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Universal scaling of Lyapunov exponents in coupled chaotic oscillators
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We have uncovered a phenomenon in coupled chaotic oscillators where a subset of Lyapunov exponents,
which are originally zero in the absence of coupling, can become positive as the coupling is increased. This
occurs for chaotic attractors having multiple scrolls, such as the Lorenz attractor. We argue that the phenom-
enon is due to the disturbance to the relative frequencies with which a trajectory visits different scrolls of the
attractor. An algebraic scaling law is obtained which relates the Lyapunov exponents with the coupling
strength. The scaling law appears to be universal.
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The collective dynamics of coupled chaotic oscillato
have been a topic of continuous interest in nonlinear
statistical physics. In a typical setting where a group of c
otic oscillators are coupled, one intuitively expects that,
the coupling parameterK is increased from zero, a coheren
among the oscillators emerges. Realizing that the dynam
of individual oscillators are completely independent of ea
other forK50 and hence in this case the collective dyna
ics of the whole system can be regarded as ‘‘complicate
the presence of a finite amount of coherence forKÞ0 means
that the collective dynamics is less complicated. Indeed
has been well documented that chaotic synchronization
different forms can arise as a result of coupling@1–4#, which
has been one of the most active research areas in nonl
dynamics @5#. The purpose of this paper is to report o
finding of a quite counterintuitive phenomenon: the colle
tive dynamics of coupled chaotic oscillators can beco
more complicated due to coupling. This phenomenon is
pected to be quite general, as it can occur for typical cha
attractors with multiple scrolls in the phase space, such as
Lorenz attractor@6# and, its occurrence does not seem
depend on the way by which the oscillators are coupled.

To explain our finding, we consider the simple setting o
system of two mutually coupled, three-dimensional chao
oscillators. The chaotic dynamics of each oscillator is th
defined by a positive, a zero, and a negative Lyapunov
ponents. ForK50, the whole system is six-dimensional wi
two positive, two zero, and two negative exponents. Curr
understanding of coupled chaotic systems would sugges
following. As K is increased from zero, one of the ze
Lyapunov exponent would become negative~at KPS.0),
indicating chaotic phase synchronization@4#. As K is in-
creased further, one of the originally positive exponents
comes negative~at KAS.KPS), signifying chaotic synchro-
nization in amplitude@2#, after which the system possess
only one positive Lyapunov exponent. The behavior of
Lyapunov exponents in these parameter regimes of intere
therefore the following. Prior to phase synchronization
,K,KPS), there are two positive, two zero, and two neg
tive Lyapunov exponents. In the phase-synchronization
gime (KPS,K,KAS), there are two positive, one null, an
1063-651X/2003/67~4!/045203~4!/$20.00 67 0452
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three negative exponents, whereas in the amplitu
synchronization regime (K.KAS), there are one positive
one null, and four negative exponents. Observe that in th
parameter regimes, the number of positive Lyapunov ex
nents does not exceed two. This scenario has indeed
observed and reported extensively in literature for chao
attractors such as those from the Ro¨ssler system@7#. But can
this be true generally?

In this paper, we present evidence that the above se
ingly well accepted picture of coupled chaotic dynamics c
not be true, in general. We find that a system ofN coupled
chaotic attractors with multiple scrolls can exhibit a strikin
phenomenon in theweaklycoupling regime: a subset of nu
Lyapunov exponents forK50 can becomepositive for K
.0. For a system ofN coupled chaotic oscillators, ther
exists a parameter regime of finite Lebesgue measure
,K,KPS, for which the number of positive Lyapunov ex
ponents isN1M , whereM5N/2 for N even andM5(N
11)/2 for N odd. Let l1>l2>•••>lN.lN11.•••

.lN1M denote the positive part of the Lyapunov spectru
of the system. AsK is increased from zero, the additionalM
exponents appear to obey the following algebraic sca
law:

l j;Ka for j 5N11, . . . ,N1M , ~1!

which is expected to be general@8#. For three-dimensiona
chaotic attractors, the scaling exponenta assumes the uni
versal value of 2. We will also argue that these results ho
regardless of the coupling scheme~whether local or global,
for instance!. We believe that these results have not be
noticed before but they are important and of broad inter
considering that coupled chaotic dynamics have been a
tinuously pursued topic in nonlinear and statistical physic

We first present results with the following system of tw
coupled Lorenz oscillators:ẋ1,25s1,2(y1,22x1,2)1K1,2(x2,1

2x1,2), ẏ1,2528x1,22y1,22x1,2z1,2, ż1,252(8/3)z1,2
1x1,2y1,2, wheres1,2 are parameters of the Lorenz oscillat
that can be set at the same or slightly different values so
the oscillators possess identical or nonidentical chaotic
tractors, andK1,2 are the coupling parameters associated w
©2003 The American Physical Society03-1
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the two oscillators which can be set so that the coupl
scheme is unidirectional or bidirectional. Figure 1~a! shows
the two originally null Lyapunov exponents versus the co
pling parameterK for s15s2510 ~identical oscillators!,
K15K andK250 ~unidirectional coupling!. We observe that
one exponent, which is zero forK50, starts to increase asK
is increased from zero. The exponent reaches a maxim
and then decreases asK is increased further. It become
negative forK.KPS, signifying a coherence in the phas
of the two oscillators@4#. Since each Lorenz oscillator pos
sesses one positive Lyapunov exponent in the small rang
K values considered, for 0,K,KPS the coupled system ha
three positive Lyapunov exponents. Considering that the un
coupled system forK50 has only two positive exponents
we see that the coupled system becomes more complicat
the sense that it has one more positive exponent. We find
behavior robust, as it holds under structural changes in
system. For instance, Fig. 1~b! shows the behavior of the
exponents as a function ofK for K15K and K250 ~unidi-
rectional coupling!, s1510 buts511 ~nonidentical oscilla-
tors!. Figures 1~c! and 1~d! show the exponents of the syste
under bidirectional coupling (K15K25K) for N54 andN
57 identical coupled oscillators, respectively, indicating
similar behavior for systems with more than two coupl
oscillators.

The behavior of the Lyapunov exponents shown in Fi
1~a–d! is apparently quite different from that, say, of a sy
tem of two coupled chaotic Ro¨ssler oscillators, where non
of the null exponents becomes positive as the coupling
increased. Thus, the distinct behavior shown in Figs. 1~a–d!
must come from the double-scroll feature of the Lorenz
tractor. As a trajectory moves on the Lorenz attractor a
switches back and forth between the two scrolls, there
fundamental consistency that the trajectory must follow. T
coupling, which is chaotic, can destroy this consistency

FIG. 1. For the system of coupled Lorenz chaotic oscillators,
originally null Lyapunov exponents versus the coupling parame
K for ~a! N52, s15s2510, K15K, and K250; ~b! N52, s1

510 but s2511, K15K, and K250; ~c! N54, s i510 (i
51, . . .,4), Ki5K ( i 51, . . .,4); and ~d! N57, s i510 (i
51, . . .,7), Ki5K ( i 51, . . .,7).
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cause a zero Lyapunov exponent to become positive.
Figure 2 shows, schematically, the topology of the Lore

chaotic attractor, whereA–H are representative points ass
ciated with continuous trajectories, and the arrows denote
corresponding local eigenspaces. There are two scrolls,
noted by ‘‘L ’’ and ‘‘ R, ’’ respectively. A typical trajectory
visits both scrolls intermittently in time. It does so by execu
ing topologically circular motion in one scroll with a numbe
of rotations and switches to another, and so on. The reg
surrounding the point ‘‘S’’ is where the switches occur. In
order to go from ‘‘L ’’ to ‘‘ R, ’’ the trajectory has to follow
points such asD andC. Without perturbations, it is not pos
sible to go directly from ‘‘L ’’ to ‘‘ R’’ when the trajectory is
near pointA. Similarly, in order to go from ‘‘R’’ to ‘‘ L, ’’ the
trajectory must follow the path through pointsB and A.
When the trajectory is near pointC, it is not possible for it to
go directly to ‘‘L ’’ without going through at least one rota
tion in ‘‘ R. ’’ The dynamical consistency so described gu
antees the existence of a zero Lyapunov exponent, wh
corresponds to the neutral direction of the flow, in spite
the intermittent switching behavior. But the presence of
regular perturbation could disturb this consistency, as we
argue below.

Now consider the coupled system. Because it is determ
istic, one null Lyapunov exponent must be preserved, des
coupling. The behavior of the second, originally ze
Lyapunov exponent can be assessed by regarding the li
coupling term as a randomlike, time-varying perturbation
a single Lorenz oscillator. This is particularly true when t
coupling is small, as the flow is chaotic. There can be t
types of perturbations, depending on where in the ph
space they are applied to the flow, which can have very
tinct effects on the flow. The first type can occur everywhe
on the attractor, and they disturb the trajectory in a way t
is consistent with the perturbation-free dynamics. For
stance, the perturbation can cause a trajectory to move f
pointsB to F, or fromG to H, and so on. This will have little
effect on the eigendirections of the flow, as the structures
the eigenspaces at these nearby points, which are not in
vicinity of the switching pointS, are consistent. In the
asymptotic limit, the effects of theseconsistent perturbations
will be averaged out, causing no change in the Lyapun

e
r

FIG. 2. Schematic illustration of the consistency of a typic
double-scroll chaotic flow. Random perturbations that move a
jectory from pointsB to F, or from G to H, etc., are consistent with
the noise-free dynamics. Those that cause the trajectory to go
B to D, or C to A, or vice versa, are inconsistent with the origin
dynamics.
3-2
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spectrum. This is why the null Lyapunov exponents can
preserved for small coupling in systems such as the cou
Rössler oscillators. The second type of perturbations occ
in the vicinity of S, and they are not consistent with th
perturbation-free dynamics. For example, such a perturba
can cause a trajectory to go from pointsB to D, or from A to
C, or vice versa. The local eigenspaces associated with t
inconsistentpoints are generally quite distinct from eac
other, as shown in Fig. 2. In particular, the neutral eigen
rections associated with two points such asB andD can be
quite different. Infinitesimal distance along the neutral dire
tion at pointB, when it is moved to pointD by the pertur-
bation, can no longer be preserved. Because of the cha
dynamics, the component of this distance in the unsta
direction of pointD will be magnified, leading to the destruc
tion of the neutral direction. The associated Lyapunov ex
nent will then increase from zero as the perturbation is tur
on, as we have observed in Fig. 1~a–d!. The consequence o
this type of perturbation is a change in the relative freque
with which a trajectory visits ‘‘L ’’ and ‘‘ R, ’’ which can be
measured in numerical experiment. While the discuss
above is with respect to the Lorenz attractor, it is clear tha
works for other types of chaotic attractors with multip
scrolls.

Is there a universal scaling law governing the increase
the Lyapunov exponent from zero? To answer this quest
we use a heuristic approach. For a double-scroll chaotic
tractor in three-dimensional phase space, letl i

L and l i
R ( i

51,2,3) be the average exponential rates of change of in
tesimal distances along the three eigendirections for a tra
tory in the left and right scrolls, respectively. We havel1

L

.05l2
L.l3

L and l1
R.05l2

R.l3
R . We call thempseudo-

Lyapunov exponentsbecause they can be regarded as aris
from nonattracting chaotic sets that give rise to transi
chaos@9#. In the perturbation-free case, the null Lyapun
exponent can be trivially expressed as 05l25 f Ll2

L

1 f Rl2
R , wheref L and f R ( f L1 f R51) are the frequencies o

visits to the left and right scrolls, respectively. In the pre

FIG. 3. The minimal numberNP of edges required to cover a
N nodes on a graph.~a! For N56 ~even!, we haveNP5N/253. ~b!
For N57 ~odd!, we haveNP5(N11)/254.
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ence of a small coupling of strengthK, the frequenciesf L

and f R are disturbed due to the perturbations that cause
consistencies to the flow. Approximately, we can write

l2~K !' f L~K !l2
L1 f R~K !l2

R1 f S~K !l̄5 f S~K !l̄, ~2!

where f S(K) is the frequency of switchings caused by t
inconsistent perturbations@ f L(K)1 f R(K)1 f S(K)51#, and
l̄.0 is the average expansion rate of infinitesimal vect
near the switching pointS ~Fig. 2!. Suppose there is a dom
nant unstable steady state in the switching region, as for
Lorenz system,l̄ is approximately the positive Lyapuno
exponent of this steady state. Thus, we see that the de
dence ofl2(K) on K is determined byf S(K), which is the
probability for the perturbed trajectory to fall in the stab
manifold of the unstable steady state in the switching reg
S. For a three-dimensional flow, for a point inS a perturbed
trajectory can be found in a sphere of radius proportiona
K which is centered at the point, and the dimension of
stable manifold of the unstable steady state is two@10#. Thus,
we havef S(K);K2, which is the scaling law~1! with the
algebraic scaling exponent of two for systems of coupl
three-dimensional chaotic flows.

While the above argument is for a system of two coup
chaotic oscillators, the picture of one chaotic attractor un
irregular perturbations is valid for systems of arbitrary nu
bers of coupled, identical or nonidentical attractors. Consi
a system that consists ofN (N.2) coupled chaotic attrac
tors, which possessesN null Lyapunov exponent when un
coupled. As the coupling is turned on, we expect a sub
NP,N of these exponents to become positive. The ques
is, what determinesNP, in general? The idea of chaotic a
tractor under perturbation again provides an answer. In
language of graph theory@11#, a system ofN coupled oscil-
lators can be viewed as a graph withN nodes and a numbe

FIG. 4. Test of scaling law~1! under different coupling configu-
rations. ~a! N52 ~identical oscillators with unidirectional cou
pling!, ~b! N52 ~nonidentical oscillators with unidirectional cou
pling!, ~c! N54 ~bidirectional coupling!, ~d! N57 ~bidirectional
coupling!.
3-3
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of edges. The manner by which the edges are distribute
determined by the way of coupling, such as global ver
local. The number of null Lyapunov exponents that can
come positive is then determined by the number ofindepen-
dentcoupling terms. The question becomes the following
a graph: givenN nodes, what is the minimal number of edg
that can cover allN nodes? The answer isN/2 for N even and
(N11)/2 for N odd, as shown schematically in Fig. 3. O
heuristic theory suggests that all the nullNP exponents fol-
low the scaling law~1! to become positive as a function ofK.

We now provide numerical support for the scaling la
~1!. We study the following system ofN globally coupled
Lorenz chaotic attractors:dxi /dt5s i(yi2xi)1( j Þ iKi , j (xj
2xi), dyi /dt528xi2yi2xizi , and dzi /dt52(8/3)zi
1xiyi . Figures 1~c,d! show, forN even (N54) andN odd
(N57), respectively, the behaviors of the originally nu
Lyapunov exponents. We observe that the numbers of th
exponents that can become positive under coupling areN/2
for N even and (N11)/2 for N odd, confirming our analysis
Furthermore, the scaling of these exponents with the c
pling parameterK appears to be algebraic with the univers
exponent two, as shown in Figs. 4~a–d!, the plots on a loga-
rithmic scale corresponding to Figs. 1~c,d!, respectively.
While these results are for the global coupling scheme,
.
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.F
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obtained similar results for the nearest-neighbor type of c
pling. In this case, there are onlyN edges in Fig. 3 and the
number of independent coupling terms is the minimally n
essary number of edges that can connect all nodes. As in
case of global coupling, each independent coupling term
cause a null Lyapunov exponent to become positive as
coupling strength is increased from zero. We find that
scaling result appears to hold for other coupling schem
such as multiplicative coupling@12#.

In summary, we have uncovered a general phenomeno
coupled chaotic systems. WhenN chaotic oscillators with
double-scroll~or multiscroll! attractors are coupled,N/2 (N
even! or (N11)/2 (N odd! Lyapunov exponents, which ar
zero in the absence of coupling, can become positive as s
as the coupling parameter is increased from zero. The
that these exponents become positive from zero can be c
acterized by a universal algebraic scaling law. These res
hold for all cases that we have examined, which inclu
different number of oscillators, different coupling schem
and various combinations. We believe that our finding is i
portant in chaotic dynamics and that it can be tested exp
mentally @12#.

This work was supported by AFOSR under Grant N
F49620-98-1-0400.
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