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We have uncovered a phenomenon in coupled chaotic oscillators where a subset of Lyapunov exponents,
which are originally zero in the absence of coupling, can become positive as the coupling is increased. This
occurs for chaotic attractors having multiple scrolls, such as the Lorenz attractor. We argue that the phenom-
enon is due to the disturbance to the relative frequencies with which a trajectory visits different scrolls of the
attractor. An algebraic scaling law is obtained which relates the Lyapunov exponents with the coupling
strength. The scaling law appears to be universal.

DOI: 10.1103/PhysReVvE.67.045203 PACS nuni)er05.45.Xt, 05.40-a

The collective dynamics of coupled chaotic oscillatorsthree negative exponents, whereas in the amplitude-
have been a topic of continuous interest in nonlinear angynchronization regimeK>K,g), there are one positive,
statistical physics. In a typical setting where a group of chaone null, and four negative exponents. Observe that in these
otic oscillators are coupled, one intuitively expects that, aparameter regimes, the number of positive Lyapunov expo-
the coupling parametés is increased from zero, a coherence nents does not exceed two. This scenario has indeed been
among the oscillators emerges. Realizing that the dynamicgbserved and reported extensively in literature for chaotic
of individual oscillators are completely independent of eachattractors such as those from thesRler systen7]. But can
other fork =0 and hence in this case the collective dynam-this be true generally?
ics of the whole system can be regarded as “complicated,” In this paper, we present evidence that the above seem-
the presence of a finite amount of coherencekfgrO means  ingly well accepted picture of coupled chaotic dynamics can-
that the collective dynamics is less complicated. Indeed, ifot be true, in general. We find that a systemNotoupled
has been well documented that chaotic synchronization oghaotic attractors with multiple scrolls can exhibit a striking
different forms can arise as a result of couplig-4], which ~ phenomenon in theveaklycoupling regime: a subset of null
has been one of the most active research areas in nonlinelayapunov exponents foK=0 can becomepositive for K
dynamics[5]. The purpose of this paper is to report our >0. For a system ofN coupled chaotic oscillators, there
finding of a quite counterintuitive phenomenon: the collec-exists a parameter regime of finite Lebesgue measure: 0
tive dynamics of coupled chaotic oscillators can become<K<Kpg, for which the number of positive Lyapunov ex-
more complicated due to coupling. This phenomenon is exponents isN+M, whereM=N/2 for N even andM = (N
pected to be quite general, as it can occur for typical chaotie-1)/2 for N odd. Let Ny=A,=---=Ay>Nyp1>- -
attractors with multiple scrolls in the phase space, such as the A,y denote the positive part of the Lyapunov spectrum
Lorenz attractof{6] and, its occurrence does not seem toof the system. AK is increased from zero, the additioridl
depend on the way by which the oscillators are coupled. exponents appear to obey the following algebraic scaling

To explain our finding, we consider the simple setting of alaw:
system of two mutually coupled, three-dimensional chaotic
oscillators. The chaotic dynamics of each oscillator is then Nj~K* for j=N+1,... N+ M, 1
defined by a positive, a zero, and a negative Lyapunov ex- . . . .
ponents. I):loKp=0, the whole system is sig-dimen)s/iopnal with which is expected to be generid]. For three-dimensional

two positive, two zero, and two negative exponents. Currenf20tc attractors, the scaling exponenassumes the uni-

understanding of coupled chaotic systems would suggest th\@ersal value of 2. We will also argue that these results hold,

following. As K is increased from zero, one of the zero regz_irdless of the cogpling scherfwhether local or global,

Lyapunov exponent would become negatit@ K ps>0) for instance. We believe that these results have not been
indicating chaotic phase synchronizatipl. As Kpsis in: noticed before but they are important and of broad interest
creased further, one of the originally positive exponents begon5|der|ng that coupled chaotic dynamics have been a con-

comes negativéat K ,<>K <), signifying chaotic synchro- tlnuous!y pursued topic in nqnllnear and _statlstlcal physics.
nization ingamplitudgfé], a?tsgr wﬁic;ythg system p){)ssesses We first present results \.N'th the following system of two
only one positive Lyapunov exponent. The behavior of thecoupled Lorenz oscillatorsx; ,= o1 Y12~ X1,2) + Ky Xz
Lyapunov exponents in these parameter regimes of interest isx; ,), Y1.2= 281 5~ Y1~ X1.5Z1 2, 2y ,=—(8/3)z1,
therefore the following. Prior to phase synchronization (0+X; 5y, », whereo , are parameters of the Lorenz oscillator
<K<Kpg), there are two positive, two zero, and two nega-that can be set at the same or slightly different values so that
tive Lyapunov exponents. In the phase-synchronization rethe oscillators possess identical or nonidentical chaotic at-
gime (Kps<K<Kp,g), there are two positive, one null, and tractors, an&, , are the coupling parameters associated with
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0.03 FIG. 2. Schematic illustration of the consistency of a typical
‘<o 0 (<o double-scroll chaotic flow. Random perturbations that move a tra-
0 jectory from pointsB to F, or from G to H, etc., are consistent with
the noise-free dynamics. Those that cause the trajectory to go from
~0.06 ~0.03 B to D, or C to A, or vice versa, are inconsistent with the original
0 0.2 k0.4 0.6 0 0.1 k0.2 0.3 dynamics.

FIG. 1. For the system of coupled Lorenz chaotic oscillators, thecause a zero Lyapunov exponent to become positive.
originally null Lyapunov exponents versus the coupling parameter Figure 2 shows, schematically, the topology of the Lorenz
K for (8 N=2, o,=0,=10, K;=K, andK,=0; (b) N=2, oy  chaotic attractor, wherA—H are representative points asso-
=10 but 0,=11, K;=K, and K,=0; (c) N=4, 0y=10 (i  ciated with continuous trajectories, and the arrows denote the
=1,...,4), Ki=K (i=1,...,4); and (d N=7, ¢;=10 (i  corresponding local eigenspaces. There are two scrolls, de-
=1,...7), K=K (i=1,...,7). noted by “L” and “R,” respectively. A typical trajectory

visits both scrolls intermittently in time. It does so by execut-
the two oscillators which can be set so that the couplingng topologically circular motion in one scroll with a number
scheme is unidirectional or bidirectional. Figur@1shows of rotations and switches to another, and so on. The region
the two originally null Lyapunov exponents versus the cou-surrounding the point S" is where the switches occur. In
pling parameterK for o,=0,=10 (identical oscillators  order to go from ‘L" to “ R,” the trajectory has to follow
K,=K andK,=0 (unidirectional coupling We observe that points such a® andC. Without perturbations, it is not pos-
one exponent, which is zero f&r=0, starts to increase &  sible to go directly from L” to “ R” when the trajectory is
is increased from zero. The exponent reaches a maximumear pointA. Similarly, in order to go from R”to “ L,” the
and then decreases &sis increased further. It becomes trajectory must follow the path through poin& and A.
negative forKk >Kpg, signifying a coherence in the phases When the trajectory is near poif it is not possible for it to
of the two oscillatord4]. Since each Lorenz oscillator pos- go directly to “L” without going through at least one rota-
sesses one positive Lyapunov exponent in the small range ¢ibn in “R.” The dynamical consistency so described guar-
K values considered, forOK<Kpgthe coupled system has antees the existence of a zero Lyapunov exponent, which
three positive Lyapunov exponen@onsidering that the un- corresponds to the neutral direction of the flow, in spite of
coupled system foK=0 has only two positive exponents, the intermittent switching behavior. But the presence of ir-
we see that the coupled system becomes more complicatediiegular perturbation could disturb this consistency, as we will
the sense that it has one more positive exponent. We find thergue below.
behavior robust, as it holds under structural changes in the Now consider the coupled system. Because it is determin-
system. For instance, Fig.(d shows the behavior of the istic, one null Lyapunov exponent must be preserved, despite
exponents as a function & for K;=K andK,=0 (unidi-  coupling. The behavior of the second, originally zero
rectional coupling o;=10 buto=11 (nonidentical oscilla- Lyapunov exponent can be assessed by regarding the linear
tors). Figures 1c) and 1d) show the exponents of the system coupling term as a randomlike, time-varying perturbation to
under bidirectional couplingk;=K,=K) for N=4 andN a single Lorenz oscillator. This is particularly true when the
=7 identical coupled oscillators, respectively, indicating acoupling is small, as the flow is chaotic. There can be two
similar behavior for systems with more than two coupledtypes of perturbations, depending on where in the phase
oscillators. space they are applied to the flow, which can have very dis-

The behavior of the Lyapunov exponents shown in Figstinct effects on the flow. The first type can occur everywhere
1(a—0d is apparently quite different from that, say, of a sys-on the attractor, and they disturb the trajectory in a way that
tem of two coupled chaotic Rsler oscillators, where none is consistent with the perturbation-free dynamics. For in-
of the null exponents becomes positive as the coupling istance, the perturbation can cause a trajectory to move from
increased. Thus, the distinct behavior shown in Figa—#)  pointsBto F, or from G to H, and so on. This will have little
must come from the double-scroll feature of the Lorenz ateffect on the eigendirections of the flow, as the structures of
tractor. As a trajectory moves on the Lorenz attractor andhe eigenspaces at these nearby points, which are not in the
switches back and forth between the two scrolls, there is aicinity of the switching pointS, are consistent. In the
fundamental consistency that the trajectory must follow. Theasymptotic limit, the effects of thesmnsistent perturbations
coupling, which is chaotic, can destroy this consistency andavill be averaged out, causing no change in the Lyapunov
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FIG. 3. The minimal numbeN® of edges required to cover all
N nodes on a graplta) ForN=6 (even, we haveN"=N/2=3. (b) FIG. 4. Test of scaling lawl) under different coupling configu-
For N=7 (odd), we haveN”=(N+1)/2=4. rations. (&) N=2 (identical oscillators with unidirectional cou-

pling), (b) N=2 (nonidentical oscillators with unidirectional cou-

spectrum. This is why the null Lyapunov exponents can b9 (©) N=4 (bidirectional coupling (d) N=7 (bidirectional

preserved for small coupling in systems such as the couple%OUp"n@'
Rossler oscillators. The second type of perturbations occurs f I i f he f el
in the vicinity of S, and they are not consistent with the engefRo a Zr_na tc):ogpdlng 0 f]trength, Le. requr(]anme .
perturbation-free dynamics. For example, such a perturbatiofi"® " are disturbed due to the perturbations that cause in-
can cause a trajectory to go from poilso D, or from A to consistencies to the flow. Approximately, we can write
C, or vice versa. The local eigenspaces associated with these . L or R\ oS T S
inconsistentpoints are generally quite distinct from each No(K) =K+ FR(KONG+HFKON=FK)N, (2
other, as shown in Fig. 2. In particular, the neutral eigendi-
rections associated with two points suchBaandD can be  where fS(K) is the frequency of switchings caused by the
quite different. Infinitesimal distance along the neutral direc-inconsistent perturbationd-(K) + fR(K)+ fS(K)=1], and
g‘;?oit pczgtr?,o Vl\é)hnegne:tliz fgroe\;zdr tgdp%ig?ab}é;h; I?ﬁétlé;ao ti)go is the average exp(ansior)l rate of infinitesimal vectors
on, ved. u ar the switching poirs (Fig. 2). Suppose there is a domi-
dynamics, the component of this distance in the unstabl@ant unstable steady state in the switching region, as for the
Q|rect:corr1] of pOIntlil) will be magﬂlf'ed' leading to the destruc- | oo, system is approximately the positive Lyapunov
tion o '}I inegtra dlrecft|on. The aSS(;CIated L%/ap_un(_)v €XPO%yponent of this steady state. Thus, we see that the depen-
nent will then increase from zero as the perturbation is turnegi,,ce of\,(K) on K is determined byfS(K), which is the

on, as we have obsgrveq in Fig{a}o).. The consequence of probability for the perturbed trajectory to fall in the stable
this type of perturbation is a change in the relative frequencyy ,itold of the unstable steady state in the switching region
with which a trajectory visits L” and “R,” which can be 5 gqr 5 three-dimensional flow, for a point $1a perturbed

measured in numerical experiment. While the d'scuss'o.rfrajectory can be found in a sphere of radius proportional to

above is with respect to the Lorenz attractor, it is clear that % which is centered at the point, and the dimension of the
works for other types of chaotic attractors with multiple stable manifold of the unstable steady state is . Thus,
scrolls. . . . . e havefS(K)~K?2, which is the scaling lawl) with the

Is there a universal scaling law governing the increase Oﬁllgebraic scaling exponent of two for systems of coupled,

the Lyapunov exponent from zero? To answer this quesnon{hree-dimensional chaotic flows.

we use a heuristic approach. For a double-scroll ckg{aotic al- \y/hile the above argument is for a system of two coupled
tractor in three-dimensional phase space Netand \| (i chaotic oscillators, the picture of one chaotic attractor under
= 1_,2,3) k_)e the average exponenna_l rate_s of phange of lnf_lnlrrregmar perturbations is valid for systems of arbitrary num-
tesimal distances along the three eigendirections for a rajegers of coupled, identical or nonidentical attractors. Consider
tory in the left and right scrolls, respectively. We have 5 system that consists & (N>2) coupled chaotic attrac-
>0=\5>\5 and \§>0=\5>\5. We call thempseudo-  tors, which possessés null Lyapunov exponent when un-
Lyapunov exponentsecause they can be regarded as arisingoupled. As the coupling is turned on, we expect a subset
from nonattracting chaotic sets that give rise to transienNP<N of these exponents to become positive. The question
chaos[9]. In the perturbation-free case, the null Lyapunovis, what determines®, in general? The idea of chaotic at-
exponent can be trivially expressed as=X,=f'A5  tractor under perturbation again provides an answer. In the
+fR\%, wherefl andfR (f-+ fR=1) are the frequencies of language of graph theofyL1], a system oN coupled oscil-
visits to the left and right scrolls, respectively. In the pres-lators can be viewed as a graph withnodes and a number
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of edges. The manner by which the edges are distributed igbtained similar results for the nearest-neighbor type of cou-
determined by the way of coupling, such as global versugling. In this case, there are only edges in Fig. 3 and the
local. The number of null Lyapunov exponents that can benumber of independent coupling terms is the minimally nec-
come positive is then determined by the numbeindepen- ~ essary number of edges that can connect all nodes. As in the
dentcoupling terms. The question becomes the following orcase of global coupling, each independent coupling term can
a graph: giverN nodes, what is the minimal number of edgescause a null Lyapunov exponent to become positive as the
that can cover alN nodes? The answer i&/2 for N even and coupllng strength is increased from zero. We _flnd that the
(N+1)/2 for N odd, as shown schematically in Fig. 3. Our SC&ling result appears to hold for other coupling schemes
heuristic theory suggests that all the nIff exponents fol- S“?h as mu|t|p||cat|;]/e coupllnblz].d | oh .
low the scaling law(1) to become positive as a function kf n summary, we have uncoverea a general pnenomenon in
We now provide numerical support for the scaling |aWcoupIed chaotic systems. Wheth chaotic oscillators with
(1). We study the following system d¥ globally coupled double-scroll(or multiscrol) attractors are coupledN/2 (N

' a even or (N+1)/2 (N odd Lyapunov exponents, which are
Lorenz chaotic attractorsdx; /dt= oi(y;—x;) + 2;+iK; (X, zero in the absence of coupling, can become positive as soon
_Xi), dyi/dt=28xi—yi—xizi, and dZ|/dt:_(8/3)Z|

: h ‘ i as the coupling parameter is increased from zero. The way
+xy; . Figures 1c,d) show, forN even N=4) andN odd 4,5 these exponents become positive from zero can be char-
(N=7), respectively, the behaviors of the originally null

acterized by a universal algebraic scaling law. These results
Lyapunov exponents. We observe that the numbers of thesﬁ‘old for all cases that we have examined, which include

exponents that can become positive under coupling\#2e jittarent number of oscillators, different coupling schemes,
for N even and N+ 1)/2 forN odd, confirming our analysis. 54 various combinations. We believe that our finding is im-

Furthermore, the scaling of these exponents with the cOUssrtant in chaotic dynamics and that it can be tested experi-
pling parameteK appears to be algebraic with the ””'Versalmentally[lz].

exponent two, as shown in Figsa4-d, the plots on a loga-
rithmic scale corresponding to Figs(cld), respectively. This work was supported by AFOSR under Grant No.
While these results are for the global coupling scheme, wé&49620-98-1-0400.
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