to spatio-temporal chaos).

3.2 Advection Reaction Diffusion Systems

Reaction diffusion processes taking place in moving media such as fluids are
of considerable importance, e.g. in combustion, atmospheric chemistry, and
ecological problems. As we saw in Chap. 8, even passive scalars, substances
which are simply transported by the flow, display a very complex behavior
both in laminar and turbulent flows. When reaction is taken into account
the problem becomes even more complex. In fact the heat release associated
with chemical reactions will affect the velocity field, and transport is not
passive any more. However, even when the feedback of the advected scalar
on the moving medium can be neglected (like in certain aqueous autocatalytic
reactions), the dynamics of the reacting species is strongly complicated by
the presence of the velocity field.
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Similarly to passive scalars, one can adopt two complementary points of
view. A first possibility is to consider particles modeling reagents (or indivi-
duals, in ecological problems), which move under the effect of a velocity field
and thermal noise (diffusion), and reacting when they come into contact —
this is the Lagrangian viewpoint (see also Chap. 8). Alternatively, adopting
an Fulerian viewpoint (see also Chap. 7), one considers a field of concen-
tration which evolves according to the advection reaction diffusion (ARD)
equation, which for one species reads

% +u-V0=DV?0+ F(H), (26)
where u is the velocity field; we wrote (26) for an incompressible flow (V- u=
0) for simplicity. In the most general formulation of the problem, one also
has to consider the Navier-Stokes equation for u with a term accounting for
the feedback of 8 on the velocity field. The two points of view can be related
through an elegant mathematical formulation in terms of the Feynman-Kac
formula [22].

Chemical Processes in Fluid Flows

Among the many chemical reactions that take place in fluids, one of the most
important is combustion [14]. The general problem is very difficult due to the
presence of many components which react in a complicated way and which
modify the flow via heat release, thus enhancing the complexity of the flow
generating turbulence. Turbulence itself plays an important role in increasing
the mixing of reagents (see Chap. 8) and therefore improving the efficiency of
combustion processes [16]. For example, in the spark-ignition engine, fuel and
oxidizer are firstly mixed by turbulence before the spark ignites the mixture.

For a complete mathematical formulation of the general problem, one has
to consider N reacting species 6; which evolve according to (26)

00;

5 +u-Vb; = D;V?; 4+ Fi(6y,...,05,T), (27)

with their own diffusivity constant, D;, and reaction kinetics, F;, that de-
pends on the temperature, 7. The temperature itself is transported by the
flow and modifies it through buoyancy, so that the Navier-Stokes equation
for the velocity field with back-reaction should be considered. Usually the
dependence of F; on the temperature is of the Arrhenius type (17) [15]. It is
obvious that this set of equations is too complicated for us to give a satisfac-
tory non-technical treatment of the problem.

However, some new phenomena which arise because of the presence of the
advecting velocity field can be appreciated, even considering a single reacting
species and neglecting the back-reaction on the fluid, i.e. remaining at the
level of the ARD equation (26). For the sake of simplicity, let us consider
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Fig. 8. Front propagation in a pipe-like geometry in two-dimension. The boundary
conditions are §(—oo,y)=1 and 6(400,y) =0. The grey scale indicates a concentra-
tion going from fresh material (§ = 0, white) to burnt material (f = 1, black). The
advecting velocity field is a cellular flow, u, =U sinx cosy and u, =—U siny cos z,
where U is the stirring intensity. The upper image is for low Da, i.e. slow chemi-
stry; note the thickness of the reaction zone, &£, which extends over many velocity
characteristic length scales, L (here the transversal length). The lower image is for
high Da, fast reaction, here £ < L

(26) in a pipe-like geometry with a given velocity field (see Fig. 8). For our
illustrative purpose, the velocity field is left unspecified. We only assume that
it is characterized by its intensity, U (the root mean square velocity) and its
typical length scale, L (the correlation length, or in the pipe-problem the
transverse length). In addition, let us assume that F'(6) is of the FKPP-type
with #=0 and =1 representing, the unstable (unburnt) and stable (burnt)
states, respectively. Let us rewrite F(0)= f(0)/7 where 7 is the typical tem-
poral scale of the chemical kinetics, and f is the rescaled production term
with f’(0)=1. Suppose that at the initial time on the left there is burnt ma-
terial and the rest of the pipe is filled with fresh unburnt reagent. This can
be seen as an extremely simplified burning process or chemical reaction. As
time advances the front separating burnt from unburnt material will advance
from left to right with a speed vy. Now the question is how the front speed
and shape will be modified by the presence of the velocity field, u.

In a fluid at rest, u=0, we saw that the propagation speed is given by
vo =24/D/7 (9), the laminar front speed in combustion jargon. Moreover,
the thickness of the region where the reaction takes place, &, is roughly given
by & ~ VD7 (see (13)). In a moving fluid it is natural to expect that the
front will propagate with an average (turbulent) speed vy greater than vg.
The turbulent front speed vy will be the result of the interplay among the
flow characteristics, L and U, the diffusivity D, and the chemical time scale
7. The analysis can be simplified by introducing two non-dimensional num-
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bers: the Damkéhler number Da=L/(UT), the ratio of advective to reactive
time scales, and the Peclet number Pe=UL/D, the ratio of diffusive to ad-
vective time scales. Usually one is interested in the limit of high Pe number,
when advection is stronger than diffusion. The front speed is expected to be
expressed as vy =vo@(Da, Pe) which is in general larger than vy [22].

The study of the detailed dependence of vy on Da and Pe, ¢(Da, Pe),
is non-trivial. However, some limiting cases can be identified. A particularly
simple case is when the reaction is very slow, Da < 1. In this regime the
thickness of the reaction zone is much larger than the typical velocity length
scale, £ > L (see Fig. 8). On length scales larger than L the transport pro-
perties of an advected scalar (or of particles in the Lagrangian viewpoint) are
known to be well described by an effective diffusion constant, D,y s, usually
much larger than the molecular diffusivity, D (see [23] and references therein).
As a consequence, the reaction zone behaves as if the diffusion coefficient is
D.¢s. In other words, on scales much larger than L (26) reduces to (1) with
D — D.yy. So that the theory discussed in Sect. 2 applies [22,24] with

’Uf%2\/Deff/T. (28)

Apart from slow biological reactions, or when the stirring by the velocity
field is extremely intense, most of reactions of interest have time scales com-
parable or faster than the advection time, L/U (fast reaction). Therefore the
previous result cannot be applied. However, it is interesting to note that the
rhs of (28) is a rigorous upper bound to the turbulent front speed vy [22].
A possible approach in the case of fast reactions is to renormalize both the
diffusion constant and the chemical time scales. But while the computation
of the renormalized diffusion coefficient is based on powerful, well-established
mathematical methods [23], the renormalization of 7 can only be approached
phenomenologically [22].

Another limit is when D, 7 — 0, while remaining the ratio D/7 constant;
here, the reaction zone thickness & ~ v/Dr shrinks to zero, while the laminar
front speed vy stays finite). In this case, the ARD equation reduces to the
so-called G-equation [16]

8—G+U'VG:1)O|VG\. (29)

ot
The iso-scalar surface (line in two dimension), say G =0, represents the front
position. Equation (29) has a simple geometrical interpretation: in the ab-
sence of stirring (u=0) the front evolves according to the Huygens principle,
i.e., a point x belonging to the front moves with a velocity v(x) = von(x),
(x) being the perpendicular direction to the front surface in x. The effect
of the velocity field is to wrinkle the front, increasing its area and thereby
its speed [16]. Indeed the front speed in this limit is linked to the amount
of material which is burnt per unit time, which increases as the front area
increases. Assuming a velocity field with a turbulent spectrum, Yakhot [25]
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proposed that at large flow intensities (U > vg) Vy o< U/vInU. We do not
know whether this prediction is correct or not, although the fact that v; has
an almost linear behavior with U (here corrected by vInU) seems to be a
generic feature in laboratory and numerical experiments up to moderately
high intensities.

Plankton Patchiness

The large importance of plankton distributions in the sea must not be unde-
restimated. They are at the lowest level of the ocean food chain, and among
the most important ingredients for understanding the interchange of COs
between the atmosphere and the oceans and, consequently, the phenomenon
of global warming [26].

A characteristic that is well known since the earliest in situ observations,
recently verified by satellite remote sensing and detailed numerical simula-
tions [27], is plankton patchiness, i.e., the inhomogeneity of plankton spatial
distributions. These analyses identify filaments, irregular patches, sharp gra-
dients, and other complex structures involving a wide range of spatial scales
in the concentration patterns, which typically extend from medium scales
(~ 10 km) to very large ones (~ 1000 km), associated with the major ocean
currents and gyres (Fig. 9).

Traditionally, patchiness has been variously attributed to the interplay
of diffusion and biological growth, oceanic turbulence, diffusive Turing-like
instabilities, and nutrient or biological inhomogeneities [28]. Advection by
unsteady fluid flows and predator-prey interactions are only recently emer-
ging as two key ingredients able to reproduce the main qualitative features
of plankton patchiness [18]. Therefore, the proper mathematical framework
for this problem is that of advection reaction diffusion systems with many
components (27).

The reaction term usually takes into account three different trophic levels
and their interactions: nutrients (IN), phytoplankton (P) and zooplankton
(Z). The nutrients are inorganic materials dissolved in water that can be
assimilated by the phytoplankton organisms; the zooplankton grazes on the
latter. The interactions among N, P and Z are schematically sketched in
Fig. 10. As one can see they are of the predator-prey type with competition
for resources and mortality. Moreover, the uptake of nutrients by phytoplank-
ton, and the grazing of these by the zooplankton are also taken into account.
Regarding the advection by oceanic flows, the mechanism which is now emer-
ging as a key feature in explaining the observed filament-like structures of
the concentration patterns is chaotic advection [29], i.e. the presence of hig-
hly chaotic trajectories of the fluid particles even in relatively simple Eulerian
flows. In fact the continuous stretching and folding of fluid elements induced
by the flow is considered to be one of the basic ingredients for the generation
of patchiness, see [27] for a recent review.
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Fig. 9. Satellite image of phytoplankton pigment (chlorophyll) concentration in
Western Europe (Courtesy by Marine Environment Unit, image from SeaWiFS
Images Archive: http://www.me.sai.jrc.it)
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Fig. 10. The processes in the NPZ models
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Here we limit the discussion to a simple model [30] constituted by three
trophic levels where, instead of considering explicitly the nutrients, we in-
troduce the carrying capacity, C, defined as the maximum phytoplankton
content that a parcel of water can support in the absence of grazing. Consi-
dering a relaxational dynamics for C, and assuming equal diffusivities (which
is reasonable because mixing in plankton communities is largely due to sea-
water turbulence), the model is

oc +u-VC = a(C - Cy(x)) + DV3C,

ot

P )
E—Fu-VP:P(l—P/C)—kDV P, (30)
%—f+u-v2:PZ—522+DVQZ,

where « describes the relaxation of C' onto an imposed spatially dependent
carrying capacity, Co(x) (see [30] for more details), and § is the Z mortality.
The velocity field u(x,t) is incompressible and it is assumed to give rise
to chaotic advection, which implies that the separation between two fluid
particles, |0x(t)], initially close (|0x(0)| < 1) typically diverges in time at a
rate given by the Lyapunov exponent of the flow Ap > 0,

|6x(t)] o [0x(0)]e . (31)

In the absence of the flow and with D =0, the dynamics is attracted by the
stable fixed point of (30): C* = Cy(x), P* =Cy6/(6+Cy), and Z* = P*/4.
Thus the chemical Lyapunov exponent® Ac is negative. This simple model
displays an interesting transition depending on the value of A\p and A¢. If
|[Ac| > Ap the plankton distribution is smooth, while if |[A¢| < Ap, i.e. when
the flow is enough chaotic to overcome the stability of plankton dynamics,
the asymptotic spatial distribution of plankton has fractal properties.
Another remarkable feature of this model is its ability to reproduce a
well-known experimental fact related to the behavior of the power spectrum,
I'(k) (k is the wavenumber), of the species distributions. Specifically, analysis
of transects taken by oceanographic ships have shown that the power spectra
of zooplankton and phytoplankton have a power law behavior characterized
by different scaling exponents [18]: I'p(k) o k=57 and I'z(k) o< k=57, with
Bp # Bz, indicating the different distributions of P and Z. Furthermore,
Op and Bz seem to be different from 1, the scaling exponent expected for
passive scalars (such as temperature and salinity). Therefore, P, Z and the
temperature field are distributed in a very different manner, Z being much
more irregularly distributed than P, i.e., 1 < fp < 7 [18,30]. In the model
(30) the power spectrum scaling exponents can be computed in terms of

® That is the Lyapunov exponent of the dynamical systems obtained by (30) with
u=0 and D=0.
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the Lyapunov exponents Ar and A¢ as Bp =z =1+2|A\¢|/Ar < 1, which
partially reproduces the observations. However, a slightly more sophisticated
model has obtained the result Gp < Bz (see article on page 470 of [27]), which
is closer to observations.

The complete characterization of plankton patchiness requires the intro-
duction of more refined observables than the power spectrum. For instance,
one can define the gth structure functions of, say, phytoplankton, as

Sq(0r) = (|P(x + 0%,t) — P(x,1t)|?), (32)

where the bracket represents averaging over locations x, ér = |dx| and ¢
is a positive number. Interestingly, as observed in turbulence and passive
scalars (see Chaps. 7, 8), in the limit or — 0, structure functions have a
power law behavior given by S, o dr¢a. Moreover, the exponents (q display a
non-trivial dependence on ¢, namely they deviate from the linear dimensional
estimation (; = ¢(1—3)/2 (where (3 is the power spectrum scaling exponent).
These deviations are the signature of the multifractal behavior of plankton
distribution. Remarkably, multifractality naturally arises in the framework
of models like (30) due to the fluctuations of finite-time Lyapunov exponents
(see [30] for a detailed discussion on this point).

The most important lesson one can learn from this simple model is that
from the interplay of a smooth flow, which accounts for the physics, and a
(simplified) stable interacting dynamics, the biology, one can have a very irre-
gular (multifractal) spatial distribution of population concentrations. Moreo-
ver, the relevant quantities describing the inhomogeneities of these distribu-
tions, such as the power spectrum or structure function scaling exponents,
can be expressed in terms of the Lyapunov exponents that characterize, se-
parately, the dynamics of the flow and of the plankton populations.
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