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We consider the tent map as the prototype of a chaotic system with escapes. We show analytically
that a small, bounded, but carefully chosen perturbation added to the system can trap forever an
orbit close to the chaotic saddle, even in presence of noise of larger, although bounded, amplitude.
This problem is focused as a two-person, mathematical game between two players called “the pro-
tagonist” and “the adversary”. The protagonist’s goal is to survive. He can lose but cannot win;
the best he can do is survive to play another round, struggling ad infinitum. In absence of actions
by either player, the dynamics diverge, leaving a relatively safe region, and we say the protagonist
loses. What makes survival difficult is that the adversary is allowed stronger “actions” than the
protagonist. What makes survival possible is (i) the background dynamics (the tent map here) are
chaotic; and (ii) the protagonist knows the action of the adversary in choosing his response and is
permitted to choose the initial point x0 of the game. We use the “slope 3” tent map in an example
of this problem. We show that it is possible for the protagonist to survive.

PACS numbers: 05.45.-a

Transient chaos [1] is an interesting physical phe-
nomenon which occurs in systems where trajectories
bounce chaotically for a certain time in a bounded re-
gion until they reach a final state, usually nonchaotic.
Varied manifestations of transient chaos are present in
chaotic scattering [2], chaotic advection in fluid dynam-
ics [3], species competition in ecology [4, 5] or voltage
collapse in electric power systems [4, 6], to cite just a
few. From the point of view of Nonlinear Dynamics, the
phenomenon of transient chaos is associated to the exis-
tence of a certain type of sets called chaotic saddles, also
known as nonattracting chaotic invariant sets, formed by
a bounded set of unstable periodic and aperiodic orbits,
for which almost all trajectories diverge. Typical orbits
in the system will approach the chaotic saddle follow-
ing its stable manifold, spend some time bouncing in its
vicinity and then escape from it following its unstable
manifold. Therefore, a compelling challenge might be to
find a simple method to maintain an orbit in the neigh-
borhood of the invariant set for all times, respecting the
original dynamics of the system. Since the seminal paper
of Ott, Grebogi and Yorke [7], the theory of chaos control
in Nonlinear Dynamics has been thoroughly developed,
both for Hamiltonian and dissipative systems. Never-
theless, most of the work has been focused into systems
with chaotic attractors, both in noiseless and noisy en-
vironments [8], while little attention has been paid to
controlling chaotic transients [4, 9].

While for a linear system the perturbation needed to

∗jaguirre@escet.urjc.es
†dovidio@imedea.uib.es

change its nature is of the same order of the dynamics of
the motion, the extreme sensitivity to initial conditions
makes control with very little perturbations a possible
task. In this sense, diminishing the amplitude of control
is an important goal in this field. Obviously, if the system
is embedded in a noisy environment controlling orbits is
even harder, and typically stronger amplitudes than in
the noiseless case are needed.

Since Akiyama and Kaneko presented the “dynamical
systems game theory” [10–12], there has been a growing
interest for modelling increasingly more complex game
strategies with concepts borrowed from Nonlinear Dy-
namics. In their work it is shown that Game Theory
has resulted to be deeply related to several problems in-
volving dynamical phenomena, and for many cases it is
possible to switch from the point of view of Game The-
ory to that of Nonlinear Dynamics. In fact, the nature
of these games can be described as a dynamical system.
Our work points in this direction, and we face our prob-
lem as a mathematical game between two players called
“the protagonist” and “the adversary”, being the protag-
onist’s goal to survive inside a bounded region, that is,
the vicinity of the chaotic saddle. We describe an idea
which we apply here to a very simple nonlinear dynam-
ical system, but can be conveniently adapted for a wide
variety of maps with a chaotic saddle, in which some
kind of noise and control is present. In a system with
attractors, the natural tendency of a particle is to reach
one of these attractors, and therefore it is plausible for
the protagonist to maintain itself close to one attractor
even when the adversary is allowed slightly stronger ac-
tions. However, it is important to remark that without
any external control, the probability of the protagonist
to survive in the vicinity of a chaotic saddle is zero, even
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in the absence of noise, and this fact makes the survival
of the protagonist a remarkable achievement.

The simplest form of this game involves a one-
dimensional map, the tent map, that is defined as:
T (x) = m(1 − |x|) − 1. For cases of interest such as
m = 3, almost all initial points x0 yield trajectories of
xn+1 = T (xn) that go to −∞ as n → ∞. And in this
case we say the protagonist does not survive. To survive
he must act. The equation of the game is:

xn+1 = T (xn) + un+1 + rn+1 (1)

where the adversary chooses the perturbation un+1

(knowing xn and T ) and the protagonist then chooses
the “response” rn+1 (knowing un+1 and xn and T ). The
perturbation un+1 might be chosen at random or using
an effective strategy. In the long run there is little differ-
ence between these two as to whether the protagonist can
survive forever. The protagonist faces what appears to
be an impossible task because we permit only |un| ≤ u0

and |rn| ≤ r0 where r0 and u0 are specified with r0 < u0.
If rn is viewed as the control and un is viewed as some
kind of noise (or interference), the usual requirement is
that the control is stronger than the noise. However, the
main goal of this paper is to show that in the context
of transient chaos it is possible to control a noisy orbit,
even in the case in which noise is stronger than control.
The smaller bound on rn than on un might lead us to call
rn an “influence” rather than a “control” since the pro-
tagonist cannot control the details of the trajectory. For
this problem, we let the “relatively safe” region be the
interval S = [−1, +1] and terminate the game if some xn

is outside S. Certainly if xn is outside S, it is possible for
the adversary to choose the sequence un that causes the
sequence xn to diverge, and there is a slightly larger in-
terval depending on u0 and r0 such that if xn is outside
that, the trajectory must diverge even if the adversary
tries to help. To keep formulas simple, we state our re-
sults for m = 3, though analogous results are available
for all m > 2. (If m ≤ 2, there is a chaotic attractor and
if u0 is sufficiently small, survival is guaranteed even if
the response size is 0.) We begin with an example.

For u0 = 4/9 and r0 = 2/9 , there exists a strat-

egy guaranteeing survival.

If u0 > 2r0 then there is no strategy guarantee-

ing survival.

The best strategy for survival depends on r0 as is
made clear in the following Theorem. There are different
strategies for r0 ≥ 2/3, and each integer k where r0 is in
[2/3k, 2/3k−1). Recall m = 3.

Theorem. There is a strategy guaranteeing sur-

vival for a given r0 and u0 if and only if there is an

integer k ≥ 1 for which 2/3k ≤ r0 and u0 ≤ r0 +2/3k.
(The cross-hatched part of Fig. 1 shows where there are
strategies for survival).

This type of problem is quite different from standard
control in which the goal is to drive the trajectory to a
point. In controlling chaos [7, 9] for example, if noise

�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������
�����������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�
�
�
�

�����
�����
�����

�����
�����
�����

��
������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������������

	�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�		�	�	�	�	�	�	�	�	�	�	�	

SURVIVAL

r
1 22/3

u

2/27 2/9

(2,8/3)

(2/3,4/3)

(2/27,4/27)

2/27

2/9

2/3

1

2

1

0

0

         IS 
  POSSIBLE

u
0

= 2/3   +   r
0

(2/9,4/9)

FIG. 1: Parameter region of survival. Survival is possible in
the cross-hatched region if the protagonist chooses optimally.
Above the cross-hatched region, the adversary can always win.

is present (i.e., un chosen at random), the control rn

must dominate un so as to be able to drive the trajectory
to a specified fixed point and keep it close to the fixed
point. In the game of survival for the tent map, there are
several “safety points” and r0 must be large enough that
the protagonist can reach one of them, but the choice of
which is really determined by what un happens to be.
The protagonist is bounced between these safety points
in an order determined by the sequence of un.

The Example. Before analyzing the theorem in de-
tail, we examine the case mentioned above, u0 = 4/9 and
r0 = 2/9 and show the protagonist can survive. We des-
ignate four points as “safety point”, z1 = −2/3 − 2/9,
z2 = −2/3+ 2/9, z3 = +2/3− 2/9 and z4 = +2/3+ 2/9.
It is easy to check that T (zi) = ±2/3, and T (±2/3) = 0.
A graph of the tent map appears in Fig. 2 showing all
these points, and Fig. 3 shows the evolution of an orbit
in this situation. The protagonist’s strategy must be to
make sure every xn in Eq. (1) is a safe point if it is to
guarantee that he can survive. In particular, the protag-
onist must choose x0 equal to one of the safety points to
make sure he succeeds (although in fact most points in
S = [−1, 1] would also be valid as x0.) If xn is a safety
point for any integer n ≥ 0, then we show he can choose
rn+1 so that xn+1 is a safety point, and so he survives an-
other day. Since xn is a safety point, we may suppose for
example T (xn) is +2/3. (The case −2/3 is virtually the
same.) Then after un+1 is chosen, the point T (xn)+un+1

must be in the interval [2/3− 4/9, 2/3+4/9] and so is at
most 2/9 from either z3 or z4. Hence rn+1 can be chosen
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FIG. 2: Graph of the tent map T (x) = m(1−|x|)−1 defined in
the interval [−1, +1] for m = 3. The four points zi designate
“safety points” and also T (zi) = ± 2/3.

with |rn+1| ≤ r0 so that xn+1 is a safety point. This case
may be generalized by noting that this strategy works
whenever u0 − r0 ≤ 2/9.

This example illustrates why we call this problem a
game of “survival” rather than of “control”, since the
protagonist is buffeted from safety point to safety point
without being able to choose between these points (as
it is shown in Fig. 3.) There is typically only one that
can be reached with |rn+1| ≤ r0 for each n. In the above
example calculation, notice that T (xn+1) is either −2/3 if
xn+1 is z4 or +2/3 if z3. The protagonist cannot choose
whether T (xn+1) is to be positive or negative (unless
un+1 was 0 so that z3 and z4 were equally close).

The general strategy (called R) for choosing rn+1

is to identify a collection of safety points and choose x0

to be one of them and from then on choose rn+1 so that
xn+1 is a safety point. In the case where 2/3 ≤ r0 and
u0 ≤ r0 + 2/3, (k = 1), there are 2 safety points namely
z1 = −2/3 and z2 = 2/3. Then if xn is a safety point,
T (xn) = 0, and the point T (xn) + un+1 must be in the
interval [−u0, u0]. Since u0 ≤ r0 + 2/3, each point of the
interval is within r0 of a safety point. Hence the strategy
can be carried out.

In the general case where 2/3k ≤ r0 and u0 ≤ r0+2/3k,
there are 2k safety points, namely T−k(0) which consists
of

±2/31 ± 2/32 ± ... ± 2/3k for k ≥ 1 (2)

Note that T (±2/31±2/32± ...±2/3k) is a point of the
form ±2/31±2/32± ...±2/3k−1 (which is the single point
0 if k = 1). The argument showing that the strategy can

0 1 2 3 4 5 6 7 8 9 10 11 12 13
Iterations

-1

-0,5

0

0,5

1

X

Z4

Z3

Z2

Z1

T(Xn)

T(Xn) + un+1

T(Xn)+un+1+rn+1=Xn+1

Xn

FIG. 3: Evolution of an orbit, for k = 2, m = 3, r0 = 2/9
and u0 = 4/9. The four dotted-dashed lines represent the
“safety points” zi, and the dashed lines represent their images
T (zi) = ± 2/3. The points that do not lie over any of these
lines represent the steps of the orbit after the influence of the
noise un.

be implemented proceeds as in the special cases discussed
above.

We now argue that a guaranteed strategy exists only
for the above cases. Hence if k is chosen so that 2/3k ≤
r0 < 2/3k−1 for some k ≥ 1, and u0 = r0 + 2/3k + δ
where δ > 0, then no guaranteed strategy exists; in other
words, there is a strategy U for choosing the points un

so that the protagonist loses.
Let Sk be the set of safe points. The strategy U is

to choose un so that T (xn−1) + un is as far as possible.
Let Yk be the set {x : |x − y| ≤ r0 for some y in Sk}.
Hence Yk is the set of points that are no more than r0

from some safe points. For any point x0, there is a u1

with |u1| ≤ u0 such that T (x0) + u1 is not in Yk. Hence
x1 = T (x0) + u1 + r1 (with |r1| ≤ r0) is not a safe point.
Let Jk be the smallest interval containing Sk.

If xn is not in Jk, it is easy to check that strategy U
results in xn+1 also outside Jk, but further from Sk. If xn

is in Jk, let J ′ denote the smallest interval containing xn

whose ends are safe points. Strategy U results in xn+1

which is in T (J ′), which has no points of Sk−1 in its
interior and xn+1 is further from Sk. Furthermore the
length of T (J ′) is greater than that of J ′. As the process
evolves, the trajectory eventually is outside Jk, a case
which is discussed above.

We have carried out several computer experiments to
clarify the applicability of our results. A uniform dis-
tributed noise with zero mean value has been used as un,
since its only requisite is to be bounded. Obviously, the
same results would have been obtained for any other kind
of bounded noise. Note that, for this reason, Gaussian
noise does not guarantee the survival of the protagonist.
For very different values of k, m, maximum response r0

and maximum perturbation u0, being r0 ≤ u0, we have
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FIG. 4: The control needed decreases in presence of (weak)
noise. The picture shows the root mean square of applied
control for different noise-control ratios when m = 3, r0 =
2/9. The dots were calculated numerically, while the straight
line represents the analytical curve.

iterated the game up to several million steps. As our
theorem asserts, the protagonist survives inside the safe
region [−1, 1] if and only if u0 ≤ 2r0.

An interesting property of the system appears when
we analyze the root mean square (RMS) of the control
rn, which is expressed as

RMS =

√

∑

rn
2

n
. (3)

Figure 4 shows the evolution of the RMS of control
when the maximum noise to maximum control ratio is
varied, both computationally calculated and analytically
derived. We have fixed the control to r0 = 2/9, and
u0 is varied from 0 to u0 = 2 · r0 = 4/9. For u0 =
0, that is, in the absence of noise, the control strategy
is to push repeatedly the system back to a safety point
after that the dynamics has displaced it. The strength
of control is thus constant and equal to the distance to
go from the image of a safety point back to any of the
safety points. Calling such a distance dk, we have dk =
maxj{mini{|zi − T (zj)|}} and RMS = dk . When noise is
switched on, the RMS of control decreases, since in this
case the orbit is pushed by the noise rn from the image of
a safety point towards one of the 2k safety points. This
result is in contrast with standard algorithms of chaos
control, that aim at stabilizing unstable orbits instead of
preimages of the escaping region. For these techniques,
a stronger control is needed if noise increases. Finally,
for high values of u0/r0, the RMS of control shows a
minimum and starts to increase again, as there is a value
of the noise for which on average the noise places the

orbit optimally close to one of the safety points.
The analytical derivation of the curve for RMS is as

follows. Looking at Fig. 2, and noticing that the posi-
tions of the safety points zi are symmetric, the control
needed after a noise displacement u ≤ u0 can be simply
written as:

|r(u)| = ||u| − dk|. (4)

Indicating with
√

〈r2〉 the RMS, with r(u) the control
needed after a noise displacement u, and with f(u) the
noise distribution, we obtain the following:

〈r2〉 =

∫ u0

−u0

r(u)2f(u)du =

∫ u0

−u0

(|u| − dk)2f(u)du. (5)

Expanding the expression and distributing the inte-
gral, we have:

〈r2〉 = d2
k +

∫ u0

−u0

u2f(u)du − 2dk

∫ u0

−u0

|u|f(u)du = (6)

d2
k + 〈u2〉 − 2dk〈|u|〉. (7)

To give an example, we can evaluate this expression
for the case of uniform noise, that is,

{

f(u) = 1
2u0

− u0 < u < u0,

f(u) = 0 otherwise.
(8)

A straightforward calculation gives:

〈u2〉 =
1

2u0

∫ u0

−u0

u2du =
1

3
u2

0, (9)

and:

〈|u|〉 =
1

2u0

∫ u0

−u0

|u|du =
1

2
u0. (10)

Finally, we obtain that the RMS of control for such
distribution is:

√

〈r2〉 =
√

d2
k + 1

3
u2

0 − dku0. (11)

If maximum control r0 is set to dk, this function has
a minimum when u0/r0 = 3/2. Figure 4 confirms this
result.

The results of this work can be easily generalized to
any unimodal one-dimensional map, showing that it is
always possible to survive with less control than noise.
The relation u0

r0

, as well as the structure of safety points,
will depend on the properties of each map, its symmetry
or asymmetry, etc.. In order to point this fact, we have
developed a similar analytical study for the asymmetric
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tent map, and the same strategy yields a noise to control

ratio of u0

r0

= 1+
(

m
l

)k
, where m < l are the left and right

slopes respectively. It is easy to see that this ratio has a
maximum equal to 2 for the symmetric case m = l and
a minimum equal to 1 when the right slope is infinitely
larger than the left one.

In summary, in this paper we are describing an idea
which potentially can be applied to a wide variety of
maps with a chaotic saddle (i.e., an invariant set in any
dimension for which almost all trajectories diverge), em-
bedded in noisy environments, for an appropriate choice
of r0 and u0. Such an analysis could be far more com-
plex than for the symmetric and asymmetric tent map,
for which the problem can be fully explained analytically.
Unlike traditional control theory that tries to steer the
state of a system to a precise state, there are situations
in which we only have influence in a chaotic environment.

The difference between influence and control is roughly
speaking r0 < u0 vs. r0 > u0.

Finally, the information that is needed in order to ap-
ply our method is just the approximate position of the
safety points. This information might be obtained from
time series analysis, suggesting the applicability of this
control to real systems.
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problem, which we believe may be viewed, in some sense,
as an allegory of daily life.

J.A. and M.S.J. acknowledge financial support from
the Spanish Ministry of Science and Technology under
project BFM2000-0967, and from the Universidad Rey
Juan Carlos under projects URJC-PGRAL-2001/02 and
URJC-PIGE-02-04. F.d’O. acknowledges financial sup-
port from MCyT (Spain) and FEDER, project REN2001-
0802-C02-01/MAR (IMAGEN).

[1] T. Tel, “Transient chaos,” in Directions in Chaos, Vol.
3, Experimental Study and Characterization of Chaos,
edited by Hao Bai-Lin (World Scientific, Singapore,
1990), pp. 149-211.

[2] S. Bleher, C. Grebogi, and E. Ott, Physica D 46, 87
(1990).

[3] C. Jung, T. Tel, and E. Zemniak, Chaos 3, 555 (1993).
[4] M. Dhamala and Y.-C. Lai, Phys. Rev. E 59, 1646 (1999).
[5] K. McCann and P. Todzis, Am. Nat. 144, 873 (1994).
[6] I. Dobson and H.-D. Chiang, Syst. Control Lett. 13, 253

(1989).
[7] E. Ott, C. Grebogi, and J.A. Yorke, Phys. Rev. Lett. 64,

1196 (1990).
[8] L. Poon and C. Grebogi, Phys. Rev. Lett. 75, 4023

(1995).
[9] T. Tel, J. Phys. A.: Math. Gen. 24, L1359 (1991).

[10] E. Akiyama and K. Kaneko, “Dynamical Systems
Game”, in Lectures Notes in Computer Science, Vol.
1674, edited by D. Floreano, J.-D. Nicoud, and F. Mon-
dada (Springer, Berlin, 1999), pp. 550-565.

[11] E. Akiyama and K. Kaneko, Physica D 147, 221 (2000).
[12] E. Akiyama and K. Kaneko, Physica D 167, 36 (2002).


