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Barland, ... Gràcies també a n’en Juanjo i en Pere per solucionar ràpidament els prob-

lemes informàtics.
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ments dif́ıcils. Al bar de Sa Plaça de Sineu pel frit-callos-llengo-ensaladilla dels diss-

abtes. Pels inoblidables moments amb els integrants de l’associació gastronòmica i
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Resum

Actualment les aplicacions tecnològiques requereixen la integració de dispositius

optoelectrònics de baix consum, de cada vegada més petits i més ràpids. Els làsers

de semiconductor (SCL) són uns bons candidats per aquestes tecnologies degut al

seu baix cost, petit tamany, i la possibilitat d’esser modulats a gran velocitat. Els

làsers de semiconductor s’empren habitualment en la vida moderna. En sistemes

de telecomunicacions, els làsers envien senyals a milers de quilòmetres per fibres

òptiques. En aplicacions electròniques, els làsers de semiconductor s’empren per

llegir/escriure dades sobre discs compactes, CD-ROMs i DVDs. Altres aplicacions ha-

bituals són les impressores i fotocopiadores làser, punters làser, sensors de pol·lució,

displays, etc.

Aquesta tesis és una contribució a l’estudi de les propietats dinàmiques dels

làsers de semiconductor. Ens centram en la discussió de les inestabilitats òptiques

que tenen lloc en aquests dispositius. El treball de modelat considera dues configura-

cions distintes. Depenent de la geometria de la cavitat làser tenim: i) làsers d’emissió

lateral de cavitat composta, ii) làsers de cavitat vertical i emissió per superf́ıcie. Un

dels majors reptes de la tesis és la comprensió i identificació dels processos f́ısics

que governen les inestabilitats. Vull fer notar que l’estructura dels capı́tols és bas-

tant autocontinguda aixı́ com una sèrie d’aspectes metodològics. Cada tema inclou

el plantejament del problema, formulació del model, anàlisis, resultats experimen-

tals en cas que n’hi hagi, i conclusions. La formulació electromagnètica del làser és

formalment equivalent al d’una guia d’ones dèbilment pertorbada.

En la primera part de la tesis tractem amb làsers d’emissió lateral amb graus de

llibertat afegits. L’anàlisis teòric està acompanyat amb discussions i resultats exper-

imentals. L’estudi comença en el capı́tol 2 amb la dinàmica de modes de cavitat ex-

terna en làsers de semiconductor amb retroalimentació òptica retrasada. Aixı́ com es

comenta en la secció 1.2, els SCL amb retroalimentació òptica mostren una dinàmica

molt complexa, i a la vegada interessant, que ha estat objecte d’un intens estudi. Avui

en dia, aquests sistemes són de gran interès en la generació de sortides caòtiques.

El caos òptic d’alta dimensió té aplicacions en sistemes de comunicació codificada

d’alta velocitat [46]. Llavors, la caracterització dels règims caòtics és essencial. Po-
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dem forçar el làser amb retroalimentació òptica a operar en un règim caòtic con-

siderant nivells de reinjecció de llum moderats i cavitats externes llargues. Aquı́ em-

pram el model de Lang-Kobayashi per descriure l’evolució d’un únic mode longitudi-

nal en làsers tipus distributed-feedback (DFB). En aquest treball estudiem les propi-

etats estadı́stiques de les sortides òptiques caòtiques aixı́ com les lleis d’escala as-

sociades amb les transicions entre distints règims d’operació. Encara que les senyals

òptiques mostrin una gran irregularitat, trobam que algunes propietats estadı́stiques

segueixen regles especı́fiques. En el capı́tol 3, consideram l’acoblament mutu de dos

làsers de semiconductor idèntics. El cas de dos SCL acoblats unidireccionalment ha

estat estudiat previament, demostrant que sota certes condicions els làsers poden

sincronitzar-se [47]. Curiosament, existeixen escassos treballs sobre l’acoblament

bidireccional de làsers, els quals suggereixen que nous escenaris de sincronització

són possibles [48]. La deducció de les equacions comença de principis bàsics, tot

reprenent el problema electromagnètic del sistema acoblat. Trobam que les mı́nimes

equacions necessaris per descriure el sistema corresponen a un problema d’injecció

bidireccional amb retràs. En aquest treball estam interessats en descriure les in-

estabilitats induı̈des per l’acoblament mutu i les propietats de sincronització. Espe-

cialment, comentam la importància del paper del retràs en l’acoblament mutu dels

oscil·ladors. El capı́tol 4 presenta les conclusions de la primera part de la tesis. El

resum de les tasques de modelat en la primera part són

• Simulació numèrica del model de Lang-Kobayashi sobre intervals de temps

llargs (∼ms) i escombrant el co-espai de paràmetres. Caracterització es-

tadı́stica dels SCL amb retroalimentació òptica.

• Modelat electromagnètic de dos SCL idèntics acoblats mútuament. Estudi de

la validesa de models senzills.

• Implementació numèrica dels models anteriors: Interpretació de les inesta-

bilitats induı̈des per l’acoblament i la sincronització dels làsers, observades

experimentalment.

Dels results numèrics i experimentals que hem obtingut podem concloure

1. Evidència experimental i numèrica de l’alternància entre emissió estable (en

un mode de cavitat externa) i fluctuacions de baixa freqüència (LFF). La dis-

tribució de temps de caiguda de la intensitat òptica en un làser monomode

amb retroalimentació òptica mostra una gran dispersió de temps. Llei de es-

cala tipus 〈T 〉 ∼ (p/pc − 1)−1 pel temps entre caigudes T , associada a la tran-

sició d’operació estable a LFF.

2. Existència de solucions monochromàtiques phase-locked per a l’acoblament

de dos SCL. Aquest tipus d’operació sembla inestable sota condicions dinàmi-

ques conduint el sistema a solució de sincronització àcrona (a distint temps).
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En la segona part de la tesis, descrivim les inestabilitats òptiques que ocórren

en làsers de cavitat vertical i emissió per superf́ıcie (VCSELs). En primer cas, es-

tudiam les propietats de polarització de la llum emesa. Insistim en la importància

de la dinàmica d’espı́ sobre les propietats de renou i la selecció de modes de polar-

ització. En segon lloc consideram l’excitació de modes transversals en dispositius

guiats per guany. La segona part de la tesis està organitzada de la manera següent.

Començam en el capı́tol 5 descrivint la dinàmica de petita senyal amb el conegut

model Spin-Flip per dispositius monomodes. En particular calculam l’espectre de

les fluctuacions d’intensitat resolt en polarització. Donam una interpretació de les

evidencies experimentals d’anticorrelació entre les fluctuacions de les components

de polarització. En el capı́tol 6, es presenta una generalització del model spin-flip

mitjançant la incorporació de graus de llibertat espacials i una funció susceptibili-

tat òptica depenent de la freqüència. El model que resulta combina els efectes de

polarització i transversals i és adequat per descriure la dinàmica de gran senyal. En

l’absència de modes transversals, la selecció de modes de polarització resulta d’un

efecte conjunt de la dinàmica d’espı́, la posició relativa sobre la corba de guany i

efectes tèrmics. En segon lloc, es mantenen els graus de llibertat espacials i el model

espai-temporal que resulta s’empra per estudiar la selecció de modes transversals.

En aquest cas, considerem dispositius guiats per guany que presenten una petita dis-

tribució d’́ındex de refracció que prové d’una lent tèrmica feble. Analitzam els efectes

de la lent tèrmica sobre les caracterı́stiques dels dispositius. En primer lloc desen-

volupam un mètode semi-anaĺıtic per determinar la selecció de modes transversals

devora de la corrent llindar del làser associat amb distintes estructures. En segon

lloc consideram la dinàmica de modes transversals que ocórre sota una excitació de

gran amplitud de la corrent elèctrica. Aquesta darrera situació és la que generalment

s’utilitza en sistemes de comunicacions òptiques amb esquema digital. El capı́tol

7 també considera modulació de corrent de gran amplitud, però en aquest cas es-

tudiam dispositius més petits. En aquest cas, la difusió espacial de portadors en

dispositius monomodes origina l’aparició de pulsacions secundàries de la intensitat

òptica durant els transitoris d’apagat. Comparant la descripció espai-temporal amb

la seva corresponent expansió modal, discutim els ĺımits de validesa i l’ús pràctic

d’una expansió modal per descriure la dinàmica de gran senyal en VCSELs guiats per

guany. Podem concretar amb més detall les tasques de modelat de la segona part de

la tesis

• Modelat bàsic del temps de coherència d’espı́ en estructures de semiconduc-

tor de pou quàntic i la seva rellevància sobre les propietats de polarització

en VCSELs. Implementació numèrica del model spin-flip incloent fonts es-

tocàstiques de renou.

• Anàlisis de petita senyal i de fluctuacions. Càlcul anaĺıtic de l’espectre de fluc-
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tuacions de potència de la intensitat total i de les components de polarització.

Interpretació de l’anticorrelació entre les fluctuacions de les components de

polarització.

• Modelat bàsic. Recerca de descripcions simples per la susceptibilitat òptica

a un nivell mesoscòpic incloent efectes de polarització, interacció a molts de

cossos i efectes tèrmics.

• Desenvolupament de còdigs numèrics, que incorporin la susceptibilitat òptica,

per estudiar la dinàmica de modes de polarització i transversals en dispositius

guiats per guany: mecanismes de selecció de modes, i efectes d’anti-guiat per

portadors sota modulació de gran amplitud.

Les conclusions que treim de la segona part de la tesis són

1. Els mecanismes de selecció de modes transversals depenen tant de les carac-

terı́stiques del material (freqüència d’operació, guany material, etc.) com de

les geomètriques mitjançant la lent tèrmica (guany modal). Llavors depen-

dent de les caracterı́stiques del dispositiu distints modes transversals poden

ser seleccionats devora de la corrent llindar. Sota excitació de gran amplitud

hi ha altres mecanismes dinàmics que intervenen (cremat espacial de porta-

dors, omplida de bandes, etc.).

2. La necessitat de models espai-temporals en dispositius guiats per guany està

jusficada en el cas de guiats febles (gradents tèrmics menors de 8 K). En tal

cas les descripcions modals donen lloc a errors quantitatius.

Finalment, en el capı́tol 8 es donen les conclusions de la segona part de la tesis.

La comprensió dels mecanismes f́ısics que governen les inestabilitats ha de per-

metre, més que procediments per evitar-les, la possibilitat d’una lliure manipulació i

per tant, donar sortida a nous graus de llibertat.

Palma, 25 Novembre 2002

José Mulet Pol



Chapter 1

Introduction

1.1 Semiconductor Lasers

The origins of the laser1 can be traced back to the Einstein’s concept of stim-

ulated emission. The presence of a photon, with appropriate frequency, can

stimulate an excited atom to emit a photon with identical phase, frequency and prop-

agation direction that the incident one [1]. Three ingredients are fundamental in any

laser: a medium providing gain/amplification, a pump generating population inver-

sion, and a cavity confining the optical field. The first population inversion was at-

tained in ammonia molecules passing through an electrostatic focuser by Townes

and Shawlow [2] in 1954. The constructed device, originally called MASER, emit-

ted light in the microwave range. The first successfully laser, operating in the visible

spectrum, was constructed by Maiman [3] and consisted of a ruby crystal surrounded

by a helicoidal flash tube. This advent was followed, at the ends of the same year, by

the experimental demonstration of working He-Ne gas lasers.

Semiconductors were too different to an “atomic” system, and too poorly under-

stood, to profit much from the success with ruby and gas lasers. The feasibility of

stimulated emission in semiconductors was considered by the early 60’s but there

was no motivation to explore the possibilities as it was believed that the emission

would be weak. However in 1962 a group from MIT Lincoln Labs reported emission

of radiation, using Zn-diffused GaAs p-n junction, and transmission of the light over

a considerable distance. This report sparked great interest and before the year was

out, four groups reported working semiconductor lasers (SCL) [4].

Current technological applications demand the miniaturization and integration

of low-consume optoelectronic devices. At the same time, faster devices are needed

to process the information. Semiconductor lasers have become the technology of

1LASER is the acronym of light amplification by stimulated emission of radiation.
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choice for many important applications because of their small size, low cost, high

reliability, spectral and modulation characteristics. Semiconductor lasers are widely

used in modern life. In telecommunications they send signals for thousands of kilo-

meters along optical fibers. In consumer electronics, semiconductor lasers are used

to read/write data on compact disks, CD-ROMs and DVDs. Other applications in-

clude laser printers, laser pointers, pollution monitoring, displays, etc.

Working principles

�
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���
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�����
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w

Figure 1.1. Band structure of a semicon-
ductor, (CB) conduction band, and (VB)
valence band.

The energy separation between the va-

lence and conduction bands of a semicon-

ductor material is of the order of Eg ∼
1 eV, thus being comparable with the ther-

mal excitation energy and the photon en-

ergy in the visible spectrum. This fact

converts semiconductors in very interest-

ing elements for optical applications. The

concept of a carrier in a SCL is associated

with an electron in the conduction band

and hole in the valence band that actually

represents the vacancy of an electron. Under thermodynamic equilibrium, electrons

and holes are distributed over a range of energies according to Fermi-Dirac statis-

tics. Hence, electrons predominantly occupy the bottom of the conduction band

whereas holes are at the top of the valence band [Fig. 1.1]. Photons are generated

by the radiative recombination of electron-hole pairs. Since this process requires the

conservation of electron wavenumber k, it will be more efficient in direct band-gap

semiconductors. Under thermal equilibrium, the rate of radiative recombination is

extremely small, only∼ 100 photons are emitted per cm3s providing an insignificant

output power. In order to generate light, population inversion in the semiconduc-

tor must be achieved by localizing in a spatial region, known as active region, a large

number of electrons and holes. Let us see how to reach these conditions.

Semiconductor lasers are based on p-n junctions of semiconductor materials –

diode lasers. The confinement of carriers is accomplished by means a heterostruc-

ture, i.e., by inserting the active region between two semiconductor materials of

wider band-gap. The working principles of a p+ − p − n structure are sketched in

Fig. 1.2. Electrons and holes can move freely to the active layer under forward bias

V > 0. Once there, they cannot cross to the cladding regions because the poten-

tial barrier resulting from the band-gap differences. The resulting energy structure is

able to trap a large number of electrons and holes inside the active region, where they

can radiatively recombine. In turn, this heterostructure provides lateral confinement
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of the electric field due to the higher refractive index in the central region. The most

important class of semiconductor diode lasers are based on III-V compounds, for in-

stance2 GaAlAs/GaAs and InGaAsP for longer wavelength communication windows.

The development of blue semiconductor lasers on the basis of GaN [5] opens the way

for a host of new applications of semiconductor lasers: the light is emitted at shorter

wavelengths and thus can be more tightly focused, e.g. increasing the density of data

stored.

Advances in quantum-mechanically designed materials have led to new low-

threshold and high-power semiconductor lasers that are suitable for a broad range

of applications. The thin layer of GaAs bounded on either side by GaAlAs, confine

electrons and holes. In present devices, the thickness of the GaAs layer is typically

smaller than ∼ 200
◦
A, thus the confinement energies become quantified. The re-

sulting heterostructure is known as quantum well laser [6] in order to differentiate

from bulk structures. Further confinement of the electron’s motion to one and zero

dimensions have lead to quantum wire and quantum dot lasers. Intrinsic properties

of quantum dot lasers include low threshold current, higher temperature operation

range, higher modulation bandwidth and narrower linewidth [7]. More recently, the

development of quantum-cascade lasers [8] has provided excellent devices for appli-

cations requiring high power, tunability and pulsed operation at room temperature.

2The notation Ga1−xAlxAs/GaAs, with x the molar fraction of Al, represents the nature of
the materials forming the heterostructure, i.e., a “sandwich” of GaAlAs/GaAs/GaAlAs.
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Figure 1.2. Energy band diagram of a heterostructure semiconductor laser under ther-
modynamic equilibrium (V = 0), and forward bias (V > 0).
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The optical gain is accomplished by electric injection of minority carriers into the

thin active layer. However, optical gain alone is not enough to operate a laser. The

polished facets perpendicular to the junction plane provides the optical feedback by

forming a Fabry-Perot cavity, whose role is twofold. First, it selects a preferred direc-

tion for stimulated emission and second, it introduces a frequency-selective mech-

anism that defines the longitudinal cavity modes. Since the mirrors are partially re-

flecting, a fraction of photons escape through the mirrors leading to a decay of the

electric field within the cavity. Moreover, the electric field is absorbed by the different

material layers constituting the laser. Thus, the optical intensity decays at a rate [9]

κ =
c

ng

[
αint +

1
2L

ln
1

R1R2

]
, (1.1)

where R1,2 represents the internal reflectivities of the facets, L the cavity length, ng

the group refractive index, c the speed of light in vacuum, and αint the internal losses.

From the above expression, we conclude that there exists a compromise between the

cavity length and the facet reflectivities to ensure moderate losses. In order to achieve

laser operation the injected current has to exceed a certain threshold value, a point

where the optical gain equals the total losses.

Standing waves in a Fabry-Perot cavity are only possible for a discrete number of

frequencies that define the longitudinal cavity modes. The frequency mode spacing

reads [9]

∆ν
L

=
c

2ngL
. (1.2)

For an effective width of the gain spectrum ∆ν
G

, the ratio ∆ν
G

/∆ν
L

provides an

estimation of the number of longitudinal modes that may become active. It is

well known that multimode emission affects the performance of the device in data-

transmission applications because of an enhanced pulse dispersion during fiber

propagation. In order to achieve singlemode operation is preferable to enhance the

mode separation ∆ν
L

, by reducing the cavity length L. However, in this case the

losses in Eq. (1.1) dramatically increase unless the facet reflectivity is enhanced by

some means.

Depending on the dimensions and geometry of the cavity, lasers can be classified

into edge-emitting lasers (EELs) and vertical-cavity surface-emitting lasers (VCSELs).

The dynamics of these devices will be investigated in the two parts of the thesis.

1.2 Edge-Emitting Semiconductor Lasers

In an EEL, sketched in Fig. 1.3, the light propagates in a rectangular waveguide whose

longitudinal extent coincides with the active layer. The mirrors are formed by cleav-
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ing the semiconductor wafer along the crystal planes to form smooth facets. No ex-

ternal mirrors are in general required, since cleaved facets of semiconductor already

provide sufficient reflectivity to allow the laser operation. If necessary, dielectric ma-

terials are subsequently deposited to reach the desired reflectivity. The typical cavity

length in EELs is of the order of L ∼ 300 µm, the facet reflectivities of R ≈ 0.3, and

longitudinal mode frequency spacing of ∆νL ∼ 100 GHz. Thus a large number of

longitudinal modes can participate in the laser action. In spite of the advantages over

conventional gas lasers, edge-emitting SCL have several shortcomings: divergent

beams, elliptical beam profiles, multimode emission, etc. As a consequence new

semiconductor structures have been develop in order to improve the characteristics

of EELs: distributed feedback (DFB) and distributed Bragg reflectors (DBR) lasers

[10], cleaved compound-cavity lasers [11], and more recently microcavity lasers [12].

The polarization direction of the electric field in an EEL is imposed by the structure,

being transverse electric (TE) or transverse magnetic (TM) depending whether the

electric or the magnetic field is linearly-polarized along the heterojunction plane.

A proper design of the laser structure is essential to achieve continuous wave

(cw) operation at room temperature and low threshold currents. The heterostruc-

ture already provides confinement of the optical mode perpendicular to the junction

plane. However, additional confinement along the junction plane is required. The

laser structures can be classified into gain-guided and index-guided depending the

way in which the optical mode is confined. In gain-guided devices the optical mode

along the junction plane is determined by the spatial distribution of gain, which in

turn depends on the distribution of injection current. In index-guided a spatial varia-

tion of the index of refraction creates a waveguide that defines the modes. The typical

threshold currents of gain-guided lasers is about ∼ 100 mA, whereas only ∼ 10 mA

in index-guided devices [10]. The localization of the current along the active region

improves the device characteristics. Gain-guided structures use proton implantation

Stripe contact

Wire bond

Cladding layer

Cladding layer

Active layer ~100 A

Bottom contact

Highly divergent
output beam

~300 mm

Figure 1.3: Sketch of a heterostructure edge-emitting semiconductor laser.
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that create a region of high resistivity that restricts the flow of the current. Broad-area

lasers obtain substantial output powers, however they do not use any scheme of cur-

rent confinement and exhibit high threshold current densities and filamentation of

the optical profiles.

Figure 1.4. Experimental time traces of
a semiconductor laser with optical feed-
back measured with (a) photodiode and
(b) a streak camera. After Ref. [13].

In this work, we are concerned with

some aspects of the nonlinear dynamics of

SCL. Previous studies [14, 15] investigated

a variety of problems: the switch-on time

and time-jitter of the optical pulses during

gain-switching [16], self-pulsing due to Q-

switching via a saturable absorber [17], ul-

trashort pulses via mode locking [18], pe-

riod doubling and route to chaos in di-

rect current modulated lasers [19], injec-

tion locking [20, 21], etc. Semiconductor

lasers are quite sensitive to external per-

turbations due to the low reflectivity of the

mirrors. Considerable attention was de-

voted to investigating the effects of optical

feedback on the static, dynamic, spectral,

noise and modulation characteristics [22,

23], and on selfpulsing lasers [24]. Even a

relatively small amount of external optical

feedback can significantly affect the performance of the laser: a dramatic increase in

the emission linewidth was found [25]. These findings motivated the understanding

of the nonlinear dynamical processes originating these instabilities [26]. A striking

behavior of the optical intensity appears: the appearance of power dropouts at irreg-

ular time intervals, low frequency fluctuations (LFF), as can be seen in Fig. 1.4(a). The

first experimental evidence of such a behavior was already reported in the 70’s [27].

The debate about the origin of the LFF have been very intense: stochastic, determin-

istic, and the importance of multilongitudinal emission [See Chapter 2]. Looking at

faster time scales in Fig. 1.4(b), the optical intensity displays a highly irregular be-

havior with pulsations at the∼ns time scale. The first part of the thesis is intended to

modeling and characterizing the feedback-induced instabilities. We perform a sta-

tistical description of the LFFs by means an extensive numerical simulation of the

Lang-Kobayashi model [28]. We will briefly mention the applications of these sys-

tems in encoded optical communications.
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1.3 Surface-Emitting Semiconductor Lasers

VCSELs are a particular type of SCL in which the resonating cavity is perpendicular to

a thin active layer. The typical dimensions, length×width×thickness, in a VCSEL are

∼ 1 × 10 × 10 µm3, considerably different that an EEL. An important consequence

is that VCSELs emit in a single-longitudinal mode. In contrast to conventional EELs,

the optical beam is guided and emitted in the vertical direction. The thin active layer

(∼ 10− 30 nm) is usually composed by one or several quantum wells providing high

optical gain, low threshold current, high relaxation oscillation frequency, and im-

proved temperature characteristics. More recently, VCSELs based on quantum dot

active material have been developed [7]. It is worth noting that the single gain-path

length in a VCSEL is extremely small, typically of 1% of the cavity length, i.e., four or-

ders of magnitude shorter than an EEL. Therefore, the active layer have to be placed

at an antinode of the electric field to enhance the optical confinement. Secondly,

it is imperative to fabricate mirrors with very high reflectivities, active regions with

high optical gain, and cavities with very low optical losses. The VCSEL’s mirrors are

created by growing a stack of quarter-wavelength layers of semiconductor materials

with alternating refractive indexes, forming a distributed Bragg reflector (DBR). The

order of 20−40 pairs are necessary to achieve high reflectivities.

Carrier transport between the electric contacts along the different layers deter-

mines the lateral distribution of current density at the active layer, that in turn de-

limits the lateral extension of the active region. The electric contact is disk-shaped or

ring-shaped in bottom-emitter and top-emitter devices as shown in Fig. 1.5. Gain-

guided VCSELs use proton implantation to localize the current close to the cavity

axis. In weakly index-guided VCSELs, an oxide-layer is placed close to an antinode of

the electric field. The lower refractive index of the oxidized region, typically a change

of ∼ 10−2, provides a lateral confinement of the electric field. The central aperture

Top ring 
contact

Oxide
QW layer

   n-DBR

Bottom
 contact

Light

p-DBR

p-spacer

n-spacer

(b)(a)

p-DBR

n-DBR
z

r

Light

Top ring 
contact

QW layer

Bottom
 contact

proton
implantation

Figure 1.5. Sketch of a bottom-emitting (a) and top-emitting (b) vertical-cavity surface-
emitting semiconductor laser.
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of the oxide restricts the current flow and thus the extension of the active region.

Strongly index-guided devices, such as airpost VCSELs, have an abrupt separation

between semiconductor air that provides a large refractive-index contrast, ∆n ∼ 1.

In contrast to EELs, the geometry of the VCSEL’s cavity is cylindric. For this rea-

son, the output beam is circular reducing the coupling losses with fibers. The vertical

structure allows for an easy integration in two-dimensional (2D) arrays, and more

recently in photonic band gap lasers. Further, it allows for a direct testing without

necessity of cleaving and separating the devices. The careful design of the active ma-

terial provides ultra-low threshold currents∼ µA.

Development of VCSELs

Certainly, VCSELs that are currently commercially available, have been the fruit of the

continuous development of the semiconductor technology and growth techniques.

The first surface emitting (SE) laser was experimentally demonstrated by Melngailis

already in 1965. The active material consisted in a piece of bulk InSb, refrigerated at

10 K and immersed in an intense magnetic field in order to confine the carriers. The

concept of heterostructure in SE laser was introduced by K. Iga (1977) as an alterna-

tive method to improve the carrier confinement. Exploiting this idea, H. Soda in 1979

obtained pulsed operation of GaInAsP/InP SE with threshold current of 900 mA oper-

ating at 70 K. The threshold current of these initial SE devices was so high because the

reflectivity of the metallic mirrors was insufficient. In 1984, K. Iga replaced them by

semiconductor mirrors obtaining pulsed operation of GaAlAs/GaAs VCSEL at room

temperature. Important improvements were achieved after the introduction of mul-

tilayer mirrors and also when replacing the bulk active material by quantum wells.

With this new technology, Jewell et al. (1989) grew VCSELs with threshold currents as

low as 1-2 mA operating cw at room temperature.

GaInAsP/InP
AlGaInAs/InP

GaInNAs/GaAs
GaInAs/GaAs
GaAlAs/GaAs

GaAlInP/GaAs
ZnSSe/ZnMgSSe

GaInAlN/GaAlN

0.3     0.5        0.8    1.0          1.3    1.5

 UV        visible        IR

λ (µm)

0.3~0.5

0.45~0.5

0.63~0.67

0.78~0.88
0.98

1.3

1.3~1.5

Figure 1.6: Materials for VCSELs in a wide spectral band. After Ref. [29].
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The first commercial applications of VCSELs started to appear since 1996, being

suitable for local area networks (LANs), optical interconnects, and for future appli-

cations in the gigabit Ethernet as well. By a proper combination of materials it is

possible to construct devices emitting at different wavelengths [See Fig. 1.6]. The im-

portance of GaInAsP/InP VCSELs operating at 1.3 or 1.55 µm is increasing, since their

potential application in parallel lightwave systems and parallel optical interconnects.

Some commercial links are also available with AlGaAs/GaAs VCSELs emitting near

0.85 µm. Red emitting VCSELs, based on GaAlInP/GaAs materials, are also attrac-

tive for their applications in CD players and plastic optical fiber systems. Green-blue

and blue VCSELs are, in general, more difficult to obtain displaying high threshold

currents, short lifetimes and in many cases only pulsed operation. The applications

of blue VCSELs is huge, for instance, in storage and information retrieval, full color

displays, and high efficiency illumination together with green and red devices.

Instabilities

In spite of these very attractive advantages, several instabilities have been identified

in VCSELs. The polarization of the electric field in an EEL is defined by the struc-

ture, however polarization in VCSELs is not as well stabilized due to their circularly

symmetric cavity. A common instability, known since long time ago, is the polariza-

tion switching among two orthogonal linearly-polarized states as shown in Fig. 1.7.

This fact motivates the understanding, characterization and control of polarization

in VCSELs. Since in many descriptions of EELs the polarization degrees of freedom

are disregarded, the description of polarization effects requires of a thorough revision

of the microscopic processes involved [30]. The relative contribution of thermal [31]

and nonthermal [32] effects has been broadly discussed [33, 34]. Moreover, the rela-

Figure 1.7. LI curve after projection on linear polarization states for a 8 µm proton-
implanted VCSEL. The black (grey) lines correspond to high (low) frequency mode. The
inset shows the optical spectrum at a current 4.3 mA. After T. Ackemann and M. Sonder-
mann, Appl. Phys. Lett. 78, 3574 (2001).
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tively large Fresnel number allows for the formation of spatial structures [35, 36]. Fig-

ure 1.8 shows that although the laser onset is initiated in a Gaussian transverse mode,

more complicated structures develop for higher injection currents. The understand-

ing of polarization and transverse modes in VCSELs requires of a unified description.

These issues will be treated in the second part of the thesis. We will show how the dy-

namics of the electron’s spin, described by the spin-flip model [37], naturally enters

into the description of the light polarization of quantum well VCSELs. Finally, the

behavior of VCSELs is sensitive to thermal effects mainly through two mechanisms:

a global increase of the temperature (device heating), and the development of trans-

verse gradients of temperature (thermal lensing). The former leads to a reversible

switch-off of the output power when increasing the current injection through ther-

mal roll-off [Fig. 1.8], while the latter affects to the transverse mode properties of

the device. The modeling of the transverse mode structure of gain-guided VCSELs

requires of the simultaneous consideration of gain-guiding, carrier antiguiding and

thermal mechanisms [38].

1.4 Common Features in the Modeling of Semicon-
ductor Lasers

The modeling of semiconductor lasers requires a trade-off between comprehensi-

bility, accuracy and complexity. In this thesis, we aim to understand the optical

processes occurring in semiconductor lasers. The challenge involves two aspects

i) the formulation of the physical models and ii) their analysis and numerical so-

lution. Strictly speaking, the dynamical properties of semiconductor laser are the

result of a complex interplay of diverse physical mechanisms; namely, optical, ther-

mal, and electrical effects. The interdependence of these effects should require of

self-consistent solutions [39]. Then, in order to develop the simplest theoretical de-

Figure 1.8. Optical power versus injection current for a 6 µm oxide aperture VCSEL (left).
Nearfield images at injection currents 3.0 mA (a), 6.2 mA (b), 14.7 mA (c), and 18 mA (d).
After C. Degen et al., Opt. Express 5, 38 (1999).
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scription, it is essential to identify the relevant mechanisms for each problem. Next,

we summarize the basic equations that govern the evolution of the optical variables

and the light-matter interaction.

1.4.1 Maxwell’s equations

The electromagnetic analysis of the fields within a laser cavity starts from Maxwell’s

equations [40]. For a nonmagnetic medium (µω ≈ 1) and in the absence of free

charges, at optical frequencies (ρω ≈ 0), the Maxwell’s equations [40] expressed in

frequency domain read

~∇ · ~Dω ≈ 0 , (1.3a)

~∇ · ~Bω = 0 , (1.3b)

~∇× ~Eω = iω ~Bω , (1.3c)

~∇× ~Hω = ~Jω − iω ~Dω , (1.3d)

where ~Eω and ~Hω are the electric and magnetic fields, ~Dω and ~Bω are the respective

flux densities, and ~Jω is the current density vector. Note that we have used

F̃ω ≡
∞∫

−∞

dt eiωtF (t) ,

for the direct Fourier transform, a definition that will be used all through the thesis.

Eqs. (1.3a)−(1.3d) are complemented with the constitutive relationships in semicon-

ductor media

~Dω = ε0~Eω + ~Pω, (1.4a)

~Bω = µ0
~Hω, (1.4b)

~Jω = σω
~Eω, (1.4c)

with ε0 the vacuum permittivity, µ0 the vacuum permeability, and σω the electrical

conductivity of the medium. The induced material polarization ~Pω has two contri-

butions: the linear ~P l
ω and nonlinear ~Pnl

ω polarization

~Pω = ~P l
ω + ~Pnl

ω . (1.5)

The linear contribution takes into account the dielectric nature of the passive semi-

conductor medium, and can be expressed in terms of the linear susceptibility χl
ω

through ~P l
ω = ε0χ

l
ω

~Eω , that in turn defines the background refractive index

ne ω ≡
√

1 + χl
ω .
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On the other hand, the nonlinear polarization describes both the gain/absorption

and dispersion of the semiconductor medium as a function of the carrier density N

induced by electrical injection.

Taking the (~∇×) of the Eq. (1.3c) and assuming that ~∇· ~Eω ≈ 0, we obtain a wave

equation for the electric field

~∇2~Eω + iω
σω(~r)
ε0c2

~Eω +
(ω

c

)2

n2
e ω(~r)~Eω = − 1

ε0

(ω

c

)2
~Pnl

ω (~r) , (1.6)

where ne ω(~r) represents the distribution in passive refractive-index.

1.4.2 Semiconductor dynamics

In the semiclassical laser theory, the light-matter interaction is described by the ma-

terial polarization Pnl that appears in the wave equation (1.6) of the electric field

E . Next we enumerate the ingredients required for determining the dynamics of the

semiconductor material.

1. Band structure: The energy-dispersion relationships Ei(k) and dipole-matrix

elements ~µk can be determined by solving the Schrödinger equation for the

Bloch function at wavevector k. The Hamiltonian must include i) interaction

of the electron with the periodic lattice H0, ii) k · p interaction, and iii) defor-

mation potentials Hstrain in the case of strain.

2. Interaction Hamiltonian: It includes kinetic energy from electrons and holes at

different Bloch wavenumbers k, dipole interaction of the light with the electric

field, and many-body effects.

3. Heisenberg equations of motion: Evolution of the electronic occupation num-

ber nek, hole occupation nhk, and microscopic polarization pk at wavevector

k.

4. Bloch semiconductor equations: The Hartree-Fock contribution of the Coulomb

interaction is expressed as screening terms. Each transition at fixed k is con-

ceptually equivalent to a two-level system, although with renormalized tran-

sition energies and Rabi frequencies.

When the Coulomb interaction is neglected, the Bloch semiconductor equations re-

duce to the free-carrier model. In this case, the semiconductor behaves as an en-

semble of inhomogeneously broadened two-level systems. A transition to fixed k is

equivalent to the density-matrix ρ formulation of a two-level system, i.e., the diago-

nal terms of ρ stand for nek and (1−nhk), whereas the cross-terms represent pk. The



1.4 Common Features in the Modeling of Semiconductor Lasers 13

free-carrier model reads [14, 41, 42]

dpk

dt
= −(γ⊥ + iωk)pk − iΩk [nek − (1− nhk)] , (1.7a)

dnik

dt
= i [Ωkp∗k − Ω∗kpk] + Λik +

dnik

dt

∣∣∣∣
decay

, (1.7b)

where

Ωk ≡
µkE

~
, ωk ≡

Ee(k)− Eh(k)
~

,

are the Rabi and transition frequencies respectively. In the relaxation rate approx-

imation, the carrier-carrier collisions introduce a dephasing of the material polar-

ization γ⊥ (linewidth of the optical transitions), and more important, tend to drive

the population distributions to quasi-equilibrium Fermi-Dirac functions [43]. The

term Λik represents the generation of carriers due to pumping, whereas the last term

in Eq. (1.7b) includes radiative/nonradiative decay. The free-carrier model provides

compact expressions for the macroscopic material polarization Pnl, at a monochro-

matic field at frequency ω, starting from the microscopic pk

Pnl
ω =

1
V

∑
k

µ∗kpk , (1.8a)

pk = − i

~
µkEω [nek − (1− nhk)]

1
i(ωk − ω) + γ⊥

. (1.8b)

with i = e, h and V the active crystal volume. Under quasi-equilibrium condi-

tions the carrier distributions nik are equivalent to the Fermi-Dirac distributions

f i(Ei(k))

f i(Ei(k)) =
1

1 + e(Ei(k)−F i)/kBT
, (1.9)

with F i the quasi-Fermi levels for electrons and holes, kB the Boltzmann constant

and T the temperature absolute. The material polarization can be alternatively de-

scribed through the optical susceptibility χ

Pnl
ω = ε0 χ (ω, {nek, nhk}) Ew .

The optical susceptibility reads

χ(ω, N) = − i

ε0

1
V ~

∑
k

|µk|2
fe
k + fh

k − 1
i[ωk(N)− ~ω] + γ⊥(k)

Qk . (1.10)

Proceeding in a phenomenological way, many body effects can be taken into account

through the renormalization of the band-gap with the carrier density ωk(N) and the
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Coulomb-enhancement factor Qk. The real and imaginary parts of χ = χ′ + iχ′′

provide the index of refraction and gain induced by carriers. The Kramers-Krönig

relations [44] connect χ′ and χ′′

χ′(ω) = − 1
π

P
∞∫

−∞

dν
χ′′(ν)
ν − ω

, (1.11a)

χ′′(ω) =
1
π

P
∞∫

−∞

dν
χ′(ν)
ν − ω

, (1.11b)

where P stands for the Cauchy principal value of the integral. Microscopic theories

including collision terms and screening of the Coulomb interaction provides a very

good description of the absorption/gain spectra as can be seen in Fig. 1.9. However,

the inclusion of these theories into the laser dynamics is very time consuming, even

without considering spatial effects [43]. In chapter 6 we will develop analytical ap-

proximations to Eq. (1.10) for the circular polarization components of the electric

field. The concept of spin sub-bands will be introduced there.

The evolution of the macroscopic carrier densities can be obtained from the mi-

croscopic quantities nek and nhk

N =
1
V

∑
k

nik , (1.12)

Figure 1.9. Experimental (dashed lines) TE absorption spectra of a single quantum
well (GaIn)As/(AlGa)As laser diode. From top to bottom, the injection currents are
I = (0, 1, 3, 5, 7.5, 10, 12.5, 20) mA. The solid lines correspond to the predictions of the
microscopic theory. After C. Ellmers et al., Appl. Phys. Lett. 72, 1647 (1998).
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Using Eqs. (1.12) and (1.7b) we obtain the evolution of the macroscopic carrier den-

sity

∂N

∂t
=

ηI

eV
−R(N) +D∇2N − i

~
[
PnlE∗ − Pnl∗E

]
, (1.13)

I injection current, η the injection efficiency3,D carrier diffusion. The carrier recom-

bination R(N) contains a nonradiative term AN , spontaneous radiative recombina-

tion BN2, etc. The last term in Eq. (1.13) accounts for stimulated recombination of

carriers. Carrier transport and capture from the bulk material to the quantum well

[6, 12, 45] have been disregarded, considering sufficiently slow variations of the car-

rier distributions.

1.5 Overview

In this thesis we aim to investigate the dynamical properties of both edge-emitting

and vertical-cavity surface-emitting semiconductor lasers. We center the discussion

on the optical processes occurring in these devices. We notice that the structure of

each chapter is somehow self-contained, including a description of the problem, for-

mulation of the model, analysis, experimental results if they apply, and conclusions.

In the first part of the thesis we deal with edge-emitting semiconductor lasers

with added degrees of freedom. The theoretical studies are accompanied and dis-

cussed with experimental results. The study begins in chapter 2 with the dynamics

of external-cavity modes in semiconductor lasers with delayed optical feedback. As

commented in Sec. 1.2, the fascinating nonlinear dynamics exhibited by SCL with op-

tical feedback has been matter of an intense research. Nowadays these systems are

of increasing interest for the generation of chaotic outputs. High dimensional opti-

cal chaos has practical applications in high-speed encoded communication systems

[46]. The characterization of the chaotic regimes is essential. We force the system

to operate in a chaotic regime, by considering moderate feedback levels and long

external-cavities. The single-longitudinal mode Lang-Kobayashi model is used to

describe experiments with distributed-feedback semiconductor lasers. In this work

we investigate the statistical properties of the chaotic outputs as well as the scaling

laws associated with the transitions between different regimes. In spite of the ap-

parent irregularity in the time signals, the statistical quantities follow quite generic

rules. In chapter 3 we consider the bidirectional coupling of two twin SCL. Unidi-

rectionally coupled semiconductor lasers has been extensively characterized in the

past, demonstrating that under proper conditions they may synchronize [47]. Re-

markably, only few studies focused on the bidirectional coupling among the lasers,

3For the sake of simplicity we skip the factor η in the rest of the thesis, assuming that it is
included into the definition of I .
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providing new scenarios of synchronization [48]. Starting from basic principles, we

retake the electromagnetic modeling of the coupled system. We find that the min-

imal governing equations correspond to a bidirectional injection problem with de-

lay. In this work, we are interested in characterizing the instabilities induced by the

mutual coupling of the lasers and the synchronization properties. We address the

importance of the delay in the mutual coupling of the oscillators. Chapter 4 presents

the conclusions of part one of the thesis. The summary of the modeling tasks devel-

oped in the part one is

• Long-time interval (∼ms) numerical simulation of the Lang-Kobayashi model.

Statistical characterization of singlemode semiconductor lasers with delayed

optical feedback.

• Electromagnetic modeling of the bidirectional coupling of two twin semicon-

ductor lasers. Study of the validity of simple models.

• Numerical implementation of the above model: Interpretation of the experi-

mentally observed coupling-induced instabilities and synchronization.

In the second part of the thesis, we describe the optical instabilities displayed by

vertical-cavity surface-emitting lasers. We investigate the polarization properties of

the light emitted. We stress the importance of the electron’s spin dynamics on the

noise characteristics and selection of polarization modes. In a second place, the ex-

citation of transverse modes in gain-guided devices is considered. The second part is

organized according to a hierarchy of models. We begin in chapter 5 describing the

small-signal dynamics with the so-called Spin-Flip model. In particular we compute

the polarization resolved intensity noise spectra in singlemode VCSELs. We interpret

the origin of the experimentally observed correlated fluctuations between polariza-

tion components. In chapter 6, we present a generalization of the spin-flip model

by incorporating spatial degrees of freedom and a frequency-dependent optical sus-

ceptibility. The resulting model is suitable for the study of large-signal dynamics. In

the absence of spatial effects, the selection of polarization modes results from a join

interplay of spin dynamics, nonlinear semiconductor dynamics and thermal effects.

In a second step, the spatial degrees of freedom are maintained and the resulting

spatiotemporal model is used for investigating the selection of transverse modes. We

consider gain-guided devices that include a weak passive distribution of index of re-

fraction that arise from a thermally-induced lens. We analyze the effects of thermal

lensing on the device characteristics. Firstly, we develop a semi-analytical method

for determining the transverse mode selection at threshold associated with different

device structures. Secondly, we consider the transverse mode dynamics under large-

signal excitation of the injection current. This last situation occurs in optical com-

munication systems using a digital encoding. Chapter 7 also considers large-signal
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current modulation, but in this case smaller active-region VCSELs are analyzed. Spa-

tial carrier diffusion in singlemode devices originates secondary pulsations of the

optical intensity during the turn-off transients. By comparing the spatiotemporal de-

scription with its optical modal expansion, we discus the validity and feasibility of an

optical modal expansion when describing transverse mode dynamics in gain-guided

VCSELs. To be more specific, the modeling tasks that we are considering include

• Basic modeling of the spin coherence in quantum-well semiconductors and

its relevance on the polarization properties of VCSELs. Numerical implemen-

tation of the spin-flip model including stochastic terms.

• Noise and small-signal analysis: Analytical calculation of the relative intensity-

noise spectra of the total intensity and polarization components. Physical un-

derstanding of anticorrelated fluctuations of the polarization components.

• Fundamental modeling: Search for accurate and simple descriptions of the

full optical susceptibility at a mesoscopic level incorporating polarization,

many body and thermal effects.

• Development of numerical codes, incorporating the frequency-dependent sus-

ceptibility, to study of the dynamical behavior of polarization and transverse

modes in gain-guided VCSELs: mode selection mechanisms, and carrier anti-

guiding effects under large current modulation.

Chapter 8 describes the conclusions of the second part of this thesis.





Part I

Compound-Cavity
Edge-Emitting Semiconductor

Lasers
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Preface to the First Part

In this first part, we investigate the dynamical properties of edge-emitting semi-

conductor lasers with added degrees of freedom. We consider two examples: de-

layed optical feedback and bidirectionally coupled semiconductor lasers. The study

of these systems is motivated by experimental evidences of a highly complex dynam-

ics. We perform a direct comparison between numerical predictions and experimen-

tal results. We find that in both cases the optical coherence of the electric fields

is of high relevance. These configurations can generate a variety of output signals,

from short optical pulses to high-dimensional optical chaos, with important applica-

tions in communication systems. Before these technologic applications become fully

functional, two aspects require to be analyzed. Firstly, robust and practical means of

generating optical chaos have to be developed and characterized. Secondly, the fea-

sibility of encoded communications also depends on the robustness and facility of

the receiver system to synchronize to the chaotic signal of the transmitter.

This part is divided in two chapters. Firstly, we consider the effect of delayed opti-

cal feedback in edge-emitting semiconductor lasers. We focus on the chaotic regimes

that appear for low to moderate levels of light re-injection, and long external cavi-

ties. We perform extensive numerical simulation of the Lang-Kobayashi equations

over long time intervals. A statistical characterization of the low-frequency fluctua-

tion regime, where the optical intensity exhibits irregular power dropouts, is carried

out. Secondly, we consider the mutual coupling of two distant semiconductor lasers.

In this case we investigate the instabilities induced by the delayed mutual coupling,

and specially the synchronization properties. The modeling tasks concentrate in de-

termining the evolution of the longitudinal mode amplitude of the electric field. So

far multilongitudinal mode emission, light polarization and transverse spatial effects

are disregarded.
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Chapter 2

Semiconductor Lasers with
Optical Feedback

2.1 Introduction

Systems1 containing feedback loops appear very commonly in a wide variety of

fields, including biology, ecology and physics. In biology they occur in regulation

and stabilization processes, e.g., blood cell-production, neural control, and respira-

tory physiology. A fundamental characteristic of many of these dynamical systems is

that their behavior depend on time delays [49]. Time delays appear due to the fact

that most of the processes are not instantaneous, but take place in a finite time (pro-

duction, conduction, transmission, diffusion, etc.). For instance, the control of phys-

iological systems (heart rate, blood pressure, motor activity) is performed by negative

feedback loops that are in general delayed.

In Chapter 1 we emphasized the relevance of semiconductor lasers (SCL) in

many modern applications owing to their various interesting properties: low con-

sume, small size, integrability, etc. However the performance of these devices can

be affected by the presence of environmental perturbations. One of this effects is

the re-injection of a fraction of light into the laser diode after a time τ later –delayed

optical feedback. This effect may occur, for instance, due to unwanted reflections at

the end of a fiber, on compact disc surfaces, or intentionally due to the presence of

an external mirror. The finite distance between the laser and the external mirror in-

troduces a delay owing to the light propagation-time. Optical feedback can be clas-

sified into two sub-classes, coherent and incoherent feedback, depending whether

the coherence time of the laser light is larger or smaller than the delay time τ respec-

1 This chapter is based on the papers:
J. Mulet and C. R. Mirasso, Phys. Rev. E 59, 5400 (1999);
T. Heil, I. Fischer, W. Elsäßer, J. Mulet and C. R. Mirasso, Opt. Lett. 18, 1275 (1999).
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tively. In this work we focus the study on the coherent case, where the optical phase

of the electric field plays a crucial role introducing constructive and destructive in-

terferometric effects. Other feedback configurations, where the optical phases do not

directly affect the properties of the system have been studied in the literature, e.g., in-

coherent optical feedback [50, 51] and optoelectronic feedback [52]. During the early

80s feedback in SCL sparked a great interest owing to the capability of stabilizing a

particular longitudinal mode, thus improving the noise characteristics. This interest,

however, progressively drifted towards the fascinating nonlinear behavior exhibited

by this system.

From the mathematical point of view a delay term in a differential equation

yield an infinite dimensional phase-space, since a function, defined over a con-

tinuous interval [0, τ [, has to be specified as initial condition. The understanding

of delayed feedback systems has been boosted during the last years using semi-

conductor lasers. Fundamental nonlinear dynamical phenomena, such as, period

doubling and quasi-periodic route to chaos have been characterized in these sys-

tems. Also high-dimensional chaotic attractors have been identified. Furthermore

the analogy between delay differential equations and 1D spatial extended systems

(coupled maps) have been established [53] and exploited for the characterization of

the chaotic regimes [54].

This chapter is devoted to introducing the physics of compound-cavity SCL.

Firstly, we study the effect of a passive external cavity on the laser dynamics. In

Sec. 2.2 we present a systematic derivation of the laser equations with optical feed-

back. We sequentially introduce fundamental concepts that will be useful in the fol-

lowing chapters of the thesis: Boundary conditions at reflecting interfaces are treated

using the Fourier domain representation, whereas the dynamical properties are ac-

cessible through the slowly-varying approximation. In Sec. 2.2.1 we present a mod-

ern review of the Lang-Kobayashi model for lasers with optical feedback, paying spe-

cial attention to the different regimes of operation [Sec. 2.3]. Next we focus the dis-

cussion to the statistical properties governing the low frequency fluctuation dynam-

ics [Sec. 2.4]. Scaling laws associated with the transition from stable operation to low

frequency fluctuations (LFF) are numerically and experimentally analyzed. In most

of the experiments Fabry-Perot lasers, which exhibit multimode operation when they

are subject to delayed optical feedback, are used (e.g. Hitachi LP1400, Sharp LT015 or

Spectral Diode SDL-5401-G1). Therefore, even though singlemode theory and mul-

timode experiments may agree, the mismatch between theoretical assumptions and

experimental conditions has yield considerable controversies [55, 56]. In Sec. 2.4.1

we use distributed feedback lasers (DFB) to obtain an optimum match between ex-

perimental and theoretical conditions to provide an experimental system in which

the results of numerical investigations can be realized straightforwardly in experi-



2.2 The Model 25

ments. The statistical properties of low frequency fluctuations under modulation of

the injection current are discussed in Sec. 2.5 and finally Sec. 2.6 is devoted to con-

cluding and summarizing the chapter.

2.2 The Model

In a semiclassical framework, the electromagnetic fields are described through the

Maxwell’s equations while the matter (semiconductor medium) is characterized us-

ing the Quantum Mechanical theory [See Sec. 1.4]. A semiclassical description of the

spontaneous emission processes, neglecting the quantification of the electric fields,

is also performed. In this chapter we restrict ourselves to give an operational defini-

tion of noise, although we will return to this concept in Chapter 5 and Appendix C.

Field equations and boundary conditions

The Maxwell’s equations (1.3a)–(1.3d), expressed in frequency domain, lead to a wave

equation for the electric field

~∇2~Eω + iω
σω(x)
ε0c2

~Eω +
(ω

c

)2

n2
e ω(x)~Eω = − 1

ε0

(ω

c

)2
~Pnl

ω (~r) , (2.1)

σω is the conductivity of the medium, ne ω(x) the built-in refraction index step that

defines the active region, and ~Pnl
ω the nonlinear contribution to the material polar-

ization.

We consider a Fabry-Perot cavity as the one depicted in Fig. 2.1. The nonlinear

polarization ~Pnl
ω (~r) is nonvanishing in the active region, i.e., −W/2 ≤ x ≤ W/2,

W being the active-region thickness. Due to the geometry of the device, the electric

field can be assumed to be linearly polarized along the heterojunction plane

~Eω(~r) = Ẽω(z)Φω(x)ŷ . (2.2)

Φ(x) defines the profile associated with the transverse electric (TE) mode whereas

the longitudinal dependence is described by Ẽω(z). The transverse magnetic (TM)

modes will be neglected in the analysis, because they typically have higher threshold

currents due to the lower mirror reflectivities for this polarization orientation. The

modification of the propagation constants due to the presence of a finite distribution

of field, i.e. transverse modes, is accounted through the effective refractive-index

approximation. Introducing the ansatz (2.2) into (2.1), taking neff(ω) as a separation

variable, and projecting onto a mode Φ∗ω(x) we arrive at

d2
zẼω(z) + β2

ωẼω(z) +
iωσ̄ω

ε0c2
Ẽω(z) = −

(ω

c

)2

Γxχnl(N)Ẽω(z) , (2.3a)

∇2
⊥Φω(x) +

(ω

c

)2 [
n2

e ω(x)− n2
eff(ω)

]
Φω(x) = 0 , (2.3b)
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where the average electric conductivity σ̄w and transverse confinement factor Γx

read

σ̄ω =

∫∞
−∞ σω(x)|Φω(x)|2dx∫∞

−∞ |Φω(x)|2dx
, Γx =

∫W/2

−W/2
|Φω(x)|2dx∫∞

−∞ |Φω(x)|2dx
. (2.4)

βω ≡ (ω/c)neff(ω) stands for the propagation constant associated with the longitu-

dinal mode and has to be determined from Eq. (2.3b) complemented with adequate

boundary conditions. In the case of a flat distribution of refractive index with n̄e ω ,

the propagation constant reduces to βω = (ω/c)n̄e ω .

We consider the situation depicted in the Fig. 2.1, that consists in a Fabry-Perot

cavity with length L arranged in tandem with an external mirror separated by a dis-

tance Le. The external cavity is defined by the physical separation between the right

laser facet and the external mirror. The longitudinal dependence of the electric field,

within both the laser cavity and the external cavity, is expressed as the superposition

of two counter-propagating waves

Ẽω(z) =

{
Ẽ+eiqz + Ẽ−e−iqz + c.c. −L ≤ z ≤ 0
Ẽ+
0 eiq0z + Ẽ−0 e−iq0z + c.c. 0 < z ≤ Le

. (2.5)

This form takes implicit the hypothesis of perfect mode matching between the TE

laser mode Φ(x) and the incoming feedback field. Ẽ± and Ẽ±0 stand for the ampli-

tudes, at frequency ω, of the counter-propagating waves inside the laser section and

in the external cavity, respectively. The associated propagation constants are q and

q0. Upon substitution of Eq. (2.5) into Eq. (2.3a) we have

[
β2

ω − q2
ω

]
Ẽω(z) +

iωσ̄ω

ε0c2
Ẽω(z) = −

(ω

c

)2

Γxχnl(N)Ẽω(z) , (2.6)

for−L ≤ z ≤ 0.

�

Figure 2.1. Edge-emitting laser with optical feedback from a distant reflector. Counter-
propagating waves verify boundary conditions. Light propagates in the longitudinal z-
direction while the polarization of the field is transverse electric.
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We consider that all the laser facets are carefully cleaved, giving rise to dielectric-

dielectric interfaces. They have an internal (external) real reflectivity and transitivity

r′, t′ (r, t). The Stokes!relationships [40] lead to r = −r′ and tt′ = 1− r2. The electric

field and its z-derivative must be continuous at each laser facet. We arrive to the

following boundary conditions for the amplitudes of the counter-propagating waves

z = −L, e−iqLẼ+ = r′eiqLẼ− . (2.7a)

z = 0, Ẽ+
0 = t′Ẽ+ + rẼ−0 , (2.7b)

Ẽ− = r′Ẽ+ + tẼ−0 . (2.7c)

z = Le, e−iq0Le Ẽ−0 = −r3e
iq0Le Ẽ+

0 . (2.7d)

For convenience, we have taken the origin of the z-axis at the right laser facet. In

first approximation, we consider the reflection and transmission coefficients inde-

pendent on propagation constants, i.e., independent on both ω and N . The only

assumption is that the external metallic mirror introduces a reflection phase of π un-

der normal incidence, negative sign in Eq. (2.7d). The propagation constant in the

external cavity reads

q0 =
ω

c
+

i

2
αext

ω , (2.8)

where αext
ω stands for the total accrued coupling losses. Alternatively, we can express

ei2q0Le ≡ ξeiωτ , (2.9)

with τ ≡ 2Le/c the round-trip delay time while ξ2 is the total power attenuation, due

to e.g., diffraction or coupling losses with other optical elements.

By using Eqs. (2.7b)−(2.7d) we can express the amplitude Ẽ− propagating in the

left direction as

Ẽ− = reff(ω) Ẽ+ ,

reff(ω) ≡ r′
[
1 +

(1− r2)
r

r3ξe
iωτ

(1 + rr3ξeiωτ )

]
. (2.10)

From the above expression, we deduce that the effect of the external cavity can be

substituted by an effective frequency-dependent mirror with reflectivity reff(ω). By

also using Eq. (2.7a), we arrive at the following relationship between the two counter-

propagating waves within the laser section[
1 −r′ei2qL

−reff(ω) 1

][
Ẽ+

Ẽ−

]
=

[
0
0

]
. (2.11)
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The boundary conditions impose a relationship between the counter-propagating

wave amplitudes. Thus the longitudinal dependence of the electric field can be solely

described, e.g., by the field amplitude propagating in the left direction Ẽ−

Ẽω(z) = Ẽ−f(z) ,

f(z) ≡ r′ei2kLeiqz + e−iqz , (2.12)

f(z) being the standing wave within the laser cavity.

A nontrivial solution of Eq. (2.11) must verify the secular condition of vanishing

determinant

r′reff(ω)ei2qL = 1 , (2.13)

from which we deduce the propagation constant of the laser with optical feedback

qM ω =
Mπ

L
+

i

2L
ln r2 +

i

2L
ln
(

1 +
(1− r2)

r

r3ξe
iωτ

(1 + rr3ξeiωτ )

)
. (2.14)

In Eq. (2.14), M is an integer number that labels the order of the longitudinal mode,

the second term describes the losses through the laser facets, while the last one

accounts for the interferometric effect of the external cavity, thus introducing fre-

quency dependent losses with the periodicity of a free-spectral range (1/τ ). It is

worth mentioning that the variation in propagation constant with respect to the soli-

tary laser operation reads

∆θω ≡ 2L(qω − qsol
ω ) = i ln

(
1 +

(1− r2)
r

r3ξe
iωτ

(1 + rr3ξeiωτ )

)
. (2.15)

The slowly varying approximation

Simultaneous emission in several longitudinal modes is very common in edge emit-

ting lasers. For this reason, many strategies have been devised in order to guar-

anty single-longitudinal mode operation. Large side-mode suppression ratio can be

achieved using distributed feedback reflector (DFB) lasers, distributed Bragg reflec-

tor (DBR) lasers, and vertical-cavity surface-emitting lasers (VCSELs). Even though

the single longitudinal mode approximation is questionable in edge-emitting lasers

(EELs), we can imagine that by means one of the aforementioned methods2, emis-

sion close to a longitudinal mode (with order M0) can be achieved. Inasmuch as the

2The rigorous demonstration requires of the reformulation of the propagation problem.
For instance in the DFB laser, we need to impose compatible boundary conditions account-
ing for the grating structure. For DFB laser diodes, the feedback rate κf becomes in general
complex and is given by some complicated expression [26, 57] which depends on the details
of the grating.
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electric field is nearly monochromatic around the longitudinal mode resonance fre-

quency Ω, fully determined from q
Ω

= Ω
c neff(Ω) = M0π/L, it is useful to expand all

the frequency dependent quantities in Eq. (2.6) around Ω

β2
ω = β2

Ω + 2βΩβ′Ω(ω − Ω) + · · · , (2.16)

where β′Ω = d[(ω/c) neff(ω)]/dω|Ω accounts for the dispersion of the mode M0 that

in turn defines its group velocity vg = 1/β′Ω. Now we take advantage that Re q �
Im q and that Re qω is close to βΩ

β2
Ω − q2

ω = [βΩ + qω][βΩ − qω]

≈ −2βΩ
i

2L

[
ln r2 + ln (reff(ω)/r′)

]
. (2.17)

Next, we introduce Eq. (2.12) and Eqs. (2.16)−(2.17) into the wave equation (2.6)

and we project onto the longitudinal mode f∗(z). A further simplification consists

in neglecting the z-dependence of χnl
Ω (N) that arises from inhomogeneities in the

carrier variables by introducing the total number of carriers

N =
∫

active

N(~r) d3~r , (2.18)

where the integral extends over the active region. In such a case, we arrive to the

following equation for the field amplitude

−i(ω − Ω)Ẽ− =

−κ

2
Ẽ− + i

Ω2

c2

Γx

2βΩβ′Ω
χnl

Ω (N )Ẽ− +
1

τin
ln
[
reff(ω)

r′

]
Ẽ− , (2.19)

where τin = 2Lv−1
g is the internal round-trip time, and κ the total cavity decay rate3

that have two contributions: internal αint and facet αm losses

κ = vg

(
Ωσ̄Ω

ε0c2βΩ
+

1
L

ln
1
r2

)
≡ vg

(
αint + αm

)
. (2.20)

A final step consists in Fourier transforming back to time domain Eq. (2.19). One

of the major difficulty in finding close expressions in time domain is the presence

of the logarithmic term. In a VCSEL, while operating within the stop-band, (1 − r2)
is a small parameter because the high reflectivity of the DBR mirrors, regardless the

magnitude of ξr3 [58]. Unfortunately this approximation does not hold in an EEL in

3Note that with this definition of κ, the electric field decays at a rate κ/2, whereas the pho-
ton number at a rate κ.
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which the facets are simply cleaved. A possible way to proceed is to assume small ex-

ternal reflectivity and coupling transmission, and take ξr3 � 1 as a small expansion

parameter

ln
[
reff(ω)

r′

]
=

∞∑
n=1

(−1)n (r2n − 1)
nrn

(r3ξ)n eiωnτ . (2.21)

Next we define the slowly-varying envelope (SVE) of the electric field by means

E−(t) = E(t)e−iΩt . (2.22)

In frequency domain the above expression reads Ẽ−(ω) = Ẽ(u), with u ≡ ω − Ω
being the slow frequency reference frame. The field equation in frequency domain

neglecting higher-order terms in (ξr3) reads

− iuẼu = −κ

2
Ẽu + i

Ω2

c2

1
2βΩβ′Ω

Γxχnl
Ω (N)Ẽu + κfeiΩτeiuτ Ẽu , (2.23)

κf ≡ (1−r2)ξr3/(rτin) being the feedback rate. The above equation can be straight-

forwardly transformed to time domain (−iu → dt)

dtE(t) = −κ

2
E(t) +

1
2
(1− iα)G(t)E(t) + κfeiΩτE(t− τ) . (2.24)

We have substituted the susceptibility of the bulk active material by the approxima-

tion

G(t) =
GN (N (t)−Nt)

1 + ε|E(t)|2
, (2.25)

with GN ≡ −vgΓxΩ2/(c2βΩ)(∂Im χnl/∂N )|Ω the differential gain, Nt the total car-

rier number at transparency, and ε phenomenologically describes gain saturation

due to, e.g., spectral hole-burning effects. A crucial parameter that describes phase-

amplitude coupling mechanisms in semiconductor lasers is the linewidth enhance-

ment factor

α ≡ ∂NRe χnl|Ω
∂N Im χnl|Ω

. (2.26)

In gas lasers, α measures the relative detuning between the longitudinal mode reso-

nance and the gain peak being negligible when comparing with SCL.

It is worth remarking that the emission frequency (close to threshold and in the

absence of noise) is Ω+ακ. For convenience, we compensate for this frequency shift

by moving to the free-running reference frame E(t) → E(t)e−iκαt. The resulting

equation reads

dtE(t) =
1
2
(1− iα)[G(t)− κ]E(t) + κ̂fE(t− τ) . (2.27)
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where κ̂f ≡ κfeiΩ0τ and Ω0 ≡ Ω + κα being the free-running emission frequency.

The feedback phase φ0 ≡ Ω0τ mod (2π) varies from [0, 2π] when the external cavity

length is varied within an emission wavelength. The stability properties of the fixed

points is sensible to this parameter, specially in the short cavity regime [59].

2.2.1 The Lang-Kobayashi model

The evolution of the longitudinal mode amplitude has been described by means a

time-delayed rate equation. This field equation has to be complemented by speci-

fying the evolution of the total carrier population N . The carrier equation does not

need any modification with respect to the free-running case. The detailed derivation

of these equations can be found elsewhere [10, 60]. In the case of single-longitudinal

mode operation and weak feedback, (r3ξ) → 0, the evolution of the field and carrier

variables is governed by

dE(t)
dt

=
1
2
(1− iα)[G(t)− κ]E(t) + κ̂fE(t− τ) + FE(t) , (2.28a)

dN (t)
dt

=
I

e
− γeN (t)−G(t)|E(t)|2 + FN (t) . (2.28b)

The physical meaning of the different terms in Eq. (2.28b) is: I/e is the number

of injected electron-hole pairs, γe is the rate of spontaneous recombination, and

G(t)|E(t)|2 describes the processes of stimulated recombination. These basic equa-

tions describing SCL with optical feedback were introduced by Lang and Kobayashi

(LK) [28] in 1980. Clear restrictions are the single longitudinal mode hypothesis as

well as the weak feedback conditions: only one reflection in the external cavity is ac-

counted for. We have phenomenologically added gain suppression effects through

the parameter ε, and Langevin noise sources FE(t), FN (t). Spontaneous emission

processes are described by white Gaussian random numbers [61] with zero mean

〈FE(t)〉 = 0, and delta-correlation in time 〈FE(t)F ∗
E(t′)〉 = 4γeβspN δ(t − t′). The

spontaneous emission factor βsp, represents the number of spontaneous emission

events that couples with the lasing mode. The noise term in the carrier equation

FN (t), coming from spontaneous emission as well as shot noise contribution, is gen-

erally small and it will be neglected all through this chapter. A better characterization

of stochastic processes can be found in the Appendix C.

In the absence of optical feedback, the usual gain-clamping condition G = κ

determines the solitary inversion N sol
th = Nt + κ/GN , and the solitary threshold

current Isol
th = eγeN sol

th .
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parameter symbol HLP1400 DFB units

solitary laser threshold Ith 55 27 mA

differential gain GN 2.76×10−6 7.0×10−6 ns−1

cavity decay rate κ 158 180 ns−1

alpha factor α 4 3.4 –

e-h pair decay rate γe 1.66 2.22 ns−1

carriers at transparency Nt 1.51×108 5.02×107 –

spontaneous emission βsp 5×10−7 5×10−8 –

nonlinear gain coeff. ε 3×10−7 8×10−8 –

Table 2.1. Symbols and parameters corresponding to the experimental conditions of the
HLP1400 and DFB lasers. The feedback conditions, τ and κf , and the injection currents
are indicated in the text.

Dimensionless equations

From a numerical point of view it is more convenient to work with dimensionless

variables scaled by

A(t) ≡
√

κ

γe

1
Nt

E(t) , D(t) ≡ N (t)
Nt

− 1 . (2.29)

The LK model Eqs. (2.28a)−(2.28b) reduces to

dA(t)
dt

=
κ

2
(1− iα)[G(t)− 1]A(t) + κ̂fA(t− τ) + FA(t) , (2.30a)

dD(t)
dt

= γe

[
µ−D(t)− G(t)|A(t)|2

]
, (2.30b)

G(t) =
aD(t)

1 + s|A(t)|2
. (2.30c)

We have introduced the following dimensionless parameters: the scaled gain factor

a ≡ GNNt/κ, the scaled injection current µ ≡ I/(eNtγe) − 1, and the scaled gain

suppression coefficient s ≡ ε γeNt/κ. The current is usually given with respect the

solitary threshold value p ≡ I/Isol
th , so that µ = p(1 + 1/a) − 1. The scaled noise

source has a correlation 〈FA(t)F ∗
A(t′)〉 = 4κβsp(D + 1)δ(t− t′).

Alternatively to the complex electric field representation, we can derive equa-
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tions for its amplitude and phase by writing, A(t) =
√

P (t) exp[iφ(t)], that read

dP (t)
dt

= κ[G(t)− 1]P (t) + 2κf

√
P (t)P (t− τ) cos(η(t) + φ0)

+4κβsp(D + 1) + FP (t) , (2.31a)

dφ(t)
dt

= −α
κ

2
[G(t)− 1] + κf

√
P (t− τ)

P (t)
sin(η(t) + φ0) + Fφ(t) , (2.31b)

η(t) ≡ φ(t− τ)−φ(t) being related with the mean optical frequency in a time τ . The

real Langevin noise sources FP (t) and Fφ(t) are obtained by Itô transformation [62].

Fixed points

A monochromatic steady state solution of Eqs. (2.30a)−(2.30c) can be expressed as

A(t) =
√

P̄ exp(−i∆ωt), and D(t) = D̄. The external cavity mode (ECM) frequency

∆ω is obtained from the solutions of the transcendent equation [63]

ηs = −C sin(ηs + atanα + Ω0τ) , (2.32)

with ηs = ∆ω τ , and C ≡ κfτ
√

1 + α2 the effective feedback strength. The num-

ber of ECM is proportional to C/(2π). The remaining steady-state quantities can be

obtained from

Ḡ = 1− 2κf

κ
cos(ηs + Ω0τ) , (2.33a)

P̄ =
1

(a + s)

(
µa

Ḡ
− 1
)

, (2.33b)

D̄ =
1
a
(1 + sP̄ )Ḡ . (2.33c)

The fixed points are located on an ellipse in the Ḡ−ηs plane, while the representation

in the P̄ − ηs plane is banana-shaped [63].

From Eq. (2.33a) we can define the maximum loss reduction due to the feed back

light as Rκ ≡ 2κf/κ. This effect manifest itself in a reduction in threshold current

that can be determined from Eq. (2.33b) by imposing the condition P̄ = 0. We denote

Isol
th and Ifeed

th as the threshold currents of the free-running and laser with feedback,

respectively. Then the threshold reduction reads

Rµ ≡ 1−
Ifeed
th

Isol
th

=
2κf/κ

1 + a
. (2.34)

As an alternative to κf , the feedback level can be quantified by providing the two

extensively used figures of meritRµ andRκ.
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Linear stability analysis

A fundamental step in the analysis of any dynamical system is the determination of

the stability of their steady state solutions. A first attempt was put forward by Mørk

and coworkers [64, 65] that, by neglecting power fluctuations, investigated the stabil-

ity of the monochromatic solutions using the image of a “thermodynamic” potential .

In order to obtain an expression for this potential, we take in Eq. (2.31a) dP (t)/dt = 0
and we arrive to an equation for the optical phase φ(t)

dφ(t)
dt

= κf

√
1 + α2 sin(φ(t− τ)− φ(t) + atanα + Ω0τ) . (2.35)

In order to overcome the problem of the delayed term in the above equation, Mørk

and Tromborg applied an additional approximation: small and slow variations of the

phase during a round-trip time. Then the variable η(t) ≡ φ(t − τ) − φ(t) can be

approximated by

φ̇(t) ≈ −1
τ

η(t)− 1
2
η̇(t) . (2.36)

Then the evolution of η(t) can be expressed in a potential form

η̇(t) = −1
τ

d

dη
U(η) + 2Fη(t) , (2.37a)

U(η) ≡ η2 − 2C cos(η + atanα + Ω0τ) . (2.37b)

The extrema of the potential U(η) correspond to the fixed points given in Eq. (2.32).

The local minima of the potential, 1 + C cos(η + atanα + Ω0τ) > 0, are the stable

fixed points. In the presence of noise, the phase drifts through the stable fixed points

in such a way that the most stable mode is located at the bottom of the potential,

with frequency η ≈ 0 (minimum linewidth mode) . However, this approximation

is unrealistic for large feedback levels because the relaxation oscillations, associated

with intensity fluctuations, can easily destabilize the modes.

The general linear stability analysis theory going beyond the constant intensity

approximation [66] is summarized in Appendix A. The number of solutions in the

complex plane of the equation (A.4) is infinite due to the infinite number of reso-

nances. A fixed point is unstable if there exists at least one solution with Re λ > 0. A

fixed point is stable if Re λ < 0 for all λ’s. In the absence of feedback, the solutions

of Eq. (A.4) are λ = 0 describing the phase invariance of the solitary laser and two

complex conjugated eigenvalues that neglecting gain saturation, read

λ± = −ΓR ± i
√

Ω2
R − Γ2

R , (2.38)

with ΓR ≡ Tµ/2 the relaxation oscillations (ROs) damping and ΩR ≡ [Ta(aµ−1)]1/2

the ROs frequency that increases with the square-root of the current.
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A detailed analysis of the LSA of the fixed points can be found elsewhere [66, 67,

68]. Here, we restrict ourselves to summarize some of the most outstanding results.

Depending on the stability properties, the fixed points are classified as follows:

• Antimodes: They are originated by the destructive interference among the cav-

ity and the feed back field. They are unstable saddle modes that correspond

to the local maxima of the thermodynamic potential. The values of κf where

a saddle-node bifurcation takes place, giving rise to a new pair of fixed points,

is approximately given by [70]

κf ≈
β +

√
β2 − 2

2τ
√

1 + α2
, (2.39)

with β = φ0 + atanα + (2n− 1
2 )π, and n = 1, 2, · · ·

• External-Cavity Modes (ECM): They correspond to the local minima of the

thermodynamical potential and can be destabilized through Hopf bifurcation.

Two ECM are separated by an antimode. They can be regarded as the construc-

tive interference among the cavity field and the delayed feedback field.

• Maximum Gain Mode (MGM): This is the highest power or minimum thresh-

old mode . The phase condition Ω0τ = κτα mod 2π provides a solution at

frequency ηmgm = −κτα. MGM corresponds to the most stable mode against

Figure 2.2: Operation regimes of a laser with optical feedback, after Ref. [69].
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relaxation oscillations. It can be proved that the MGM is stable for arbitrar-

ily large feedback strengths [67]. For sufficiently large feedback, modes in the

neighborhood of the MGM can be also stable when the correct phase is used.

• Minimum Linewidth Mode (MLM): In the potential framework, MLM (the

mode with frequency closest to the one of the solitary laser) is the most sta-

ble mode. However, this solution can be destabilized through relaxation os-

cillations for relatively weak feedback levels. The phase defining this mode is

Ωτ = −atanα mod 2π, which provides a solution at frequency η = 0.

• Phase Condition for the Most Unstable State: K. Wadda [68] found that with the

phase φ0 = π + atanα, the laser is brought into the most unstable state for

a given value of α. It provides the largest suppression of stimulated emission

due to the destructive interference with the delayed feedback field.

2.3 Operation Regimes

During the early 80s feedback in SCL sparked a great interest owing to their noise

related properties. Under proper operation conditions, short external cavities and

careful matching of the feedback phase Ω0τ , the cw emission linewidth can be re-

duced by more than a factor of ten [71, 72]. In contrast, the cw operation can become

unstable through Hopf bifurcation when deviating from these optimum conditions.

This instability yield self-pulsation of the optical intensities with frequency locked to

the external round-trip time. Further increase of the feedback level leads to multista-

bility between the different ECM and hysteresis in the light-intensity (L-I) curve. The

interest concerning noise characteristics gradually shifted toward the deterministic

dynamics induced by the delayed optical feedback. The external cavity behavior has

been classified into five different regimes (I-V) [73, 74]. In this work we focus on the

region IV where two distinct regimes of chaotic operation occur, namely coherence

collapse (CC) and low-frequency fluctuations (LFF). They are of special interest both

for the reach nonlinear dynamics as well as for the potential application in encoded

communication systems [47, 75, 76]. These two regimes appear in a wide range of

parameters, injection current versus optical feedback strength co-space, as shown in

Fig. 2.2.

Coherence collapse

Experimental measurements of the optical spectrum found a large increase in emis-

sion linewidth (from∼ 100 MHz to∼ 25 GHz) when the laser was subject to moder-

ate amounts of feedback (∼ 1% injected light) from a reflector distanced by ∼ 1 m.

This effect, commonly referred as coherence collapse or regime IV [25], is a form of



2.3 Operation Regimes 37

deterministic chaos of high dimensionality that typically involves hundreds of unsta-

ble ECM. Period doubling route to chaos was found when the relaxation oscillations

locked to an external cavity resonance [77], while quasi-periodic route was observed

[78, 79] otherwise.

The optical intensity traces shown in Fig. 2.3(a), obtained from the LK model,

display a sequence of irregular pulses at the nanosecond time scale. A two dimen-

sional projection of the phase-space D versus η, where D = N/Nt − 1 is the scaled

carrier number and η(t) = φ(t−τ)−φ(t) is the phase difference of the slowly-varying

complex field in one external round-trip time, indicates that the η(t) drifts back and

forth through several unstable Hopf bifurcated ECM [Fig. 2.3(b)]. The implication of

this highly complex dynamics is reflected in the time-averaged optical spectrum that

shows a dramatic broad linewidth (∼ 20 GHz) [Fig. 2.3(c)].

Low-frequency fluctuations

A low frequency peak (∼ 10 MHz) in the power spectrum was reported by Risch

et al. [27] when the laser, while operating in regime IV, was pumped close to the

solitary threshold current. Such a low frequency fluctuation dynamics is character-

ized by sudden dropouts of the optical power followed by a gradual recovery process

0
�

10 20 30 40 50
t [ns]

 
1

2

3

4

5
x10

P
(t

)�

(a)

−100 −50� 0
�

50 100
�

η(t)�

0.35

0.40

0.45

0.50

D
(t

)�

(b)

−40� −20� 0
�

20 40
ν [GHz]�

−10

−8

−6

−4

−2

(c)

O
pt

. S
pe

ct
ra

(lo
g.

 u
ni

ts
)

�

Figure 2.3. Characteristic dynamics of a laser with optical feedback operating within the
CC regime: (a) evolution of the optical power, (b) two-dimensional phase-space pro-
jection, diamonds denote steady state solutions, (c) time-averaged optical spectrum.
The parameters are given in Table 2.1-HLP1400 except for p = 1.2, τ = 2.3 ns and
κf = 16.5 ns−1.



38 Semiconductor lasers with optical feedback

[Fig. 2.4(a)]. The typical time scale of power dropouts is of the order of ∼ 100 ns,

being much larger than any other time scale in the system. An interesting feature

of this recovery process is that the laser intensity undergoes fast pulsations on a

∼ 20 − 100 ps time scale. Interestingly these pulsations were predicted by the LK

model [63] before the experimental verification [13, 55].

In Fig. 2.4(a), we illustrate the typical LFF obtained from the LK model when the

laser operates at the solitary threshold current. In the η −D phase space, the trajec-

tory drifts toward negative η visiting different ECM and passing through the unstable

manifold of a saddle generating a dropout event. The different time scales involved

in the dynamics can be easily extracted when looking at the time averaged power

spectrum [Fig. 2.4(c)]. A broad low frequency peak is present, as a consequence of

power dropouts, followed by a sequence of external cavity resonances.

The work by Risch in 1977 motivated the understanding of the mechanisms that

originate the LFF dynamics. Different explanations have been proposed, some of

them rely with its deterministic origin while others have a stochastic basis. Henry

and Kazarinov (HK) [80] proposed a first explanation studying the effect of sponta-

neous emission fluctuations. The presence of noise can force the system to escape

from a stable fixed point, a minimum in a potential picture. Then the trajectory per-

forms an excursion in the phase space until temporarily remains in some minimum
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Figure 2.4. Characteristic dynamics of a laser with optical feedback under LFF opera-
tion: (a) evolution of the optical power, unfiltered (grey) and 250 MHz low pass filter-
ing (black), (b) two-dimensional phase-space projection, diamonds denote steady state
solutions, (c) time-averaged power spectrum. The time elapsed between dropouts is
denoted by Tn − Tn−1. The same parameter than Fig. 2.3 except for p = 1.0.
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Figure 2.5. Three dimensional represen-
tation of the LFF attractor (Sisyphus ef-
fect). After Ref. [84] with permission.

of the potential. Mørk [81] generalized the HK’s framework by developing an iterative

spectral method, where LFFs are understood as the result of bistability between the

maximum gain mode and a low intensity state.

In contrast to the previous stochastic explanations, experimental evidences for a

deterministic time-inverted type-II intermittency were reported by Sacher [82]. Only

in 1994 Sano, [83] showed that the LK model exhibits LFFs as a result of a determin-

istic crisis of an attractor, that is to say, the trajectory in the phase space collides with

an antimode at some point of the evolution. During the recovery process a chaotic

itinerancy with a drift occurs, i.e., the trajectory visits different attractors created in

the vicinity of each ECM. This process is commonly known as Sisyphus effect [63]

because its analogy with the Sisyphus’ labor in the Greek mythology4. The system

evolves towards the MGM mode, whence the trajectory is repelled by the saddle to-

wards the off-state [Fig. 2.5].

2.4 Statistics of Power Dropouts

In the previous section we have discussed different interpretations for the LFF onset.

Refuting one of the deterministic or stochastic descriptions is not trivial, especially in

semiconductor lasers that are intrinsically “noisy” systems. Further, power dropout

events are irregularly distributed, both in time and intensity, and therefore a statisti-

cal description should be performed.

Many experiments dealt with the power statistics of the fast pulses that appear

between power dropouts. Some of these experiments found an asymmetrically de-

creasing distribution with maximum probability near the mean value [85, 86], while

4The gods had condemned Sisyphus to ceaselessly rolling a rock to the top of a mountain,
whence the stone would fall back of its own weight. Then Sisyphus watches the stone rush
down in a few moments toward the plain whence he will have to push it up again toward the
summit.
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other ones reported intensity distributions with maximum at very low intensity lev-

els with a monotonic decrease as the power increases [13, 69]. These discrepancies

have been attributed to the multi-longitudinal mode operation [87], although gain

suppression effects in the single mode LK model can also yield similar results [56].

The dispute about this fast pulsing statistics can be eluded when looking to longer

time scale dynamics. Consequently, we investigate the statistics of the time elapsed

between consecutive power dropouts. At least five experiments have been carried

out this study in semiconductor lasers with optical feedback [82, 88]-[91]. All these

works reported similar results, probability distribution functions with a dead region

for short times and exponential decay for longer times. The mean time between

dropouts decreases when the injection current increases.

Another interesting aspect associated with the transition from stable operation

to LFFs is the existence of scaling laws for the time between dropouts with the injec-

tion current, that results to be an easy experimentally accessible control parameter.

In the case of time-inverted type-II intermittency [92], reported by Sacher, the scal-

ing law is 〈T 〉 ∼ |p − pc|−1. p represents the normalized injection current while pc

stands for the critical value of the LFF onset. We note that this result is usually ap-

plicable to low dimensional systems, however it can be extended to a large class of

chaotic systems exhibiting crisis-induced intermittency [93] where 〈T 〉 ∼ |p− pc|−γ ,

γ being the critical exponent. On the other hand, Henry and Kazarinov provided an

estimation of the mean time between dropouts 〈T 〉 based on a stochastic theory. The

time T has two contributions T = T0 + Tr, where T0 is the escape time from the sta-

ble mode and Tr is the recovery time (usually neglected). The mean time between

dropouts reads [80]

〈T 〉 ≈ π

a
(
1 + 4P

P1

) exp

[
1
3b
R3

µ

(
1 +

P1

4P

)3
]

, (2.40)

where P1 is the mean power for the current corresponding to the solitary laser thresh-

old in the presence of feedback and P the mean power dependent on the injection

current. Rµ is the threshold reduction induced by the optical feedback in Eq. (2.34),

and a, b are two laser-specific constants. It is worth recalling that spontaneous emis-

sion noise is essential in this model because the mean time diverges when b → 0
(βsp → 0).

More recently, Eguı́a et al. [94, 95] have proposed a paradigmatic dynamical

model in order to explain LFFs in SCL with optical feedback. This model combine

both stochastic effects and the deterministic topological structure of the phase space.

In this model, LFFs are induced by noise-driven events when operating below an An-

dronov bifurcation. In this excitable regime, drops are statistically distributed ac-

cording to a Krammer’s problem (exponential decay). Above the bifurcation point a
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limit cycle is created and deterministic effects dominate, i.e., noise solely introduces

an uncertainty in the number of twists around the unstable fixed point. Thus in this

scenario, noise plays a crucial role in anticipating the appearance of LFFs before the

bifurcation takes place.

Although many interpretations of LFFs have been discussed above, they are

mainly based on some kind of reduction of the infinite dimensional delay-differential

LK equations. To gain insight into the LFF regime, we undertake the study of the

statistics of the time between dropouts by performing an extensive numerical simu-

lation of the LK model over long time intervals.

2.4.1 Statistics of the time between dropouts

The LK model predicts that stable emission is obtained for injection currents below

some critical value p
LFF

. When the control parameter slightly exceeds this critical

value, stable emission is interrupted by occasional power dropouts. We investigate

the statistical properties of the time elapsed between consecutive dropouts while in-

creasing the injection current from p
LFF

. The value of p
LFF

is numerically determined

and has been estimated to be p
LFF

= 0.88 ± 0.01 for the actual choice of parame-

ters [Table 2.1-HLP1400]. In addition, we have taken a feedback rate κf = 35 ns−1

and an external cavity length ∼ 50 cm that provides a τ = 3.3 ns delay time. The

mean time between dropouts 〈T 〉 and the probability distribution functions (PDF)

are computed by taking time series longer than 1 ms (average over∼ 104 dropouts).

A means of automatically determining whether a dropout event has occurred is a

necessity when analyzing long time series. The criterion used in this work makes

use of the fact that a dropout event manifests itself in the η − D phase space, as a

sudden large excursion of the trajectory towards positive values of η [See Fig. 2.4(b)].

A dropout event is assumed to occur when a sudden change of at least six modes

(∼ 6× 2π in η), towards the center of the ellipse, is observed. This detection scheme

is somewhat arbitrary, but it has been found to be perfectly correlated with the oc-

currence of power dropouts and, more important, it allow us to distinguish between

the chaotic back and forth changes in η (inverse switching) and a dropout event when

approaching the CC regime.

Fig. 2.6 shows the PDF of the time T between dropouts for three different bias

currents. These cases correspond to (a) the LFF regime below the solitary laser

threshold, (b) the LFF regime above the solitary laser threshold, and (c) the CC

regime. For sufficiently short times all the PDFs display a dead zone that shrinks

when increasing the injection current. This dead zone is a consequence of the typical

time scale associated with the recovery process connecting two consecutive power

dropouts. Once the system reaches operation in the vicinity of the MGM, the mecha-

nisms causing the dropout leads to a distribution of preferred time intervals revealed
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in the PDFs. In the LFF regime the distributions display a dominant peak around the

mean value in agreement with previous experimental results, obtained from lasers

that typically operate with several longitudinal modes [89, 90]. When the system is

biased just above the onset of LFFs, Fig. 2.6(a), a secondary peak appears in the PDF

at shorter times. Simulations have been undertaken to check that this small peak

also appears in the PDF for values of p between 0.88−0.92. An interpretation of such

a two time scale dynamics stems from the interplay of stochastic and deterministic

effects. The main peak is originated from the long residence times in the vicinity of

the MGM. Then, noise ejects the system away and a train of fast optical bursts appear

originating the secondary peak in the PDF. This bursting terminates as soon as oper-

ation close to the MGM is reached and the process restarts. When operating above

the solitary threshold (b), the influence of the noise diminishes and power dropouts

are distributed according the deterministic scenario. For bias currents within the

CC regime, the PDF displays a weakly modulated flat structure at short times with

an exponential decay for longer times, and hence in qualitatively agreement with

experimental observations as outlined in [89, 90]. However, the amplitude of the os-

 200
�

400
�

600
�

800
�

 
0.0

0.2

0.4

0.6

0.8

x100

f (
T

) 
 [n

s−
1 ]

(a)

 100
�

200
�

300
�

400
�

 
0.0

1.0

2.0

3.0

f (
T

) 
 [n

s−
1 ] (b)

0
�

20 40 60 80 100
�

T  [ns]�

0.0

1.0

2.0

3.0

f (
T

) 
 [n

s−
1 ] (c)

Figure 2.6. Probability distribution functions of the time between dropouts for three
different bias currents. (a) p = 0.92, 〈T 〉 = 312 ns; (b) p = 1.014, 〈T 〉 = 116 ns; (c)
p = 1.18, 〈T 〉 = 25 ns.
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cillations in the PDF are very small when comparing with those in the experiments

of Ref. [89].

Return maps Tn+1 vs Tn for the same currents used in Fig. 2.6 are shown in

Fig. 2.7. A rather uniform cloud of points in both the LFF and CC regimes can be

seen, indicating a lack of periodicity in the dynamical evolution, with no correla-

tion between dropouts. The same qualitatively return maps are obtained when the

spontaneous emission noise term in Eq. (2.30a) is removed. For the actual choice

of parameters, spontaneous emission noise seems to have a small influence on the

statistical quantities describing the power dropouts. However, it is possible to find

combinations of parameters, currents close to threshold and small facet reflectiv-

ities, where the time between dropouts considerably increases when an optimum

noise level is used [88]. If this time increases, the system has more changes to reach

the MGM and consequently it has to dropout due to noise effects. Our results are in

good agreement with previously reported data [89], except for the correlation among

the time intervals observed in the CC regime. It is worth noting that our explana-

tion of the return maps is different from that given in Ref. [89]. The latter interprets

LFFs as a consequence of the existence of an Andronov bifurcation in which noise is

essential to anticipate the bifurcation and avoid a periodic regime.

As a final step, we look for scaling laws governing the transition from stable op-

eration to the LFF regime. In Fig. 2.8, the mean time is plotted versus the bias cur-

rent (a) scaled to the solitary threshold ε1 = p − 1 and (b) scaled to the onset of the

LFFs ε2 = p/p
LFF

−1. The last points of Fig. 2.8(a), close to CC, can be fitted with

1/ε1. This dependence was experimentally found by Sacher et al. [82]. However, this

dependence bends for lower currents, in good agreement with more recent experi-

mental results [88, 90]. The numerical results in the LFF regime scale very closely to
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Figure 2.8. Mean time between dropouts versus normalized current (a) to the solitary
laser threshold and (b) to the onset of LFFs (pLFF ). Points are calculated from numerical
simulations of LK model. Solid-lines correspond to the Henry-Kazarinov approximation
and dot-dashed lines are straight lines with slope −1. The parameters that best fit our
numerical results are a = 25 ps−1 and b = 6.32× 10−3, but only for currents above the
solitary laser threshold. Dot-dot-dashed lines roughly delimits the LFF and CC regimes.

1/ε2 [Fig. 2.8(b)] when replotted using ln 〈T 〉 vs ln ε2. The predictions from the HK

theory (solid line) are unable to fit this behavior. Hence, we have seen that the nat-

ural threshold required to understand the scaling properties of the system appears

to be p
LFF

and thus the data should be normalized to this value. The scaling law

〈T 〉 ∼ ε−1.079
2 is obtained from the paradigmatic model proposed by Eguı́a et al. [94],

being in qualitative agreement with our numerical results and those experimentally

obtained in Refs. [88, 90], only when the system operates above the Andronov bifur-

cation. For lower values of ε2 the system is within the excitable regime and the scaling

follows a Krammer’s law.

Statistics under single-mode operation of a DFB laser

In the previous section, we have presented the most outstanding features of the time

statistics between power dropouts resulting from an extensive numerical simulation

of the LK model. Next, we present a detailed experimental and numerical compar-

ison of the feedback-induced instabilities in DFB lasers subject to optical feedback

demonstrating that only one longitudinal mode is sufficient to adequately describe

the LFF instability.

We use a 1.55 µm single-mode DFB laser with a large side mode suppression ra-

tio (SMSR) to fulfill the single-mode assumption of the LK model. Further, moderate

amounts of optical feedback allow us to neglect multiple reflections. Fig. 2.9 depicts

the optical spectra of the solitary laser and the laser with optical feedback. The spec-
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tra have been recorded with a grating spectrometer with a resolution of 0.1 nm. The

significant linewidth broadening towards longer wavelength corresponds to predic-

tions of the LK model [67]. The laser persists in its single mode operation with a very

large SMSR of 40 dB during LFF operation. Fig. 2.9 demonstrates that the single-

mode operation holds even for fully developed coherence collapsed operation of the

laser. Thus, multimode operation is not required for the occurrence of LFFs in semi-

conductor lasers.

In our numerical simulations, based on the LK model, we use parameters that

are estimated from the experiment conditions [Table 2.1]: τ = 2.3 ns, and κf =
14.35 ns−1 reducing the threshold of the laser by 5.4%. DFB-specific effects (e.g.,

interaction between the DFB grating and the external cavity [57]) are neglected, as

it is justified by the excellent agreement of our numerical and experimental results.

Using the above parameters, the threshold current for the appearance of LFFs has

been determined to be p
LFF

= 0.97, in agreement with the experimental value. For

bias currents close above p
LFF

we observe both, experimentally and numerically, al-

ternation between LFFs and stable operation on a single high-gain external-cavity

mode (HGM) [67, 69]. This is the first time that LFF and stable emission are nu-

merically obtained in such long time scales. Figures 2.10(a),(b) depict experimental

and numerical time series, respectively, typical for this alternating behavior. Both

time series have been obtained for p = 0.98. Within this regime, the system jumps

back and forth between the LFF behavior and the stable HGM. This action is best

demonstrated by the numerical simulations in η −D space. The numerics in the in-

set Fig. 2.10(b) confirm that the system reaches the stable HGM. In noiseless numer-

ical simulations, the trajectory first undergoes several power dropouts, then reaches

the HGM and, finally, remains there. Only when the stochastic term is included

in the equations the dynamical behavior depicted in Fig. 2.10(b) is observed. This

can be understood as follows: Once the trajectory has reached the stable emission

Figure 2.9. Optical spectrum of the DFB
laser. The solid line corresponds to the
solitary laser, the dashed line to the laser
with feedback under CC operation. I =

1.18 Ith.
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state, noise is essential for ejecting the trajectory away from the HGM such that the

LFF behavior can restart. In general, the stability of the external-cavity modes, i.e.,

their robustness against external perturbations or noise, is strongly dependent on

the linewidth enhancement factor α [68]. Our numerical simulations demonstrate

that the stability of the laser increases by decreasing α, a result that corresponds to

recent experimental findings with Fabry-Perot lasers [96].

We have performed long time statistical investigations of the time intervals be-

tween subsequent power dropouts. Our extensive numerical simulations permit the

first quantitative comparison of experiment and theory on such long time scales.

Experimentally, we have recorded 50 time series, each of 5 µs length, covering sev-

eral thousand power dropouts; numerically, we have considered of the order of 104

dropout events. From these time series we obtained PDFs of the time intervals be-

tween subsequent power dropouts. Figure 2.11 depicts the corresponding experi-

mental and numerical PDFs for three different injection currents covering the whole

LFF regime: (a) p = 0.98, (b) p = 1.04, and (c) p = 1.08. The agreement of theory

and experiment is excellent. All PDFs display similar features: an exponential de-

cay for long times, and a dead zone for short times specially for low bias currents.

We point out that theoretically and experimentally obtained PDFs show an identical

dependence on the injection current. In particular, the mean time interval between
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Figure 2.10. Time traces showing alternation between LFF and stable operation. (a)
experiment and (b) numerical simulations. The inset of figure (b) shows in the η − D

space how the trajectory jumps from LFF behavior to the stable high-gain mode (HGM).
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subsequent power dropouts 〈T 〉 exhibits an interesting dependence on the injection

current: Figure 2.12 depicts experimental and numerical data in a ln-ln plot of 〈T 〉
versus ε2 = p/p

LFF
−1, where the current is normalized with respect to the thresh-

old current for the onset of the LFF. Both data sets demonstrate that, within the LFF

regime, 〈T 〉 scales as ε−1
2 , whereas the fit based on the predictions by Henry and

Kazarinov [80] exhibits substantial deviations from the experimental and numerical

results. The ε−1
2 scaling of 〈T 〉 as well as the exponential decay and the dead time that

are present in the PDFs have also been observed in experiments in which multimode

Fabry-Perot lasers were used [90]. This fact indicates that these are general properties

that are present in the dynamics of semiconductor lasers, and consequently are in-

dependent of the number of optical modes involved in the laser emission. However,

the mechanism that underlies the scaling is not yet fully understood [88, 97].
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Figure 2.11. Probability density function f(T ) of the time interval T between subse-
quent power dropouts. (a) p = 0.98, (b) p = 1.04 and (c) p = 1.08. Diamonds and
dashed line correspond to experimental data; stars and solid lines to numerical simu-
lations. Note the different scales of f(T ) and T in (a)−(c). Parameters are given in the
text.
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Figure 2.12. Ln-ln plot of the average time interval between subsequent dropouts 〈T 〉
versus the normalized injection current ε2 = p/pLFF−1. Diamonds and dashed line
correspond to experimental data; stars and solid lines to numerical simulations. The
dotted line corresponds to a linear fit 〈T 〉 ∼ ε−1; the dashed-dotted curve, to results
obtained from the Henry-Kazarinov [80] model.

2.5 Entraining Power Dropouts

The statistical analysis carried out in Sec. 2.4 manifested the existence of large time

dispersion between power dropouts. However, this study only provides a partial

characterization of the LFF process because it does not consider the influence of a

generic external force on the time distributions. The possibility of controlling chaos

began since the work by Ott-Grebogy-Yorke (OGY) [98]. The idea behind chaos con-

trol is as brilliant as simple. If one thinks of a chaotic attractor as a collection of

unstable periodic orbits, the question arises whether it is possible to keep the sys-

tem locked to one of these unstable orbits by applying a small control signal. How-

ever, the major drawback in these feedback control schemes is the necessity of real-

time detection of the commonly fast chaotic signal. Other strategies, founded in a

stochastic basis, revealed that a proper choice of noise and modulation levels may

enhance the periodicity of the signal. Among them, are worth mentioning exper-

imental and numerical evidences of coherence [99, 100] and stochastic [101] res-

onance in a laser with optical feedback, which behaves as an excitable medium

[89, 97].

In this work, we implement a sinusoidal modulation of the injection current in

order to reduce the time dispersion between dropouts and obtain a more periodic

output. This effect reflects itself in the appearance of preferred time intervals in the

statistical distributions. For sufficiently large forcing and adequate frequencies the
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phenomenon of entraining takes place, that is to say, power dropouts follow the pe-

riod imposed by the external modulation. This phenomenon was first theoretically

predicted [102] and experimentally demonstrated in Refs. [103, 104].

Next we describe the influence of both frequency and amplitude of the current

modulation in the PDFs. We retake the parameters used in the previous section for

the DFB laser which are given in Table 2.1. We consider operation within the LFF

regime. The injection current is varied using a sinusoidal modulation

p(t) ≡ I(t)
Isol
th

= pb + ∆p sin
(

2π
t

Tm

)
, (2.41)

pb being the bias current, ∆p the normalized amplitude and Tm the modulation pe-

riod.

Frequency dependence

For a weak modulation amplitude ∆p = 0.005 (∆I = 0.14 mA) superimposed onto

the bias current pb = 1.02, we vary the modulation period by several decades, from

the external cavity round-trip time up to the low frequency range (mean time be-

tween dropouts). We find an interesting behavior in the distribution functions and

return plots as shown in Fig. 2.13: the influence of the modulation is limited to a finite

bandwidth. When the modulation period is lower or equal to the external round-trip
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Figure 2.13. Probability density function f(T ) and return plots of the time interval T

between subsequent LFF dropouts for a bias pb = 1.02 and ∆p = 0.005. (a,b) no mod-
ulation, (c,d), Tm = τ , (e,f) Tm = 5τ , (g,h) Tm = 36.33τ .
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time (c,d), the PDFs and return plots are almost unaffected when comparing with

the simulation without modulation (a,b): a cloud of points indicating a lack of peri-

odicity is obtained. When the modulation period is increased beyond τ , we observe

the appearance of preferred times in the statistical distributions. The PDFs present

peaks at the harmonic positions of the modulation period, but the 1:1 peak is absent.

If the modulation is taken away from τ , but still below the typical mean time between

power dropouts, the system is able to develop a peak at the modulation period. When

the modulation period exceeds the typical mean time between dropouts, computed

in the absence of modulation, the modulation-induced time-selectivity in the PDFs

disappears. The magnitude of the peaks depend on the modulation amplitude as we

will next discuss.
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Figure 2.14. Probability density function f(T ) and return plots of the time interval T

between subsequent LFF dropouts for a bias pb = 1.06 and Tm = 10τ . (a,b,c) no mod-
ulation, (d,e,f) ∆p = 0.01, (g,h,i) ∆p = 0.02, (j,k,l) ∆p = 0.04. The typical power time
traces are shown in panels (c,f,i,l).
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Amplitude dependence

We consider a fix modulation period Tm = 10τ and a bias current pb = 1.06 where

time selectivity of power dropouts is achieved and a 1:1 peak is present in the PDFs.

We take a larger bias current, still in the LFF regime, because the modulation ampli-

tude is going to be enhanced. Fig. 2.14 shows the influence of the modulation ampli-

tude on the PDFs (upper panels), return maps (middle panels) and time traces of the

optical power (lower panels). We observe how the multipeaked structure in the PDFs

is enhanced when the amplitude is increased up to some critical level ∆p ∼ 0.02
or ∼ 2 mA peak-to-peak modulation. Beyond this value the modulation amplitude

is sufficiently large for allowing a perfect entrainment of power dropouts events with

the modulation. The situation depicted in Fig. 2.14(j,k,l) shows a perfect entrainment

of the power dropouts with the modulation period Tm.

We have demonstrated that by a proper choice of the modulation period, be-

tween τ and 〈T 〉, and modulation amplitudes larger that ∼ 2 mA (only ∼4% of the

bias current), the chaos control scheme allows for operation in a periodic orbit. Fur-

ther investigation on current modulated LFFs, should provide a better understanding

about this interesting dynamical chaotic regime.

2.6 Discussion

The onset of feedback-induced instabilities, namely low-frequency fluctuations in

the regime IV, has been numerically and experimentally investigated. Numerical

studies have focused on the Lang-Kobayashi model while experiments were done us-

ing distributed feedback lasers that exhibit single-longitudinal mode operation, thus

approaching the model conditions to the experiment as much as possible.

First, we gave experimental evidences that multimode operation is not required

for the occurrence of the above mentioned feedback-induced instabilities. This re-

sult reduces the number of degrees of freedom which have to be taken into account in

stabilization, control, and synchronization problems when using this type of lasers.

In particular, we have demonstrated quantitative identical parameter dependence

in long-time LFF statistics including a characteristic scaling law for the mean time

between dropouts. Second, the transition from stable operation to low-frequency

fluctuation behavior has associated a scaling law from which stems the different pos-

sible interpretations of this phenomenon. The time between power dropouts scales

with the current, normalized to the LFF onset, with an exponent very close to −1.

This effect suggests the existence of a type-II intermittent behavior [92] as was ex-

perimentally reported by Sacher [82]. However it is not obvious that this mechanism

underlines the appearance of LFF in the LK model, because crisis-induced intermit-

tency might also lead to the same scaling laws. We have obtained scaling properties
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that are in agreement with experiments that use multi-longitudinal mode lasers, sug-

gesting that these are general features of the laser dynamics and independent of the

number of lasing modes.

Finally, we numerically implemented a chaos control scheme, i.e., the targeting

of unstable periodic orbits, by applying a sinusoidal modulation of the current. A sig-

nal in which power dropouts are entrained to the modulation (1:1 response) appear

for adequate modulation frequencies and sufficiently large amplitudes. In other sit-

uations, the PDFs display preferred time intervals corresponding to the harmonics of

the modulation period. This scheme can be further analyzed using reduced versions

of the LK model [105] or by the help of the paradigmatic dynamical model developed

by Eguı́a et al [106].



Chapter 3

Bidirectionally Coupled
Semiconductor Lasers

3.1 Introduction

Coupled1 nonlinear oscillators have been extensively studied in the past due to

their rich variety of possible behaviors and applications. The understanding of

the dynamics of coupled nonlinear oscillators is essential for a wide range of scien-

tific investigations. Periodic and chaotic oscillations have been reported in chemical

reactions, population dynamics, physiological interactions, coupled neurons, me-

chanical oscillators, laser systems [107]-[110], etc.

Synchronization of these oscillators involves an adjustment of their rhythms due

a weak interaction [111]. Then, it is mandatory that each oscillator presents a self-

sustained oscillation either in a periodic, quasi-periodic or chaotic form. Depending

on the coupling conditions (coupling strength), this process may lead to a readjust-

ment of oscillation frequencies towards a common frequency (frequency locking),

and to a fixed relationship among the oscillation phases of two synchronized oscilla-

tors (phase locking).

The application of synchronization of chaotic systems in secure communication

was suggested for the first time by Pecora and Carol in 1990 [112]. Since then, sci-

entific interest has focused on chaotic systems exhibiting both, high-dimensional,

and fast dynamics in order to hinder eventual message recovery by eavesdroppers

attacks using spectral or advanced time series analysis tools. Communication sys-

tems using chaos can be considered as a generalization of the existing conventional

1 This chapter is based on the papers:
J. Mulet, C. Masoller, and C. R. Mirasso, Phys. Rev. A 65, 063815 (2002);
T. Heil, I. Fischer, W. Elsäßer, J. Mulet, and C. R. Mirasso, Phys. Rev. Lett. 86, 795 (2001);
J. Mulet, C. R. Mirasso, T. Heil, and I. Fischer, submitted for publication (2002).
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communication systems. Here, the message is modulated within the chaotic signal

of the transmitter. Thus, a broad spectrum of frequencies is used as a carrier for

the information instead of a single frequency. The key for message recovery is the

phenomenon of chaos synchronization. The receiver tuned, i.e. synchronized, to

the chaotic signal of the transmitter allows message extraction2. Finally, chaos syn-

chronization is only possible if transmitter and receiver are (almost) identical chaotic

systems [113].

Lasers turned out to be very attractive systems for this task, mainly because the

maximum attainable transmission speed is considerably larger than the electronic

encryption schemes using software. Already in 1994, synchronization was demon-

strated in CO2 lasers [114], and in Nd:YAG lasers [110]. A first breakthrough concern-

ing the speed and the dimension of the synchronized chaotic dynamics was achieved

by VanWiggeren and Roy using fiber lasers [115, 116]. Currently, semiconductor

lasers (SCL) have the highest potential for a practical realization of communication

systems using chaotic carriers. Synchronization in SCL has already been demon-

strated numerically in laterally coupled lasers [117], and in distanced semiconductor

lasers [75, 118]. Most of these studies have focused on lasers that exhibit chaos due

to optical feedback (from an external mirror) [63], optical injection (from another

laser) [119], and current modulation. Remarkably, only few studies have centered

on instabilities arising from the mutual coupling among different lasers. Many of

the real systems include a significant time delay between subsystems when they are

coupled. However, and for the sake of simplicity, this delay is sometimes neglected

or simply incorporated in the transmitter’s local-time when the coupling is unidirec-

tional. This last shortcut is not adequate when the coupling is bidirectional and time

delay effects, some of them already discussed in Chap. 2, can yield absolutely unex-

pected behaviors, mainly due to the additional degrees of freedom introduced into

the system.

The aim of this chapter is twofold: first, we perform a systematic derivation of

the governing equations in the case of mutual optical coupling of two spatially sepa-

rated Fabry-Perot SCL, and second, we investigate the synchronization properties by

analyzing the dynamics of the system.

2In order to achieve confidentially, the message has an amplitude much smaller than the
one of the chaotic carrier. If the synchronization is robust against small perturbations, the
receiver solely synchronizes to the chaos of the transmitter –chaos pass-filtering–. Then the
message can be recovered by simply subtracting the injected signal to the output signal of the
receiver.
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Modeling

When the distance between the lasers is small, typically much less than the laser

cavity, mutually coupled lasers can be considered as a single cleaved-compound-

cavity (C3) laser. These devices are formed by two individual sections, separated by

a small air-gap, where the electrical injection can be applied independently. Under

appropriate coupling conditions, there is an enhancement in mode selectivity that

arises from the constructive and destructive interference of the fields in the two cou-

pled cavities. Consequently, several achievements have been demonstrated: better

single-mode operation [10], frequency tuning [120], frequency-chirp reduction un-

der current modulation [121], and a lowering in intensity noise [122]. The evolution

of the longitudinal modes in a C3 laser can be described by means of a system of

time-dependent coupled rate equations [123, 124].

A completely different operation regime appears when the distance between the

lasers is enlarged [125]. Optical instabilities arise from the delayed optical injec-

tion from a laser to its counterpart and eventually due to optical feedback from the

facet of the other laser. In Refs. [48, 126]-[129] the experimental observations were

successfully interpreted in terms of a phenomenological singlemode rate equation

model of weakly mutually coupled SCL. In the model each laser is described by rate

equations, one for the complex optical field, E, and one for the carrier density, N .

The mutual coupling is accounted for by adding the delayed field of laser 2 in the

equation for the complex field of laser 1 and viceversa. A more detailed descrip-

tion of two multimode mutually-coupled semiconductor lasers has been recently re-

ported in Ref. [130]. The latter, directly considers the spatiotemporal Maxwell-Bloch

equations complemented with adequate boundary conditions. Such an approach

can provide a very accurate description of the system, although the major drawback

is the larger computational requirements.

To the best of our knowledge, the derivation of the phenomenological model, de-

scribing two coupled lasers, from basic principles has not been reported in the litera-

ture yet. In spite of the success of this model in describing the experimental findings,

there is no systematic investigation of its range of validity as a function of the mutual

coupling strength. In Sec. 3.2 we start from Maxwell’s equations and derive equa-

tions for the field amplitudes in each laser cavity. We also derive rate equations for

the total carrier number within each laser. For arbitrary coupling, we obtain a closed

set of equations which we use in Sec. 3.3 to calculate the monochromatic solutions

of the compound system. The influence of the coupling strength on the steady-state

solutions gives insight into the range of validity of the phenomenological model.
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Nonlinear dynamics

The dynamical properties of two mutually-coupled and spatially-separated SCL has

been experimentally [128, 129] and theoretically [131]-[133] reported. This last sce-

nario can be interpreted in terms of the behavior of mutually coupled nonlinear os-

cillators. When the lasers have dissimilar relaxation oscillation frequencies and in-

tensities, their effective mutual coupling strength may be asymmetric. In this case,

Hohl et al [48, 126] found that two coupled semiconductor lasers may exhibit a form

of synchronization which is characterized by low amplitude oscillations in one laser,

and large oscillations in the other one –localized synchronization–. On the other

hand, Heil et al [128] found that two coupled lasers may exhibit subnanosecond syn-

chronized chaotic dynamics. These studies complemented some previous investi-

gations where the SCL were weakly coupled [48, 126]. Even in the case of identical

lasers they found an asymmetric role among both: there exists a time lag, equal to

the flight time from one laser to the other, between the dynamics of the two lasers.

The second part of the chapter is organized as follows. In Sec. 3.4 we derive a

dynamical model valid for weak coupling. In this case we arrive to the phenomeno-

logical rate equation model previously used by several authors [48, 126]-[129]. The

details of the experimental setup is briefly mentioned in Sec. 3.5. Next, we center the

discussion on the dynamical instabilities, resulting from the mutual coupling, and

the degree of synchronization among the intensity fluctuations. Results under per-

fect symmetric operation are in Sec. 3.6. In Sec. 3.7 we develop a more detailed rate

equation model that accounts for higher-order terms in the coupling. We investi-

gate the effect of these terms through several examples. Finally, Sec. 3.8 is devoted to

concluding and summarizing the chapter.

3.2 The Model

We start from the Maxwell’s equations (1.3a)−(1.3d) to obtain a wave equation de-

scribing the propagation of the electric field along the compound system. These

equations are complemented with boundary conditions, at each laser facet, for the

two counterpropagating waves. Next, we derive equations that describe the spatially

averaged carrier densities within each laser cavity. Finally, we introduce the slowly-

varying approximation.

Field equations

We begin from the wave equation (1.6) for the electric field wave equation

~∇2~Eω +
(ω

c

)2

εω
~Eω = ~0 , (3.1)
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where

εω = 1 + χl
ω + χnl

ω (N) + i
σω

ε0ω
, (3.2)

stands for the complex dielectric function. c = 1/
√

µ0ε0 is the light speed in vacuum,

ε0 the vacuum permittivity, µ0 the vacuum permeability, and σω the electric conduc-

tivity of the medium. N represents the density of electron-hole pairs excited in the

active region of the semiconductor laser.

As it is usually done in a Fabry-Perot cavity, we express the electric field as the

superposition of two counterpropagating waves. For simplicity we neglect the trans-

verse dependence of the field assuming a plane-wave-like solution

Ej(ω; z) = Ẽ+
j eiqjz + Ẽ−j e−iqjz + c.c. (3.3)

The polarization direction of the electric field is taken transverse electric due to the

geometry of the device. Ẽ±j are the amplitudes, at frequency ω, of the forward and

backward propagating plane waves inside each laser section j = 1, 2 and in the

inter-laser cavity j = 0, while qj stand for their respective propagation constants.

The inter-laser is defined by the physical separation between the two lasers. Upon

substituting Eq. (3.3) into the wave equation (3.1), we find a dispersion relation for

the propagation constant qj that reads

qj =
ω

c
nω(Nj)−

i

2
[gω(Nj)− αint

ω ], (3.4)

for j = 1, 2, where we have defined

nω(N) =
√

1 + Re χl
ω + Re χnl

ω (N) , (3.5a)

gω(N) = −
(ω

c

) 1
neω

Im χnl
ω (N) , (3.5b)

αint
ω =

(ω

c

) 1
neω

[
Im χl

ω +
σω

ε0ω

]
, (3.5c)

with nω(N) the modal refractive index, gω(N) the modal gain, αint
ω the internal loss,

and n2
eω = 1 + Re χl

ω the background refractive index. The propagation in the inter-

laser cavity is described through

q0 =
ω

c
+

i

2
αext

ω , (3.6)

where αext
ω stands for the total coupling loss accrued due to, e.g., diffraction.
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Boundary conditions

The situation of two device-identical SCL coupled in a face-to-face configuration, as

the one depicted in the Fig. 3.1, consists in two Fabry-Perot cavities with length L and

separated by a distance Le determining the inter-laser cavity. We consider that all the

laser facets are cleaved, acting as mirrors with an internal (external) reflectivity and

transmitivity r′, t′ (r, t). The Stokes relationships imply that r = −r′ and tt′ = 1−r2.

Imposing continuity of the electric field and its derivative at the laser facets, we arrive

to the following boundary conditions for the amplitudes of the counterpropagating

waves

z = −(L + l), e−iq1(L+l)Ẽ+
1 = r′eiq1(L+l)Ẽ−1 . (3.7a)

z = −l, eiq1lẼ−1 = r′e−iq1lẼ+
1 + teiq0lẼ−0 , (3.7b)

e−iq0lẼ+
0 = reiq0lẼ−0 + t′e−iq1lẼ+

1 . (3.7c)

z = l, eiq2lẼ+
2 = r′e−iq2lẼ−2 + teiq0lẼ+

0 , (3.7d)

e−iq0lẼ−0 = reiq0lẼ+
0 + t′e−iq2lẼ−2 . (3.7e)

z = L + l, e−iq2(L+l)Ẽ−2 = r′eiq2(L+l)Ẽ+
2 , (3.7f)

with l ≡ Le/2. Due to the high degree of symmetry, we have taken the origin of

the z axis at the middle of the inter-laser cavity. We note, however, that the final

equations governing the system are independent of this arbitrary choice. By using

the Eqs. (3.7b)−(3.7e) we derive the coefficients of the scattering matrix S, defined

through

(
eiq1lẼ−1
eiq2lẼ+

2

)
=

(
S11 S12

S21 S22

)(
e−iq1lẼ+

1

e−iq2lẼ−2

)
. (3.8)

-L-l                          -l                 0                l                               L+ l 

z

(1-ξ2)
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r,t      r’ ,t’

J1 J2

Figure 3.1. Sketch of two mutually coupled Fabry-Perot semiconductor lasers. The in-
ternal (external) laser facets have a reflectivity and transmitivity r′, t′ (r, t). Only a frac-
tion ξ2 of optical power is transmitted by the effective coupler located within the inter-
laser cavity.
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The coefficients of the matrix are

S11 = S22 = r′
[
1− (1− r2)ei4q0l

1− r2ei4q0l

]
, (3.9a)

S12 = S21 =
(1− r2)ei2q0l

1− r2ei4q0l
. (3.9b)

These coefficients are similar to those given in Ref. [10] when describing C3 lasers.

On the other hand, the propagation constants within each medium are given by

Eq. (3.4). In the inter-laser cavity we express the propagation constant as follows

ei2q0l = ξeiωτ , (3.10)

τ ≡ Le/c being the one-way lag time. ξ2 ≡ exp(−αext
ω Le) can be regarded as the

fraction of optical power transmitted by an equivalent coupler located in the inter-

laser cavity [See Fig. 3.1].

Upon substituting Eqs. (3.7a) and (3.7f) into the scattering matrix we arrive at

equations relating the outgoing field amplitudes in both lasers, Ẽ−1 and Ẽ+
2 , that read

[
1− r′S11e

i2q1L
]
eiq1lẼ−1 = r′S12e

i2q2Leiq2lẼ+
2 , (3.11a)[

1− r′S22e
i2q2L

]
eiq2lẼ+

2 = r′S21e
i2q1Leiq1lẼ−1 . (3.11b)

Finally, there is a subtle point that deserves some discussion. In this section we

have described the interface semiconductor/air through a set of reflection and trans-

mission coefficients. All through this chapter we will consider these coefficients as

constants (independent of propagation constants)3. An alternative description of

the interface is to include the different dielectric constants in the boundary condi-

tions. Recently, Duarte and Solari [134] have studied the equivalence between these

two approaches, in the case of a semiconductor laser with optical feedback. They

showed that the two descriptions lead to similar results, for low and large coupling

strengths. However, the approximation of constant coefficients fails for intermediate

couplings where the metamorphosis (of the solitary laser solutions towards the com-

pound cavity solutions) occurs. We assume that the mutual coupling strength is such

that allows us to consider the reflection and transmission coefficients as constants.

Even in the last section, where we will derive rate equations that take into account

high-order terms in the coupling, the coupling is still weak (such that it is physically

meaningful to consider the longitudinal modes of each laser).

3The continuity of Ẽ and dz Ẽ at z = −l directly yield r′ = (q1 − q0)/(q1 + q0) and t′ =
2q1/(q1+q0). By neglecting the frequency dispersion and carrier dependence on propagation
constants, q1,0 = (ω/c)ne 1,0, r′ and t′ can be considered as constants. These are the well-
known Fresnel relationships for a dielectric-dielectric interface under normal incidence.
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Carrier equations

The above equations that describe the optical propagation of the electric field along

the whole system have to be complemented with equations describing the interac-

tion with the active material. The evolution of the carrier density within each laser is

governed by equation (1.13)

∂Nj(~r, t)
∂t

=
Jj(~r)
ed

− γeNj +D∂2Nj

∂z2
− i

~
[
Pnl

j (z, t)E∗j (z, t)

−Pnl∗
j (z, t)Ej(z, t)

]
, (3.12)

with j = 1, 2. Jj(~r) is the current-density distribution, d is the active layer thickness,

e the absolute value of the electronic charge, γe is the spontaneous recombination

rate, and D is the diffusion coefficient. The induced material polarization ~Pω can

be expressed as in Eq. (1.5). In the mean-field approximation we neglect the carrier

diffusion and we introduce the total carrier numberNj ,

Nj ≡
∫

active

Nj(~r) d3~r , (3.13)

where the integration limits correspond to the active region of each laser. By assum-

ing that the material polarization Pnl
j (z, t) adiabatically follows the evolution of the

electric field, Eq. (3.12) can be approximated by

Ṅj(t) ≈ Ij

e
− γeNj +

2ε0V

~
Im χnl(ω,Nj)

1
L

z0+L∫
z0

|Ej(z, t)|2 dz , (3.14)

where Ij stands for the total injection current in each laser, V is the active region

volume, z0 is the origin of the laser cavity, and L stands for its length. In the case of

a monochromatic solution at frequency ω, the integral term in the right hand of the

above equation can be determined by replacing Eq. (3.3) into Eq. (3.14) and taking

into account that the amplitudes of the counterpropagating waves Ẽ±j,ω in each laser

are related through Eqs. (3.7a) and (3.7f),

Ṅj(t) ≈
Ij

e
− γeNj −

2ε0V nec

~ω
gω(Nj)Γj |eiqj lE∓j (t)|2 , (3.15)

where the sign−(+) corresponds to j = 1 (j = 2).

The integral terms Γj are defined through

Γj ≡
1
L

L∫
0

∣∣∣r′eiqj(z+L) + e−iqj(z−L)
∣∣∣2 dz . (3.16)
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A subtle point in the determination of the carrier variables enters into the def-

inition of the Γ1,2 terms. These integrals represent the longitudinal average of the

optical power resulting from the longitudinal standing wave inside the cavity, that

in turn, is determined by the propagation constants. By evaluating the integral in

Eq. (3.16) we can obtain explicit functional forms of these terms that read

Γj(θj) = e−Im θj

[
2r′sinc (Re θj) +

eIm θj + r′2(1− e−Im θj )− 1
Im θj

]
, (3.17)

θj ≡ 2Lqj being the dimensionless propagation constant. Under free-running oper-

ation, the propagation constant is determined by the well-known round-trip condi-

tion [10]

eiθsol
=

1
r′2

, (3.18)

and the integrals read

Γsol ≡ Γj(θsol) =
2(1− r2)
r2 ln 1

r2

. (3.19)

In many situations this term can be scaled into the definition of the electric field, as

we will see later.

Finally, the gain function gω calculated at a fixed frequency Ω is approximated by

gΩ(Nj) ≡
(

GN

vg

)
(Nj −Nt)
1 + s|E∓j |2

, (3.20)

with GN ≡ ∂gω(N )/∂N|Ω the differential gain (in rate), vg ≡ c/ng the group veloc-

ity,Nt the carrier number at transparency, and s the gain suppression parameter.

Dimensionless model

In this section, we summarize the equations governing the electric field and carrier

dynamics which constitute our model. For the sake of clarity and numerical pur-

poses, we rescale the dynamical variables through the following definitions

Ãj ≡

√
2ε0V neng

~ω

κΓsol

γeNt
eiqj lẼ∓j ,

Dj ≡ Nj

Nt
− 1 ,
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where Γsol is defined in Eq. (3.19) and κ the total cavity decay rate [Eq. (2.20)]. In

the case of free-running operation, the scaled Ãj represent the outgoing fields cal-

culated at the outer laser facets. By inserting the definition of the Sij coefficients

and expressing the electric fields in terms of the scaled ones, Eqs. (3.11a) and (3.11b)

reduces to[
1− r2ei4q0l − r2

(
1− ei4q0l

)
ei2q1,2L

]
Ã1,2 = r′(1− r2)ei2q0lei2q2,1LÃ2,1 .

(3.21)

On the other hand, the equations for the normalized carrier densities read

Ḋj(t) = γe

[
µj −Dj − Gj

Γj

Γsol
|Aj(t)|2

]
, (3.22)

where the gain function can be expressed as

Gj ≡
aDj

1 + ε|Aj |2
. (3.23)

Finally, we have introduced the following dimensionless parameters

µj ≡
Ij

eNtγe
− 1 , ε ≡ γeNt

κΓsol

~ω

2ε0V neng
s , a ≡ NtGN

κ
.

The injection current is also commonly measured with respect to the solitary laser

threshold pj ≡ Ij/Isol
th , thus resulting µj = pj(1 + 1/a)− 1.

Equation (3.21) for the optical fields, together with Eq. (3.22) for the carrier den-

sities constitute our model although still in the Fourier domain.

Slowly-varying approximation

In absence of coupling ξ = 0, the propagation constants of the free-running lasers

obey the usual round-trip condition that leads to

θsol ≡ 2Lqsol = 2πM − i ln
1
r2

, (3.24)

with j = 1, 2 and M being an integer number labeling the longitudinal modes. The

second term in the right hand of the equation accounts for the losses through the

mirrors as in Eq. (2.20). We consider that each solitary SCL emits close to a single-

longitudinal mode M0 of the cold Fabry-Perot cavity. The free-running emission fre-

quencies are Ω1,2 = πM0c/(L1,2ne 1,2)+κ1,2α1,2 [See Eq. (2.27)] that nearly coincide

because both lasers are device-identical. Small dissimilarities may be induced by the

temperature dependence of the index of refraction ne 1,2 and the cavity length L1,2.
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Thus, frequency tuning (Ω1 = Ω2) can be achieved by carefully controlling the tem-

perature of these devices.

Since the fields are nearly monochromatic we expand the dispersion relations

Eq. (3.4) around Ω1,2 keeping only dominant terms,

qj(ω,Nj)− qj(Ωj ,N sol) =

∂qj

∂ω

∣∣∣∣
Ωj ,Nsol

(ω − Ωj) +
∂qj

∂N

∣∣∣∣
Ωj ,Nsol

(Nj −N sol) + · · · , (3.25)

N sol being the carrier inversion at the solitary threshold. After some algebra, we

obtain

∆θ1,2 ≈ i τin

[
±i∆− iu− 1

2
(1− iα)κ (G1,2 − 1)

]
. (3.26)

We define the relative detuning as ∆ ≡ (Ω1 − Ω2)/2, the symmetric reference frame

Ω ≡ (Ω1 + Ω2)/2, the group velocity v−1
g = ∂ω (ωnω/c) |Ω, the internal round-trip

time τin = 2Lv−1
g , the linewidth enhancement factor α = ∂NRe q|Ω/∂N Im q|Ω, the

material gain G1,2 [Eq. (3.23)], and the cavity decay rate κ [Eq. (2.20)]. We have also

neglected gain differences between the two lasers due to their slightly different posi-

tions with respect to the gain curve when a detuning is present.

In the following section, we calculate the spectrum of monochromatic solutions

by using the simplified dispersion relations ∆θ(u) that stem from the slowly-varying

amplitude (SVA) approximation. The SVA will be also useful in Sec. 3.6 when access-

ing to the dynamical properties of the system.

3.3 Monochromatic Steady-State Solutions

A basic step in any dynamical system consists in the calculation of its steady state

solutions. A rapid way to understand that two distant mutually coupled lasers is a

situation significantly different to the one of a C3 laser is by plotting the transmi-

tivity function for the compound system. We consider that an electric field Ein
ω is

injected at the z = −(l + L) facet, and we compute the output field Eout
ω at the ex-

ternal z = l + L facet [Fig. 3.1]. The total field transmitivity T = Eout
ω /Ein

ω gives

insight into the resonances. In the case of a single cold Fabry-Perot cavity (filled by

a linear medium with refractive index ne), the transmitivity is an Airy function [135]

with peaks at the position of the solitary longitudinal modes [Fig. 3.2(a)]. In a C3

laser, there is a noticeable rearrangement of the longitudinal modes, which depends

not only on the ratio Le/L, but also on the laser gains [Fig. 3.2(b)], which provides the

tunability properties. Finally for two distant mutually coupled lasers, the solitary res-

onances are modulated by the extremely small free-spectral range of the inter-laser
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cavity [Fig. 3.2(c)]. This simple analysis provides some intuition into the resonances

of mutually coupled lasers, although it is incomplete because it considers each single

laser as passive and linear. Then, under lasing conditions, it is necessary to include

the dispersion relations of the active medium as well as the nonlinear interaction

with the carrier variables.

In our case, a monochromatic steady-state solution is characterized by a com-

mon operating frequency ω of the electric field in the whole system, fixed carrier in-

versions D1,2 and intensities P1,2 ≡ |Ã1,2|2 in each laser, and a relative phase among

the oscillation of the two electric fields. We look for solutions with a pinned relative

phase, φ ≡ arg(Ã2/Ã1), and proportional field amplitudes, ρ ≡ |Ã2|/|Ã1|. Hence,

these results generalize the concept of injection locking in the case of unidirectional

injection in SCL [20, 21]. In Sec. 3.2, we derived equations that govern the evolu-

tion of the optical variables. In the case of continuous-wave (cw) operation, we are

interested in finding solutions where the field does not vanish in both lasers simul-

taneously. Thus, the system of Eqs. (3.11a) and (3.11b) should verify the condition

of vanishing determinant, providing the following round-trip condition for the com-
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Figure 3.2. Frequency dependence of the transmitivity: a single Fabry-Perot cavity (a), a
C3 laser with Le = 0.42L (b), two distant coupled lasers with Le = 55L (c). In the three
cases, the Fabry-Perot cavities are filled by a passive medium with index of refraction
ne = 3.5, mirror reflectivity r = 0.56, and lossless coupling cavity ξ2 = 1.
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pound system:[
1− r′S11e

i2q1L
] [

1− r′S22e
i2q2L

]
= r′2S12S21e

i2q1Lei2q2L . (3.27)

Using Eqs. (3.9a), (3.9b) and (3.24), the above equation can be expressed as[
e−iθ1

r′S11
− 1
] [

e−iθ2

r′S11
− 1
]

=
(

S12

S11

)2

. (3.28)

We focus on a typical situation where both SCL are pumped above the solitary thresh-

old, then acting as active elements. In this case, the complex Eq. (3.28) can be re-

garded as two real equations involving three unknowns, i.e., the common operation

frequency and the gain in both lasers. This relationship is a parametric equation for

the gain and frequency in laser 2 as function of the gain in laser 1. However, the prob-

lem is not yet closed because the rates of stimulated emission in each laser are not in-

dependent, but they impose a ratio for their respective intensities ρ. From Eq. (3.22)

and when the gain suppression is neglected, we arrive at

ρ2 ≈ (aµ2 − G2)
(aµ1 − G1)

Γ1

Γ2
. (3.29)

The ratio between intensities is in turn determined by either Eq. (3.11a) or (3.11b),

which also provides the relative phase between the fields

ρeiφ =
S11

S12
ei(θ1−θ2)

[
e−iθ1

r′S11
− 1
]

. (3.30)

In principle, Eqs. (3.28)−(3.30) represent a set of five real nonlinear equations that

should provide the five unknowns defining a monochromatic solution, i.e., ω, G1, G2,

ρ, and φ. Thereafter, the steady-state intensity in each laser can be simply deter-

mined from

Pj =
(aµj − Gj)

Gj(ε + a
Γj

Γsol )
. (3.31)

3.3.1 Symmetric operation

As a starting point, we consider the case of symmetric operation, where the lasers

share a common propagation constant θsym ≡ θ1 = θ2. In this situation, θsym can

be obtained from Eq. (3.28),

θsym
± = 2πM − i ln

1
r′2

− i ln

[
1± r′ei2q0l

1± ei2q0l

r′

]
. (3.32)

The two first terms on the right hand of Eq. (3.32) are the contribution of the soli-

tary laser, while the last term that behaves as o(ξ) is the modification in propagation



66 Bidirectionally coupled semiconductor lasers

constant due to the mutual coupling. We obtain two families of symmetric solutions,

which depend on an integer number M labeling the longitudinal modes, and on a

sign (±). Upon replacing the expression of θsym in Eq. (3.30) we find that these solu-

tions are restricted to ρ = 1, G1 = G2 = Gsym, and φ = 0, π. Thus, a solution with

sign + (−) corresponds to a relative phase φ = 0 (φ = π), describing in-phase (anti-

phase) dynamics among the two fields. The only solutions compatible with these

peculiar characteristics are restricted to ∆ = 0 and µ1 = µ2 ≡ µ.

The operating frequency and associated gain of the symmetric solutions can be

easily calculated when taking the SVA around the solitary emission frequency Ω. In-

troducing Eq. (3.26) in Eq. (3.32), we arrive at

ηsym =
τ

τin
[α ln |z±|+ arg z±] , (3.33a)

Gsym = 1 +
2

κτin
ln |z±| , (3.33b)
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Figure 3.3. Frequency (η = (ω−Ω)τ) dependence of the gain [Eq. (3.33b)] of symmetric
solutions (+ sign, φ = 0) in solid lines. Dashed lines represent the Eq. (3.33a) and the
diamonds its zeros. Parameters: r = 0.56, ng = 4, L = 300µm, α = 3.5, τ = 0.5ns,
ϕ0 = 0, ξ = 0.05 in panel (a), and ξ = 0.45 in panel (b).
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with ηsym ≡ (ωsym − Ω)τ and

z± ≡
1± r′ξ̂eiηsym

1± ξ̂
r′ e

iηsym
. (3.34)

Once the eigenfrequency η is obtained by solving the nonlinear equation (3.33a) the

associated gain can be calculated from Eq. (3.33b). It can be shown that by expanding

the logarithmic and complex argument functions to first order in the parameter ξ, we

obtain simpler equations for the eigenfrequency, which read

ηsym = ∓C sin(ηsym + arctanα + ϕ0) , (3.35a)

Gsym = 1∓ 2κc

κ
cos(ηsym + ϕ0) , (3.35b)

with ϕ0 = Ωτ mod 2π, the coupling rate κc ≡ (1 − r2)ξ/(rτin), and the effective

coupling parameter C ≡ κcτ
√

1 + α2. In Sec. 3.4, we will show that the solutions of

Eq. (3.35a) are nothing but the symmetric steady-state solutions of the phenomeno-

logical model [128]. These symmetric steady states resemble a laser with conven-

tional optical feedback with round-trip time τ when φ = 0, see Eq. (2.32).

Next, we proceed comparing the symmetric monochromatic solutions obtained

from the complete model [Eq. (3.33a)] and those from the phenomenological model

[Eq. (3.35a)], as function of the coupling parameter ξ. For the case of very weak

coupling, ξ = 0.05, the frequency dependence of the gain function [Eq. (3.33b)] is

sinusoidal as shown in Fig. 3.3(a). We note that this dependence agrees with that

predicted by Eq. (3.35b). For larger couplings, however, ξ = 0.45, the gain function

Eq. (3.33b) displays rapid variations with periodicity 1/τ as can be clearly seen in

Fig. 3.3(b).

The stationary solutions for several coupling conditions are shown in Fig. 3.4,

(ξ = 0.05, κc = 7.6 ns−1) in panels (a,b), (ξ = 0.3, κc = 45.9 ns−1) in panels (c,d),

and (ξ = 0.5, κc = 76.6 ns−1) in panels (e,f). Panels (a,c,e) correspond to the solu-

tions of Eq. (3.33a), while panels (b,d,f) correspond to the solutions to first order in

ξ, Eq. (3.35a). The symmetric steady-state solutions with φ = 0 (π) are represented

by diamonds (stars) in a (G − 1) vs η diagram. For the case of weak coupling, the

monochromatic solutions are arranged in an ellipse, centered around η = 0 which

corresponds to the free-running frequency. The solutions with large negative η have

larger loss reduction and consequently larger associated optical power. For weak

coupling we observe a very good agreement between both predictions. Typically,

there is good agreement when the coupling coefficient is in the range of ξ ∼ 0 − 0.1
(i.e., when less than 1% of the optical power is transmitted by the inter-laser cavity).

When the coupling increases, we start to observe some differences at about ξ = 0.3
(9% power transmission) [Fig. 3.4(c,d)]. The solutions are still arranged in an ellipse
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Figure 3.4. Symmetric steady state monochromatic solutions, (a,c,e) solutions of
Eq. (3.33a) and (b,d,f) solutions of the o(ξ) equation (3.35a), η = (ω−Ω)τ . The meaning
of the symbols are (♦) φ = 0 and (∗) φ = π. The same parameters than Fig. 3.3 except
ξ = 0.05 in (a,b), ξ = 0.3 in (c,d), and ξ = 0.5 in (e,f).

but many points prefer positive η and the loss reduction of the largest negative η is

lower. This last effect is a result of a nonsinusoidal dependence of the gain as a func-

tion of η.

3.3.2 General case

The general analysis of the monochromatic solutions of two mutually coupled SCL

is quite involved and, in this work, we restrict ourselves to give some guidelines for

their calculation. As already commented, we have to solve a system of five real non-

linear equations, Eqs. (3.28)−(3.30). To overcome this problem, we take advantage

of the symmetric solutions calculated in the preceding section. We look for solutions
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around each of the symmetric steady state by defining θj = θsym + δθj . The only

assumption on δθj is that it admits a SVA form as in Eq. (3.26),

δθj = −i
τin

τ

[
iδη +

1
2
(1− iα)κτ δGj

]
, (3.36)

with δη = η − ηsym, and δGj = Gj − Gsym. With these new variables Eq. (3.28)

reduces to [
(1± T )e−iδθ1 − 1

] [
(1± T )e−iδθ2 − 1

]
= T 2 , (3.37)

with T = S12/S11 and the signs± stand for φ = 0, π symmetric solutions.

In a general case, the gain in both lasers may differ, and Eq. (3.37) can be regarded

as a parametric equation for δG2 and δη, once a value of δG1 is provided [11]. From

Eq. (3.37), the gain variation in laser 2 reads

δG2 =
−2

κτ(1− iα)

[
iδη +

τ

τin
ln
{

1
(1± T )

(
1 +

T 2

(1± T )e−iδθ1 − 1

)}]
.

(3.38)

The frequency shift δη can be obtained imposing Im δG2 = 0 in the above equation.

The final result is that, under cw operation, the laser gains must follow a curve in

Figure 3.5. δG1 − δG2 diagram around
an in-phase symmetric solution (♦). The
curves are solutions of the Eq. (3.37).
The asymmetric solutions are represented
with the symbol (4). Parameters: r =

0.56, α = 3.5, ng = 4, τ = 0.5ns,
L = 300µm, ϕ0 = 0, ξ = 0.01, p = 1.50,
Nt = 1.5 · 108, GN = 3 · 10−6ns−1.

Figure 3.6. Frequency shift δη with
respect to an in-phase symmetric solu-
tion (♦). The black curves are obtained
from Eq. (3.37), while gray ones from
Eq. (3.39). Crossings between these two
curves are steady-state monochromatic
solutions. The asymmetric solutions are
represented with the symbol (4). The
same parameters as in Fig. 3.5.
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Figure 3.7. Relative phase among
the oscillation of the two elec-
tric fields obtained from Eq. (3.30).
Only asymmetric solutions (4)
with φ > 0 are represented. The
same parameters as in Fig. 3.5.

the (δG1 − δG2) plane, as the one shown in Fig. 3.5. The point (0, 0) in this diagram

represents a symmetric steady-state solution studied in the preceding section. The

existence of asymmetric solutions still depends on a condition associated to the roots

of an additional equation. Upon combining Eqs. (3.29) and (3.30), we arrive at

(aµ2 − Gsym − δG2)
(aµ1 − Gsym − δG1)

Γ1

Γ2
− e−2Im (δθ1−δθ2)

∣∣∣∣ (1± T )e−iδθ1 − 1
T

∣∣∣∣2 = 0 .

(3.39)

For each point of the parametric curves δG1 − δG2 in Fig. 3.5, the above equa-

tion is solved for δη. In Fig. 3.6, we represent these solutions in a δη vs δG1 plot.

The black lines represent the solutions obtained from Eq. (3.38), while gray lines are

those from Eq. (3.39). A generic monochromatic solution appears when both lines

cross. Around the in-phase symmetric solution (♦) there are seven crossings marked

with the symbol (4) and therefore seven asymmetric solutions appear. In contrast

to the symmetric solutions, the number of asymmetric solutions depends on the in-

jection current. Hence, we have demonstrated that, even though the high degree of

symmetry in the system, solutions in which both lasers evolve asymmetrically are

indeed possible. An approach similar to the one presented in this section should

be applied in the case that the lasers operate under asymmetric conditions (detun-

ing or different current injection). Finally, the relative phase φ associated to each of

these solutions can be recovered from Eq. (3.30), and it is plotted in Fig. 3.7. As a

final remark, we have to comment that in the case of a perfectly symmetric system,

pairs of asymmetric solutions appear restoring the initial symmetry of the system;

i.e., both (η,G1,G2, ρ, φ) and (η,G2,G1, ρ
−1,−φ) must be solutions. Due to the sym-

metry ρ → ρ−1 and φ → −φ; each crossing in Fig. 3.6 represents two asymmetric

solutions.
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3.4 Phenomenological Rate Equation Model

The Fourier domain representation has been useful for the description of the mono-

chromatic solutions, however, time-domain equations are required in order to access

to the dynamical properties of the system.

We define the slowly-varying envelope (SVE) of the electric fields Aj , around the

symmetric reference frame Ω ≡ (Ω1 + Ω2)/2, by means

Aj(t) ≡ Aj(t)e−iΩt . (3.40)

Since the fields are nearly monochromatic around Ω, Ãj(ω) = Ãj(ω − Ω) is non-

vanishing for u ≡ ω − Ω ≈ 0.

Upon introducing the following relationships

ω = Ω + u , ei2qjL =
1
r2

ei∆θj ,

into Eq. (3.21), we arrive at

[
1− r2ξ̂2ei2uτ −

(
1− ξ̂2ei2uτ

)
ei∆θ1,2

]
Ã1,2 =

(1− r2)
r

ξ̂eiuτei∆θ2,1Ã2,1 ,

(3.41)

ξ̂ ≡ ξeiΩτ being the effective coupling parameter. Eq. (3.41) represents our optical

model for the Fourier components of the electric fields in both lasers. In order to

obtain a dynamical model, we have to take the inverse Fourier transform of the above

equations. For the sake of clarity, we leave this point until Sec. 3.7. We instead express

all the terms in Eq. (3.41) to lower order in the coupling parameter ξ. The left-hand

side of these equations simply reduces to [1−ei∆θj ] ≈ i∆θj , while for the right-hand

term it is necessary to assume that the change in propagation constants behaves as

o(ξ) in order to approximate ξ̂ei∆θj ≈ ξ̂. Upon introducing Eq. (3.26), the lower order

equations read

− iuÃ1,2 = ∓i∆Ã1,2 +
1
2
(1− iα)κ [G1,2 − 1] Ã1,2 +

(1− r2)
r

ξ̂eiuτ Ã2,1 .

(3.42)

By Fourier transforming Eq. (3.42) to time domain, −iu → dt, we arrive to the dy-

namical system

dtA1,2(t) = ∓i∆A1,2 +
1
2
(1− iα)κ [G1,2 − 1]A1,2 + κ̂cA2,1(t− τ) ,

(3.43a)

dtD1,2(t) = γe

[
µ1,2 −D1,2 − G1,2|A1,2|2

]
, (3.43b)

G1,2 =
aD1,2

1 + ε|A1,2|2
, (3.43c)
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with κ̂c ≡ (1 − r2)ξ exp(iΩτ)/(rτin). In this procedure we have assumed nearly

stationary carrier densities, being a justified approximation in SCL since they evolve

at slower time scales than the optical fields.

Analyzing Eq. (3.43a), we find that the terms κ̂cA2,1(t − τ) describe the mutual

delayed injection from one laser to its counterpart. We remark that neither feedback

reflections involving terms like A(t − 2τ) nor higher-order corrections of the prop-

agation constants due to the mutual injection are accounted at this level of approxi-

mation. Eq. (3.43a) for the SVA of the complex electric fields together with Eq. (3.43b)

for the normalized carrier numbers within each laser constitute the phenomenologi-

cal rate-equation model previously studied [127, 128].

A final point deserves some discussion. In Eq. (3.43b), the correction prefactors

Γj/Γsol acting onto the stimulated recombination terms have been neglected since,

in the case of very weak coupling, the modification in propagation constants is small

enough to allow the substitution of the longitudinal standing wave by the solitary

one. We will return to the discussion of these terms in Sec. 3.7.

Threshold analysis

We define the threshold of the compound system as the circumstance where the “off”

state, A1 = A2 = 0 and D1,2 = µ1,2, loses the stability. Upon linearizing the field

perturbations δA1,2(t) and neglecting fluctuations in the stimulated recombination

terms of the carrier equations, we obtain

˙δA1,2(t) =
1
2
(1− iα1,2)κ[aµ1,2 − 1]δA1,2(t) + κ̂cδA2,1(t− τ) , (3.44)

where ∆ = 0 has been taken for simplicity. For this linear system we propose an

exponential-like solution,[
δA1(t)
δA2(t)

]
=

[
δA1λ

δA2λ

]
eλκt/2 , (3.45)

that leads to[
(1− iα1)x1 − λ Ke−λθ

Ke−λθ (1− iα2)x2 − λ

][
δA1λ

δA2λ

]
=

[
0
0

]
, (3.46)

with θ ≡ κτ/2, K ≡ 2κ̂c/κ, and x1,2 ≡ (aµ1,2 − 1). The complex eigenvalue λ =
σ−iΩ describes the growth rate (σ) and oscillation frequency (Ω) of the perturbation.

Imposing the secular condition of vanishing determinant as well as the threshold

condition σ = 0,

{x1 + i(Ω− α1x1)} {x2 + i(Ω− α2x2)} = K2ei2θΩ . (3.47)
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Figure 3.8. Threshold analysis: (a)
threshold curve, (b) emission frequency
at threshold, and (c) relative phase. Pa-
rameters: α = 4, κc = 22.5 ns−1, ϕ0 = 0,
Nt = 1.5 · 108, κ = 197.7 ns−1, GN =

3 · 10−6 ns−1. The coupling time is τ =

0.1 ns.
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Figure 3.9. Threshold analysis: (a)
threshold curve, (b) emission frequency
at threshold, and (c) relative phase. The
same than in 3.8 but for long cavity
regime. The coupling time is τ = 4 ns.
p1,2 is the current normalized to the soli-
tary threshold.

The above equation can be understood as follows: for a given current in laser 1 (fixed

x1), the threshold condition takes place for a particular current in laser 2, x2, and

oscillation frequency Ω that have to be determined from (3.47). We numerically solve

this transcendent complex equation for short and long external cavities, assuming

that carrier inversions in both lasers are not so different to consider that α1 ≈ α2 ≡
α.

In Figs. 3.8(a) and 3.9(a), we represent in a p1 versus p2 diagram the locus of the
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threshold condition. We recall that pj is the injection current normalized to the soli-

tary threshold for the laser j. Below this threshold line the perturbations decay. Due

to symmetry considerations, the curve is symmetric around the diagonal p1 = p2.

When the injection is preferentially applied to one of the lasers, we observe that the

threshold reaches an approximately constant value. This value is slightly below the

solitary threshold current due to the passive optical feedback from the other laser, as

commented in the next section. The total current required to achieve threshold con-

ditions is minimum in a neighborhood of the symmetric p1 = p2 point, where the

curve displays a bite . In the short cavity regime, this bite contains a substructure,

sensible to the coupling phase Ωτ , owing to hopping among different compound-

cavity modes. The frequency splitting corresponds to∼ 1/τ as can be appreciated in

Fig. 3.8(b). For larger coupling times, the modes appear very close one to the other

in frequency and consequently the threshold curve is smooth.

In order to better understand these threshold properties, specially the appear-

ance of a bite in the threshold curve, we define a relative phase among the fluctua-

tion of the two fields (at threshold) by means φ ≡ arg(δA2λ/δA1λ) in Eq. (3.46). In

Figs. 3.8(c) and 3.9(c) we represent the dependence of the relative phase upon varia-

tion of the current in laser 1. Near the bite region, the relative phase experience large

variations, and thus suggesting that it is originated from the constructive interfer-

ence among the two optical fields. When the fluctuations in both lasers interference

constructively, there exists a cooperative effect that produces the largest threshold

reduction.

It is worth mentioning that the above analysis has been corroborated by close-to-

threshold numerical simulation of the phenomenological model. Both the threshold

locus, emission frequency, and relative phase obtained from numerical simulations

are in excellent agreement with our analytical theory.

Reduction to the active-passive case

From the above analysis, we have seen that the threshold condition takes place by a

proper combination of the injection currents µ1,2 in both lasers. The case in which

the laser 2 is pumped below transparency, thus acting as a passive element, deserves

of a more detailed discussion. Owing to the low injection in laser 2, the carrier vari-

ations induced by stimulated recombination are rather small, and thus we consider

approximately constant absorption and index of refraction. Although it is not es-

sential for our purposes, we take lower linewidth enhancement factor in laser 2 be-

cause the lower carrier density (α2 � α1). In this situation, the dynamical system
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(3.43a)−(3.43c) can be effectively replaced by

dtA1(t) =
1
2
(1− iα1)κ[G1 − 1]A1(t) + κ̂cF (t) , (3.48a)

dtF (t) = −Γ(1− iα2)F (t) + κ̂cA1(t− 2τ) , (3.48b)

with F (t) ≡ E2(t − τ), and Γ ≡ (1 − aµ2)κ/2 > 0 the absorption parameter. Note

that Eq. (3.48b) is linear and can be formally solved using integration in the complex

plane. Introducing the expression obtained for F (t) into (3.48a), we arrive at

dtA1(t) =
1
2
(1− iα1)κ[G1 − 1]A1(t)

−κ̂2
c

t−2τ∫
−∞

dt′A1(t′)e−Γ(1−iα2)(t−t′−2τ) . (3.49)

From Eq. (3.49) turns out that the active-passive configuration is equivalent to a laser

with frequency-filtered optical feedback [136]. The filter is Lorentzian with a FWHM

Γ around a central frequency−α2Γ. More important, the feedback received from the

second laser is a linear process of that emitted by laser 1, although partially filtered

due to the interferometric effect in the second Fabry-Perot cavity.

We notice that this approximation is doubtful when laser 2 is pumped above

transparency, and inconsistent when both lasers act as active elements –similar

pumping–. In contrast to the active-passive case, the active-active configuration can

be regarded as a system with nonlinear feedback: the effective reflectivity (amplitude

and phase) of each laser cavity is a function of the frequency, and more important,

the carrier inversion which is nonlinearly coupled to the field dynamics. This last

situation is analyzed in the following sections by the help of numerical simulations.

3.5 Experimental Setup

Figure 3.10 depicts a schematic of the experimental setup. Two device-identical SCL

are mutually coupled with a delay via their coherent optical fields. The distance be-

tween the lasers is 1.20 m determining the coupling delay by the propagation of the

light between the lasers. Hence, the coupling delay amounts to τ=4 ns. The lasers are

two uncoated Hitachi HLP1400 Fabry-Perot SCL produced from the same wafer in

order to achieve the highest possible degree of symmetry in the system. The temper-

ature of each laser is stabilized to better than 0.01 K, and selected such that the free-

running frequencies of the two lasers match with an accuracy better than 1 GHz. The

polarizer guarantees a coherent coupling between the lasers via the dominant trans-

verse electric (TE) mode of the optical field. A neutral density filter placed between

the two SCL is used to control the coupling strength. In the present experiment, a
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symbol meaning value dimension

α linewidth enhancement factor 4.0 —

κ cavity loss rate 243 ns−1

GN differential gain 3.2× 10−6 ns−1

κc coupling rate ∼ 20 ns−1

τ one-way delay time ∼ 5 ns

γe carrier decay rate 1.66 ns−1

Nt carrier number at transparency 1.5× 108 —

ε (scaled) gain saturation 10−1 —

βsp spontaneous emission factor 10−5 —

Table 3.1. Symbols, their meaning and numerical values. The dimensionless gain con-
stant a ≈ 2 and the threshold current is Isol

th ≈ 60 mA.

maximum amount of 5% of the output power of each laser is injected into its coun-

terpart. In the detection branch of the setup, two photoreceivers with a bandwidth

of 6 GHz are used to detect the intensity dynamics of both lasers simultaneously via

their rear facet emission. The signal of the photoreceivers is analyzed by a fast digital

oscilloscope of 3 GHz analog bandwidth recording the temporal waveforms, and an

electrical spectrum analyzer recording the corresponding rf-spectra. In addition, the

optical spectra of the lasers are monitored with a grating spectrometer with a resolu-

tion of 0.1 nm. Finally, the time averaged output power of both lasers is detected by

two p-i-n photodiodes.

Laser 2 

Laser 1

τ NDF
Pol 

rfI
dcI

Irf
dcI

pin OSA

PD 

PD 

3 GHz Scope
ESA

Figure 3.10. Scheme of the experimental setup of two mutually coupled SCL. Polarizer
(Pol), neutral density filter (NDF), optical spectrum analyzer (OSA), electrical spectrum
analyzer (ESA).
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3.6 Results Under Symmetric Operation

We concentrate the analysis to the case of two identical SCL emitting at the same free-

running frequency and under equal current injection. In this case, the equations are

perfectly symmetric under the interchange of the two lasers, except for noise terms.

We center our discussion on the instabilities that arise under weak to moderate cou-

pling conditions (maximum 5% of the light emitted is injected) and long external

cavities (τ ∼ 4 ns). We find that under these operating conditions the external de-

lay time, being much larger than any other typical time scale of the laser, plays an

important role in the determination of the dynamics of the global system.

In order to gain insight into the dynamical properties of the system we perform

numerical simulations of Eqs. (3.43a)−(3.43c). We explore the behavior of the system

under variations of two easily accessible and controllable parameters, namely, the

amount of mutual coupling κc and the symmetric injection current µ ≡ µ1 = µ2.

3.6.1 Coupling-induced instabilities

Operating close to the solitary threshold current and in the absence of coupling, the

two lasers emit fully uncorrelated light due to the presence of spontaneous fluctua-

tions. When the coupling is activated, the two laser intensities display a behavior that

consists in irregular pulsations with small correlation among them. Hence, we find

numerically and experimentally a first threshold, associated to a coupling rate κI
c ,

for the onset of the coupling-induced instabilities. Increasing further the coupling

strength, the instabilities reshape into similar pulsations but now accompanied with

sudden power dropouts followed by a gradual recovering of the optical power. The

interesting fact is that pulsations in both lasers start to display a good correlation

beyond a second threshold for the coupling strength κII
c .

In order to better characterize this twofold threshold behavior, we introduce the

crosscorrelation function [137, 138] S(∆t) between two variables x1(t) and x2(t)
(with mean values being subtracted)

S(∆t) =
〈x1(t) x2(t + ∆t)〉√
〈x2

1(t)〉 〈x2
2(t)〉

, (3.50)

where 〈·〉 means time average. We look for the time shift ∆t where the maximum

correlation of the laser intensities is achieved, max{S(∆t)}, referred as correlation

degree. In Fig. 3.11, we observe that the correlation degree increases very rapidly

from zero when the coupling strength is increased until it reaches a saturation value.

Above this critical value, the correlation degree does not significantly increase dis-

playing a plateau with a relatively high maximum around ∼ 90%. The value κmax

corresponds to the maximum coupling accessible to the experiment that roughly
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corresponds to κmax = 25 ns−1. It is worth remarking the excellent agreement be-

tween theoretical and experimental dependencies, demonstrating that large degree

of synchronization is possible for a wide range of coupling strengths. High correla-

tion degree (80−90%) persists for injection currents up to twice the solitary threshold

current. The correlation degrades when the injection is increased beyond this value.

In the latter, the lasers spectra display a broad band of frequencies∼ 100 GHz, indi-

cating that they operate within a fully-developed coherence-collapse regime [25].

This large correlation between the intensities motivate us to further investigate

the transition towards synchronization of the coupling-induced instabilities. A typ-

ical example of the dynamics beyond the second coupling threshold (κc > κII
c )

is depicted in Fig. 3.12. In numerical simulations we took a coupling strength of

κ = 20 ns−1 in correspondence with experimental conditions. We represent the

time traces of the two lasers LD1 (a), and LD2 (b) when the lasers operate at the soli-

tary threshold current. In a first place, we analyze the low-frequency component of

these signals, by applying a low-pass filter with 250 MHz bandwidth. The resulting

signals are plotted using grey lines in the figure 3.12, whereas the unfiltered signals

are in black lines. We find that the low frequency dynamics, being much slower than

any other time scale of the system, consist in power dropouts that display a good cor-

relation between the two lasers. Power dropouts appear for a wide range of coupling

rates and injection currents close to the solitary laser threshold. For higher injection

currents, power dropouts disappear and the system enters in a coherence collapsed

(CC) regime [See Fig. 3.12(c)-(d)]. These numerical results are corroborated by ex-

perimental observations shown in Fig. 3.13. The mean time between dropouts, the

dependence with the injection current as well as the transition to the CC regime are

well reproduced by the delayed rate equation model.

3.6.2 Synchronization properties

Looking at nanosecond time scales, we observe that the optical power is organized

in a sequence of fast irregular pulses [Fig. 3.14]. This fast pulsing behavior appears

to be well correlated only if one series is shifted by a time τ with respect to the other,

that precisely corresponds to the coupling time. The solution where the dynamics

of the lasers occurs with a time shift is referred as leader-laggard operation [128] or

achronal synchronization [133]. These interesting findings motivate us to investi-

gate the mechanisms that originates this asymmetric role of the two subsystems. In

particular it has been already commented that the governing equations are symmet-

ric under the interchange of the lasers owing to the symmetric operating conditions.

Thus, one might immediately ask why the solution where both lasers evolve at the

same time (isochronal solution) does not appear?

In order to clarify this point, we have performed deterministic numerical sim-



3.6 Results Under Symmetric Operation 79

0.0 0.2 0.4 0.6 0.8 1.0
κc / κmax

0.0

0.2

0.4

0.6

0.8

1.0
m

ax
{ 

S
(∆

t)
 }

Experiment
Numeric

κc
II

Figure 3.11. Numerical and experimental comparison of the maximum degree of
correlation achieved as function of the coupling strength, κmax ≈ 25 ns−1, when
p1 = p2 = 1.
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rest of parameters are given in Table 3.1.
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Figure 3.13. Experimental time traces
of the intensity emitted by the two lasers
when running under resonant conditions.
The injection current is (a) p = 0.98 and
(b) p = 1.17.
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ulations to decide whether the achronal state appears as a general property of the

system or is just a consequence of the noise sources included in the equations.

In Fig. 3.15, we artificially switch-off the noise and we prepare both lasers to start

from identical initial conditions. We can appreciate that the system evolves in an

isochronal state (P1(t) = P2(t), D1(t) = D2(t)) until a small perturbation is exter-

nally introduced at t = 200 ns (the intensity of the laser 1 is modified by 1%). In

spite of the absence of noise for t > 200 ns, this small perturbation is able to desta-

bilize the isochronal state and the system evolves towards the achronal solution. The

achronal solution is characterized by highly correlated time series of the two lasers.

However, the high correlation is only achieved when shifting one time series with re-

spect to the other in time by +τ or −τ . Since the system remains in the achronal

solution for any arbitrarily long integration times, we conjecture that the isochronal

solution is intrinsically unstable in our system, and that the spontaneous emission

prevents such state to appear. The dynamical properties of the achronal state are

particularly interesting because they are originated from the bidirectional coupling

of perfectly symmetry subsystems. Next, we make use of two standard techniques,

namely, crosscorrelation functions and generalized return plots, in order to better

characterize this solution.

A standard tool for detecting the dependencies between the two laser intensi-

ties is the crosscorrelation function S(∆t) defined in Eq. (3.50). The crosscorrela-

tion function, obtained from numerical simulations depicted in Fig. 3.16(a), displays

dominant peaks at odd resonances of the coupling time, that is to say, ∆t = ±nτ

with n = 1, 3, 5, · · · . Consequently, successive peaks are separated by a distance 2τ

that corresponds to a roundtrip in the interlaser cavity. The correlation at the suc-

cessive peaks decay when the index n increases, while it is almost vanishing near the

zero shift ∆t = 0, indicating that fluctuations occurring at the same time are in-
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Figure 3.14. Subnanosecond synchronized dynamics between two consecutive power
dropouts using time shifted series: (a) numerical and (b) experimental results. The same
conditions as in Fig. 3.12, and p1 = p2 = 1.0. The numerical traces have been filtered at
3 GHz bandwidth corresponding to the analog bandwidth of the experimental detection
setup.
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dependent. The experimental correlation function, obtained from the time traces in

Fig. 3.13, is shown in Fig. 3.16(b). The function display the same features as described

above: the peaks are located at the correct positions with similar values of the corre-

lation degree as those obtained numerically. The crosscorrelation function obtained

for larger injection currents, display similar features. However, two last points are

worth mentioning. First, the background in the correlation function, that is a direct

consequence of the low frequency dynamics, is more pronounced in the experiments

owing to the partial filtering during the detection. Second, the crosscorrelation func-

tion may present small asymmetries around the zero shift.

The quality of the synchronization can be also studied by plotting the intensity of

the Laser 2 versus the intensity of the Laser 1. We remark that we need to time-shift

one signal, otherwise one only gets a cloud of points without any tendency. Then

a squeezed cloud of points arranged around a 45 degree straight line is obtained.

As it can be seen in Fig. 3.17, experimental and numerical tendencies are in agree-

ment. The dispersion of the points with respect to the linear tendency is linked to

the maximum degree of correlation achieved. We note that the maximum degree of

correlation increases from zero very rapidly when the coupling strength is increased

until it reaches a saturation value as discussed in Fig. 3.11.

A final point enters in the discussion of the achronal solution that occurs for cur-

rents within LFF regime. After a careful analysis of Fig. 3.12(a)-(b) and Fig 3.13, we

observe that power dropout events do not occur simultaneously in both lasers but

with a small time lag τ0. The instant in which the laser 1 drops, indicated by vertical

dashed lines in Fig. 3.12(a)-(b). In order to better quantify this phenomenon, we de-

fine a time lag by means τ0 ≡ τk
1 − τk

2 , where τk
j stands for the k-th drop of the laser

j. The means to decide whether a power dropout occurs is by looking at those events
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Figure 3.15. Deterministic numerical simulation describing the destabilization of the
isochronal solution due to an external perturbation applied at t = 200 ns. The intensity
time traces are filtered at 2 GHz. Traces of laser 2 are plotted in grey color.
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Figure 3.16. Crosscorrelation function (a) numerical (b) experimental. Same conditions
than in Fig. 3.14 and p1 = p2 = 1.

Figure 3.17. Numerical (a) and experimental (b) generalized return plots for the same
conditions than in Fig. 3.16. The maximum correlation degree is about 85% in both
cases.

Figure 3.18. Probability distribu-
tion function of the time shift be-
tween power dropouts of the two
lasers τ0, for τ = 5 ns, κ =

20 ns−1, and p = 1.01.
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where the laser intensity crosses a predefined threshold. Hence, positive (negative)

τ0 means that the laser 2 drops first (later) than laser 1. By analyzing a large number

of power dropouts (∼ 104 events), for different cavity length regimes, we find that

the time lag is randomly distributed presenting marked peaks at times τ0 ≈ ±τ and

strong decay for larger times. The probability of synchronized dropouts, i.e., τ0 = 0
is rare although non-vanishing. The probability distribution function of τ0, shown in

Fig. 3.18, is symmetric around τ0 = 0 indicating that the number of dropout events

where the laser 1 and laser 2 drops first is in average equal. This fact suggests that

the statistical quantities, computed over long time intervals of an achronal state, are

invariant under the interchange of the lasers.

3.6.3 Phase dynamics

Numerical simulations allow us to easily track the optical phases of the electric

fields. The coherent nature of the coupling [139, 140] becomes evident when express-

ing Eq. (3.43a) into equations for the power and optical phase through, A1,2(t) =√
P1,2(t) eiϕ1,2(t), that finally leads to

dtP1,2(t) = κ [G1,2(t)− 1]P1,2(t) + κc

√
P1,2(t)P2,1(t− τ)

cos(η1,2(t) + ϕ0) + 4βspκ(D1,2 + 1) + FP1,2(t) , (3.51a)

dtϕ1,2(t) = −α

2
κ [G1,2(t)− 1] + κc

√
P2,1(t− τ)

P1,2(t)
×

sin(η1,2(t) + ϕ0) + Fϕ1,2(t) , (3.51b)

where η1,2(t) = ϕ2,1(t − τ) − ϕ1,2(t) are the injection phases from laser 1 to laser

2 and vice versa, whereas ϕ0 ≡ Ω0τ mod 2π stands for the global phase accrued
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Figure 3.19. Dynamics of the injection phases. Deterministic numerical simulation de-
scribing the destabilization of the isochronal solution due to an external perturbation
applied at t = 200 ns.
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within the inter-laser cavity. Finally FP1,2(t) and Fϕ1,2(t) represent two independent

real Langevin noise sources.

In the limit of very small coupling conditions, where the intensity can be as-

sumed constant, Eqs. (3.51a)-(3.51b) can be reduced to a Kuramoto model [141] for

the injection optical phases η1,2(t) = ϕ2,1(t − τ) − ϕ1,2(t). The injection phases

represent, in the case of bidirectional coupling, the phase difference between the

oscillator and the force (which actually corresponds to the other oscillator a time τ

before). An analysis beyond the constant intensity approximation has be performed

using a two-time scale analysis [126, 142]. From these analysis, it turns out that phase

dynamics is, at last stage, the underlying mechanism in many coupling induced in-

stabilities.

In a first place, we analyze the transition from isochronal to achronal behavior

discussed in the numerical simulations of Fig. 3.15. For such a transition, we follow

the evolution of the injection phases η1,2(t). During the initial transient and before

the perturbation is applied, the two injection phases evolve in an identical fashion,

η1(t) = η2(t), as can be appreciated in Fig. 3.19. The injection phases move close

to the modes of the compound system [131], displaying a chaotic itinerancy towards

smaller frequencies very similar to the one in SCL with optical feedback [63]. Power

dropout events produce a rapid increase of the injection phases and, consequently

shifting the emission to higher frequencies. When the perturbation is applied, this
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Figure 3.20. Statistical properties of the injection phases under symmetric operation of
the lasers, I1 = I2 = Isol

th .
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operating mode turns out to be unstable because the two injection phases start to

separate. The existence of a phase instability associated to the isochronal solution

was claimed in [133] when analyzing its stability. Fig. 3.20(a) shows the phase dy-

namics at later times, both injection phases continue displaying the chaotic itiner-

ancy behavior, however the separation between the injection phases has an intrinsic

dynamics.

A synchronous state requires that the phase difference (between the oscillator

and the force) remains bounded. It is worth recalling that when a SCL (laser 1) is

unidirectionally injected by a monochromatic field at a given frequency (from a laser

2), a necessary condition for locking requires operation of the laser 1 at the frequency

imposed by laser 2. In the case of bidirectional injection the opposite situation must

also occur, thus requiring of a monochromatic solution (at frequency Ω) along the

compound system. However, we do not observe locking to fixed values of η1,2 for

this dynamical operation conditions. Instead, we appreciate from the figure 3.20(a)

that η1,2 are bounded because their difference ∆η(t) ≡ η1(t) − η2(t) visits positive

and negative values.

Looking to the time interval during two power dropouts, ∆η(t) is approximately

constant whereas large excursions occur at the power dropout events. In order to

better characterize the striking dynamics of ∆η(t), we have investigated its statisti-

cal properties. The monochromatic solutions verify that the relative injection phase

is ∆η(t) = 2πn with n = 0,±1, · · · . Under dynamical conditions the system moves

along these solutions. Fig 3.20(b) shows in solid lines the average 〈∆η(t)〉, and the

variance σ2(t) ≡ 〈∆η2(t)〉 − 〈∆η(t)〉2 in bold lines of the relative injection phase.

Note that 〈·〉 now means average over different noise realizations and initial condi-

tions. We observe how ∆η(t) diffuses with the same probability in both directions.

This fact is corroborated by a zero mean 〈∆η(t)〉 and variance that increases linearly

with time σ2(t) ∼ t. It is worth noting that the same statistical properties are fulfilled

by a Wiener process (random walk) [143].

Although the experimental operating conditions corresponds to injection-locking,

also demonstrated analytically by the existence of phase-locked monochromatic so-

lutions, our results indicate that phase-locked operation is unstable.

3.7 Dynamical Model Including Higher-Order Terms

From the steady state analysis, we have found that the applicability of the phe-

nomenological model is restricted to weak coupling strength, typically less than 5%

of coupler transmission. In this section, our aim is to explore the dynamical con-

sequences when the coupling exceeds, although by an small amount, the limit of

validity of the phenomenological model.
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It is worth recalling that our problem now consists in Fourier transforming to

time domain Eq. (3.41). Following the guidelines given in [58], we proceed introduc-

ing the auxiliary variables

R̃1,2(u) ≡
[
1− ei∆θ1,2

]
τin

Ã1,2(u) , (3.52)

which represent the variation in propagation constants with respect to the free-

running laser. Upon introducing these expressions into Eq. (3.41), we obtain

R̃1,2(u) = κ̂ce
iuτ Ã2,1(u)− κ̂fei2uτ Ã1,2(u) +

ξ̂2ei2uτ R̃1,2(u)− σ̂eiuτ R̃2,1(u) , (3.53)

where we have defined the effective injection rate κ̂c = (1−r2)ξ̂/(rτin), the effective

feedback rate κ̂f = (1 − r2)ξ̂2/τin and σ̂ = (1 − r2)ξ̂/r. Equation (3.53) can be

straightforwardly transformed from Fourier to time domain obtaining

R1,2(t) = κ̂cA2,1(t− τ)− κ̂fA1,2(t− 2τ) +

ξ̂2R1,2(t− 2τ)− σ̂R2,1(t− τ) . (3.54)

The above equation provides the value of the variables R1,2(t) as function of the past

history of the system. The first term in the right-hand of Eq. (3.54) describes the de-

layed injection from one laser to its counterpart, while the second term accounts for

passive reflections at the external facet of the other laser. The last two terms, involv-

ing electric fields with arbitrary large delays, describe the modification in propaga-

tion constants due to multiple reflections within the inter-laser cavity.

On the other hand, we need to specify which is the temporal evolution of the

electric fields in terms of the R1,2 variables. The Eq. (3.52) can be transformed to

time domain resulting

R1,2(t) =
1

τin

[
A1,2(t)− eτin[∓i∆+ 1

2 (1−iα)κ(G1,2−1)]A1,2(t− τin)
]

.

(3.55)

The above equation, in finite differences, can be approximated by a differential equa-

tion in the limit of τin → 0.

R1,2(t) ≈ dtA1,2(t)± i∆A1,2(t)−
1
2
(1− iα)κ[G1,2(t)− 1]A1,2(t) .

(3.56)
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As a final step, we need to reconsider the longitudinal confinement integrals Γj

[Eq. (3.16)] in order to fully determine the evolution of the carrier variables. We ex-

press Eq. (3.17) in terms of the variation in propagation constants ∆θj

Γj =
1
r2

e−Im ∆θj

[
2r′sinc (Re ∆θj) +

r2(1 + eIm ∆θj )− (1 + e−Im ∆θj )
ln(r2) + Im ∆θj

]
.

(3.57)

We expand Eq. (3.57) to first order in variations

Γj = Γsol[1− λIm ∆θj + · · · ] ≈ Γsol e−λ Im ∆θj , (3.58)

with Γsol given in Eq. (3.19) and

λ = 1 +
1 + r2

2(1− r2)
+

1
ln r2

. (3.59)

These integral terms depend, to lower order, on the imaginary part of the propaga-

tion constants or the gain. Since the gain in both lasers may differ, there is no way

to rescale this terms into the definition of the field amplitudes. However, it is possi-

ble to replace these approximate expressions in the stimulated recombination of the

carrier equations.

In summary, our model for two bidirectionally coupled lasers taking into account

higher order corrective terms reads

dtA1,2(t) = ∓i∆A1,2(t) +
1
2
(1− iα)κ[Gj(t)− 1]A1,2(t) + R1,2(t) ,

(3.60a)

R1,2(t) = κ̂cA2,1(t− τ)− κ̂fA1,2(t− 2τ) +

ξ̂2R1,2(t− 2τ)− σ̂R2,1(t− τ) , (3.60b)

Ḋj(t) = γe

[
µj −Dj − Gj e−λ

τin
2 κ[Gj(t)−1] |Aj |2

]
, (3.60c)

Gj =
aDj

1 + ε|Aj |2
. (3.60d)

We use Eqs. (3.60a) and (3.60c) to update the electric fields and carrier variables,

while Eq. (3.60b) describes the interaction among the lasers. We finally remark

that the phenomenological model can be recovered by approximating R1,2(t) ≈
κ̂cA2,1(t− τ) in Eq. (3.60a).
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Comparison

We perform numerical simulations of the complete model, Eqs. (3.60a)-(3.60d), and

the phenomenological model, Eqs. (3.43a)−(3.43b), for different values of the cou-

pling strength, ξ. We focus the discussion on the instabilities that arise under weak

to moderate coupling conditions and long external cavities. We assume that both

lasers are equally pumped, their currents slightly above the solitary threshold, and

no detuning is present.

In Fig. 3.21, the coupling is very weak, only 0.25% of the light is transmitted

(κc = 7.6 ns−1). We can observe how the laser intensities undergo irregular fast

pulses (partially washed-out by the filtering), in sub-ns time scales, accompanied

with sudden power dropouts followed by a gradual recovering of the optical power

when looking to µs time scales. This low frequency dynamics displays a good corre-

lation between the two time series. Zooming into Fig. 3.21, we can observe that ac-

tually power dropouts do not occur simultaneously but with a small lag time. Thus,

the asymmetric role between the two lasers, obtained from the phenomenological

model, is also captured by the more sophisticated description. It is worth noting, that

for these very weak coupling conditions, the results obtained from the phenomeno-

logical model [Fig. 3.21(b)] are in good agreement with the complete model. Hence,

this fact suggests that the existence of LFFs in bidirectionally coupled lasers is a con-

sequence of the delayed mutual injection, although they could be eventually modi-

Figure 3.21. Numerical simulation of the complete dynamical model [Sec. 3.7] (a), and
the phenomenological model (b), P1,2 ≡ |A1,2|2. The parameters are: r = 0.56, L =

300µm, τ = 4ns, ϕ0 = 0, ng = 4, γe = 1ns−1, Nt = 1.5 × 108, GN = 3 × 10−6ns−1,
α = 3.5, αint = 20cm−1, ε = 0.03, ξ = 0.05, and p = 1.01. The time traces of the laser
2 have been vertically shifted for clarity.
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Figure 3.22. Numerical simulation of the complete dynamical model [Sec. 3.7] (a), and
the phenomenological model (b), P1,2 ≡ |A1,2|2. The same parameters than Fig. 3.21
except for ξ = 0.25 and p = 1.04.

fied due to passive feedback reflections. In Fig. 3.22, the coupling has been enhanced

to 6% of light transmission (κc = 38.3ns−1). The larger the coupling, the larger the

discrepancies between the two models due to the existence of higher-order correc-

tive terms. For instance, power dropouts appear more frequently in the complete

model, and we can also appreciate lower mean power levels. In conclusion, this last

coupling value ξ ≈ 5% sets the limit of validity of the phenomenological model.

3.8 Summary

In this chapter we have theoretically, numerically and experimentally investigated

the dynamical properties of two mutually coupled semiconductor lasers. The setup

under study is conceptually equivalent to the one of coupled-cavity lasers, except for

the air-gap that is assumed to be much longer than the laser cavities. In addition, we

have restricted ourselves to the case of device-identical lasers, being equally pumped

and tuned to achieve equal free-running emission frequencies. Our description have

focused on the propagation of the electric field through the compound system, com-

plemented by adequate boundary conditions. We have demonstrated that, in the

limit of weak coupling and single longitudinal mode operation, the model can be re-

duced to rate equations describing the evolution of the slowly-varying envelope of

the electric field and the carrier number within each semiconductor laser. Taking the

limit of small transmitivity of the coupler, the rate equation model can be reduced to
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the so-called phenomenological model, that only accounts for mutual injection from

one laser into its counterpart and viceversa.

From the steady-state analysis, we have found three different types of phase-

locked solutions: in-phase and anti-phase symmetric solutions, and asymmetric so-

lutions. In the symmetric solutions, the two lasers oscillate with a relative phase that

is restricted to be either 0 (in-phase) or π (anti-phase). In spite of the high degree of

symmetry in the system, asymmetric solutions, in which the gain in both lasers is dif-

ferent, have also been found. We have seen, from numerical simulations, that many

of these solutions become unstable when the coupling is increased. The spectrum of

symmetric monochromatic solutions was calculated for different values of the mu-

tual coupling strength. From this steady-state analysis, we have inferred the limit of

validity of the phenomenological model, that is restricted to typically less than 5% of

coupler transmission.

We have presented a detailed numerical and experimental investigation of the

dynamical instabilities that arise from the mutual optical coupling of two semicon-

ductor lasers. We have found a twofold threshold scenario that appears upon varia-

tion of the coupling strength. We obtained a first threshold associated with the onset

of coupling-induced instabilities and a second threshold indicating the transition to

synchronization. These instabilities are quite generic features that appear in a wide

range of coupling strengths and injection currents covering the LFF and CC regimes.

In spite of the high degree of symmetry in the system, the solution selected corre-

sponds to an achronal state, i.e., a time shift between the dynamics of the two laser

intensities is present. Deterministic numerical simulations have been undertaken,

demonstrating that the isochronal solution is unstable. We have demonstrated that

the achronal solution persists even in the absence of the spontaneous emission, thus

being an intrinsic feature of the dynamical system. Although the achronal solutions

distinguish between the lasers, statistical quantities (probability distribution, cross-

correlation, etc.) computed over long time intervals are invariant under the inter-

change of the lasers. From a crosscorrelation analysis, we have found synchroniza-

tion with a time shift of the subnanosecond pulsation of the laser intensities. The

generalized return plots present a linear tendency only when a signal is time shift

as well. The maximum degree of synchronization is about 80-90%. As a final step,

we have investigated the dynamical properties of the complete model, being able to

incorporate the effects of higher-order corrective terms. For weak coupling, the phe-

nomenological model yields correct results, but for higher couplings, passive feed-

back and multiple reflections produce a decrease in mean optical power and that

power dropouts appear more frequently.

The study of mutually-coupled semiconductor lasers is important from the point

of view of fundamental physics, dynamical systems theory, and also for their tech-
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nological aspects. A thorough understanding of the synchronization properties is

crucial for their potential implementation in, e.g., encoded communication systems.





Chapter 4

Conclusions to Part One

We have analyzed the dynamical properties of edge-emitting semiconductor

lasers (SCL) with added degrees of freedom. We have considered the effect of

delayed optical feedback and the mutual coupling of two twin semiconductor lasers.

We tackled both problems looking for models that, including the minimal ingredi-

ents, describe the experimentally observed features. Experiments using distributed

feedback lasers (DFB) allowed us to obtain an optimum match between experimen-

tal and theoretical conditions. Hence, the evolution of the longitudinal mode ampli-

tude of the electric field has been described through delayed differential equations.

It is worth recalling that the validity of these models is limited to single longitudi-

nal mode operation of the lasers and weak coupling conditions. Multiple reflec-

tions are neglected, flat material gain spectrum and the same α−factor for all the

compound-cavity solutions is considered, and the slowly varying approximation is

used. A more detailed description of this class of systems, although out of the scope

of the thesis, should consider the Maxwell Bloch semiconductor equations comple-

mented with (delayed) boundary conditions. Proceeding in this way, semiconductor

specific effects and multilongitudinal emission would be naturally accounted for. We

note however the greater numerical complexity as well as the lack of intuition upon

variations of parameters when comparing with the rate-equation descriptions.

In Chapter 2 we discussed the properties of SCL subject to delayed optical feed-

back. The generation of chaotic optical signals containing a broad frequency band

is currently of large interest in optical chaos communication using laser-diode trans-

mitters (OCCULT). We performed a statistical characterization of the power dropouts

occurring in the low-frequency fluctuation (LFF) regime. Extensive numerical sim-

ulation of the Lang-Kobayashi (LK) model was carried out. In particular, we ana-

lyzed the statistical distribution of the time between subsequent power dropouts

when varying the injection current. In spite of the apparent irregularity in the dy-

namics, the transition from stable operation to LFF has associated scaling laws that

93
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seem to be independent of the number of longitudinal modes. For our theoretical de-

scription, based on the LK model, we bet for the existence of a deterministic crisis-

induced intermittent process. The most outstanding results obtained from the LK

model and experiments with DFB lasers include

1. Numerical and experimental evidence of the alternation between stable oper-

ation (in a high-gain external-cavity mode) and low frequency-frequency fluc-

tuations (LFF). Importance of spontaneous emission noise for ejecting the sys-

tem from the stable point.

2. Probability distribution functions of the time between power dropouts for dis-

tributed feedback lasers (DFB): Dead time interval for short times and expo-

nential decay for longer times.

3. Scaling law 〈T 〉 ∼ (p/pc − 1)−1 associated to the transition from stable oper-

ation to LFF.

4. Possibility of entraining power dropouts with a weak periodic modulation of

current with adequate frequencies. This effect was theoretically predicted first

[102] and experimentally corroborated later [103].

Chapter 3 generalized the previous studies of compound-cavity semiconduc-

tor lasers to two spatially-separated bidirectionally-coupled SCL. A detailed electro-

magnetic analysis revealed that, under weak coupling conditions, the system can

be described as a mutual injection problem with delay. A detailed analysis of the

monochromatic solutions showed the existence of phase-locked solutions, thus gen-

eralizing the concepts of unidirectional injection-locking. We numerically and exper-

imentally observed the appearance of coupling-induced instabilities when increas-

ing the coupling strength. Further increase of the coupling yields synchronization

with high correlation degree of these instabilities. Experimental results are in agree-

ment with the predictions of the simple bidirectional injection model (phenomeno-

logical model). The dynamics within the regime of synchronization was investigated

in the case of symmetric operating conditions: no detuning between the lasers and

identical injection current. We addressed the importance of the role of the time delay

in mutual coupling. In spite of the large degree of symmetry in the system, the solu-

tion where the two twin SCL operate simultaneously (isochronal solution) appeared

to be unstable and an achronal state is selected instead. Nevertheless, we found that

statistical quantities, computed over long time intervals, are invariant under the in-

terchange of the lasers. Finally, we inferred about the validity of the phenomeno-

logical model, by developing a model that include high-order terms in the coupling.

From this simple analysis, we found that the coupling has to be weak (< 5% of trans-

mission) in order to guaranty the validity of the phenomenological model. The sum-

mary of results in Chap. 3 is
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1. Existence of phase-locked monochromatic solutions: in-phase, anti-phase

and asymmetric solutions.

2. Twofold threshold behavior: i) Appearance of instabilities in the mutual cou-

pling with delay of two twin semiconductor lasers, and ii) transition towards

synchronization.

3. Large degree of synchronization between the laser intensities only when a sig-

nal is time shifted by the coupling time τ (achronal synchronization).

4. Validity of the phenomenological model restricted to sufficiently weak cou-

pling.





Part II

Polarization and Transverse
Mode Dynamics in

Vertical-Cavity
Surface-Emitting Lasers
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Preface to the Second Part

In this second part we deal with vertical-cavity surface-emitting lasers (VCSELs).

VCSELs have received great deal of attention during the last decades, specially for

their potential implementation in optical communication systems. VCSELs present

clear advantages over the conventional edge-emitting lasers (EELs), such as easy

testing, single-longitudinal mode emission, integration in 2D arrays, narrow circu-

lar output beams, low threshold currents, etc. However, VCSEL’s cavity lacks an ef-

fective mechanism to pin the polarization of the optical field. Consequently, light-

polarization instabilities are often observed when the current is increased [30]. In

addition, relatively large apertures are required in order to obtain substantial opti-

cal power, which lead to multitransverse mode behavior of the VCSEL [12, 35]. The

understanding of the polarization and transverse modes is essential if one wants to

manipulate and exploit these degrees of freedom in view of novel applications. This

fact motivates the study, characterization and control of polarization and transverse

dynamics.

This second part is structured in three chapters that are ordered according to

the modeling complexity. In Chap. 5, we investigate the small-signal properties of

VCSELs that operate in the fundamental transverse mode. We center the study on

the anticorrelated fluctuations among the polarization components. We use a stan-

dard description of the polarization dynamics, the so-called Spin-Flip Model (SFM),

whereas the spontaneous emission noise is treated within a semiclassical frame-

work. In Chap. 6, we develop a spatiotemporal model for the large-signal dynamics

of VCSELs which describes polarization and spatial effects by including a frequency-

dependent susceptibility. This provides a natural generalization of the SFM to the

realistic band structure of a quantum-well laser. In this case, we study the mecha-

nisms that define the selection of transverse modes and the dynamics occurring un-

der large-signal modulation of the current. We briefly discuss about the polarization

mode selection mechanisms. In Chap. 7, we give evidence for the need of a spa-

tiotemporal description of the large-signal dynamics in gain-guided VCSELs instead

of modal expansion methods.
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Chapter 5

Intensity and Polarization
Noise in VCSELs

5.1 Introduction

Since1 the development of a modern semiconductor technology, it has been pos-

sible to construct semiconductor structures in the nanometer scales (nanostruc-

tures) and reducing the laser size up to a single wavelength limit. Due to this constant

reduction of scales, quantum effects in the confinement of electrons and light field

have increased considerably. As a consequence, the laser light is not pure but con-

tains random fluctuations that arise from spontaneous emission processes. A correct

treatment requires the quantization of the electromagnetic fields and dipole ampli-

tudes [60]. We instead consider that, under a sufficiently intense field, the determin-

istic field dynamics is well described by the classical Maxwell’s equations [60, 144]. In

any case, the semiconductor material has to be treated by using quantum mechan-

ics. Within this semiclassical approach, the quantum fluctuations are modeled by

means classical Langevin noise sources. The semiclassical approach has been ex-

tensively used in the literature [10]. Obviously, the strength of these fluctuations can

only be determined from quantum mechanical requirements as commented in Ap-

pendix C.

One widely extended means of characterizing noisy signals is the relative inten-

sity noise (RIN) or power spectra of the amplitude fluctuations. In multimode de-

vices, the total noise is distributed among the different modes according to a quantity

referred as mode partition noise (MPN) [145]. MPN gives fundamental information

1This chapter is mainly based on the papers:
J. Mulet, C. R. Mirasso and M. San Miguel, Phys. Rev. A 64, 023817 (2001).
M. San Miguel, S. Balle, J. Mulet, C. R. Mirasso, E. Tolkachova, and J. R. Tredicce, Proc. SPIE
3944, 242-251 (2000).
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on the dynamical properties in semiconductor lasers. From the point of view of ap-

plications in optical communications, the degradation of the signal to noise ratio as-

sociated with MPN fixes limits on the receiver sensitivity and bit error rates. Vertical-

cavity surface-emitting lasers (VCSELs) operate in a single longitudinal mode, al-

though multitransverse mode operation is common. MPN among these transverse

modes and anticorrelated fluctuations of the modes have been described in differ-

ent experiments and RIN measurements [146]-[155] and theoretically characterized

[156]-[158]. The basic physical mechanism for this phenomenon is the same as for

MPN among longitudinal modes of edge-emitting lasers, that is, spatial hole burn-

ing with modes competing for the same spatial carrier reservoir. Transverse modes

can have different polarization, but still MPN among different transverse modes is

mostly caused by spatial effects.

A more subtle form of MPN occurs in VCSELs operating close to threshold. In

this situation VCSELs lase in the fundamental transverse mode, but MPN arises from

the competition of the two independent polarization components with essentially

the same spatial profile. The effect of polarization fluctuations in the total intensity

noise can significantly degrade the RIN characteristics [12] in a system with polariza-

tion sensitive elements. The importance of the fluctuations in the polarization com-

ponent perpendicular to the dominant one has been characterized in detail [159]-

[162]. Evidence of anticorrelated fluctuations of the two polarization components of

the fundamental transverse mode has also been reported [162, 163] and it can be ap-

preciated in Fig. 5.1. Anticorrelated dynamics of the polarization components may

also manifest in chaotic regimes caused by optical feedback [164].

Due to their high quantum efficiency, low threshold, and single mode opera-

tion, VCSELs have been proposed as good candidates for the production of quan-

tum squeezed light. In fact, production of squeezed light from VCSELs has been re-

 (a)                                                       (b)

Figure 5.1. (a) Intensity noise of the 5 µm device measured through a Glan-Thompson
polarizer. (b) Normalized crosscorrelation between the two degenerate polarization
modes in the 5µm device. Extracted from Ref. [163].
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ported by several groups [149, 155, 165]. In this context an important question that

has been addressed is the relevance of polarization partition noise (PPN) in degrad-

ing or achieving quantum squeezing [166].

A standard model for the study of polarization dynamics of VCSELs is the so-

called Spin-Flip Model (SFM), and reduced versions [167]. Two important param-

eters of the model that enter into the description of the dynamical coupling of the

two polarization components are the cavity birefringence and the spin-flip rate. The

latter measures the direct coupling between the two groups of carriers with opposite

spin that recombine into photons of opposite circular polarization. Previous stud-

ies of polarization fluctuations [159, 162, 166] take the SFM as a starting point. But,

invoking the limit of fast spin-flip rate and large birefringence, the SFM is reduced

to a simple model with one degree of freedom or to the rate equations for a two-

mode laser [145]. However, for VCSELs with small birefringence there is experimen-

tal evidence of the role of the nonlinear anisotropies associated with a finite spin-flip

rate. These effects are seen at least in three different characterizations of polarization

fluctuations: A polarization type of four-wave mixing detected in the optical spec-

trum, polarization resolved intensity noise, and difference in the frequency splitting

of the two polarizations components at both sides of a polarization switching (PS)

[159, 161]. In addition, and also for VCSELs with small birefringence, there is ev-

idence of polarization switching [168] caused by phase-amplitude mechanisms of

nonthermal origin described by the SFM [30, 32, 33, 169]. These results motivate the

detailed analysis of the complete SFM presented here. Such analysis allows us to gain

a full understanding of the dependence of polarization fluctuations on birefringence

and spin-flip rate in different ranges of values of these parameters.

In this chapter, we study the polarization resolved intensity noise of VCSELs op-

erating in the fundamental transverse mode. We investigate the dynamical origin

of the anticorrelated fluctuations of the polarization components. Such correlations

emerge from mechanisms of polarization coupling and competition that are in prin-

ciple independent of spatial mode profiles. We consider here the polarization dy-

namics within a semiclassical approach. This should give the necessary understand-

ing for detailed studies of the quantum properties [170]. Our analysis focuses on the

two circularly polarized components of the electric field. These are the natural vari-

ables for describing the lasing transitions in an active semiconductor material. They

are directly phase coupled by the cavity birefringence and also coupled through the

carrier populations mixed by the spin-flip. Focusing on the circularly polarized com-

ponents, we are able to obtain explicit analytical expressions for their power spectra

(in the approximation of linearized fluctuations). The competing roles of birefrin-

gence and spin-flip rate become clear from these expressions. Our results for the

circularly polarized components are discussed and compared with the polarization
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resolved spectra of the linearly polarized (LP) components obtained by a numerical

analysis.

This chapter is organized as follows. We begin discussing in Sec. 5.2 the relation-

ship between spin dynamics and light polarization state in VCSELs. The equations

for the spin-flip model together with the Langevin noise sources are put forward in

Sec. 5.3. We recall the possible linearly-polarized solutions of the model and their

stability. In Sec. 5.4 we discuss the regimes with qualitative different dynamical op-

eration in the SFM, associated with different values of anisotropies and spin-flip. In

Sec. 5.5 we present our results for the polarization resolved intensity noise for the

circular and linear components on both sides of a polarization switch. In Sec. 5.6 we

present the power spectra of the polarization angles in the different regimes of oper-

ation. In Sec. 5.7 we discuss the role of birefringence and spin-flip rate by visualizing

the polarization fluctuations on the Poincaré sphere. In Sec. 5.8 we give a quanti-

tative description of the anticorrelation of polarization fluctuations for circular and

linear polarization components. We analyze the whole range of frequencies, from

small frequency to frequencies beyond the relaxation oscillation frequency.

5.2 Spin Dynamics and Light Polarization State

The light emitted by an edge-emitter is linearly-polarized along the heterojunction

plane of a rectangular-shaped resonator, thus determining a transverse electric (TE)

mode. In VCSELs the polarization direction is not apriori fixed due to their inherent

circular geometry. So, an important question that we address is what does determine

the light polarization state in VCSELs?

In weakly-index guided or purely gain-guided devices, the optical field inside the

VCSEL cavity can be considered as almost totally polarized in the transverse plane to

the cavity axis2. In a system with perfect cylindrical symmetry, any linearly polarized

state of the optical field is allowed. In crystals with cubic symmetry, this rotational

invariance is not perfectly preserved. Moreover the VCSEL cavity has weak optical

anisotropies (due to either residual strain incorporated during device processing or

to other sources as the elasto-optic [171] or electro-optic effects [172]) that select two

preferred orthogonal orientations for the optical field, x̂ and ŷ, which usually cor-

respond to the underlying crystallographic axes. For simplicity, we assume that the

preferred orientations are the same in all epitaxial layers defining the VCSEL cavity,

hence the optical properties of the passive cavity are diagonal in the basis of lin-

early polarized states. However, the polarization state of the optical field emitted

by the VCSEL also depends on its interaction with the active region’s material, gov-

erned by the selection rules of quantum mechanics. In crystals with cubic symmetry,

2This is the so-called weak guidance approximation discussed in Appendix E.
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and when the optical field propagates along the quantization axes of the crystal (ẑ),

the selection rules for the transitions impose, among others, the conservation of the

third component of the angular momentum. Hence, changes in the total angular

momentum of ∆Jz = +1 (−1) corresponds to the emission of a left (right) circularly

polarized photon. The optical properties of the active region are therefore diagonal

in the basis of circularly polarized states of the optical field, hence we switch to it due

to the resulting simplified description of the dynamical interaction with the active

material. It is worth recalling the relationship among linear and circular basis. The

field components Ai and unitary vectors êi transform according to

A± =
Ax ± iAy√

2
, ê± =

êx ∓ iêy√
2

. (5.1)

It is then also natural to distinguish between spin-up and spin-down electrons and

holes, since they couple to optical transitions with opposite circular polarization. In

addition, spin-up and spin-down carriers are coupled among them through spin-flip

mechanisms that may reverse the particle’s spin [173], and which we shall describe

through an effective spin-relaxation rate.

The original SFM considers optical transitions in a four-level system as sketched

in Fig. 5.2. It can be regarded as a generalization of the gas laser theory to the mag-

netic sublevels of the conduction and heavy-hole bands of a QW. The conduction

band is replaced by two levels populated by electrons with opposite spin orienta-

tions and angular momentum Jz = ±1/2. In the same way, the heavy hole band

(HH) is replaced by two levels populated by holes with opposite spin orientations

and Jz = ±3/2. The total carrier density into spin-up and spin-down carrier reser-

voirs. The population inversion in the two spin channels is given by N± ≡ N c
±−Nv

±,

where N c
± (Nv

±) stands for the population in the conduction (valence) spin subbands.

In absence of magnetic fields, the two spin channels are energetically degenerated.

Figure 5.2. Sketch of a four level
system in the SFM. Allowed opti-
cal transitions, recombination and
mixing mechanisms are indicated
in the figure. γs = 2τ−1

j + γe.

γe γe

τj
-1

E– E+

γp

Jz=+1/2   -1/2

Jz=+3/2   -3/2
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Spin-relaxation rate

An important parameter that enters in the determination of the polarization prop-

erties is the spin-relaxation time τj . This quantity determines the mean lifetime for

electrons in a given spin state. Various spin-relaxation mechanisms in semiconduc-

tor QWs have been proposed, see e.g., [173]-[175]: D’yakonov-Perel’ (DP), Elliot-Yafet

(EY), and Bir-Aronov-Pikus (BAP). In the DP process, the spin-orbit effect causes the

splitting in energy of the magnetic conduction bands that in conjunction with the

lack of inversion symmetry causes the re-orientation of the spins. In DP, τj ∼ E−2
1e ,

with E1e the first electron confinement energy in the QW. The EY process leads to

spin-relaxation due to the mixing of the valence-band states into the conduction-

band. Finally in BAP, the spin-flip appears as a consequence of an interchange of

scattering interaction between electrons and holes. In both EY and BAP processes,

τj ∼ E−1
1e , although the relative importance of BAP is significant only below 100 K.

The predictions of these models are contrasted with experimental determination of

the spin-relaxation time. One possible way for doing this consists in optically pump

the active medium with circularly polarized pulses p±(t) and to analyze the circu-

larly polarized emission. In the case of optical pumping below the lasing threshold,

the stimulated recombination terms can be neglected in the evolution of the carrier

densities
dN±

dt
= p±(t)− γeN± ∓

1
τs

(N+ −N−) , (5.2)

determine the photoluminescence in both circular components. The inversion dif-

ference n = (N+ −N−)/2 evolves according

dn

dt
=

1
2
[p+(t)− p−(t)]− γsn ,

γs ≡ γe + 2τ−1
j being the spin-flip rate. Thus, spin-flip processes tend to balance

the population in both spin channels. From experiments, the main contribution to

τj in GaAs QWs (λ̄ ≈ 0.85 µm) at room temperature is the DP process yielding a typ-

ical value of τj ≈ 40 ps (γs ≈ 50 ns−1) for electron confinement energies around

E1e = 100 meV [175]. However, the most plausible candidate for the spin relax-

ation in InGaAs/InP QWs (λ̄ ≈ 1.5 µm) at room temperature is the EY process due

to the smaller band-gap. In this case, a typical value at room temperature of the

spin-relaxation time is τj ≈ 5 ps (γs ≈ 400 ns−1) for confinement electron energies

E1e = 50 meV [174].

It is worth remarking that γs corresponds to the spin relaxation rate for elec-

trons in the conduction band. Spin-flip for holes is usually neglected because sub-

picosecond spin relaxation time is found at room temperature. The implications of a

finite spin-flip rate for electrons in the polarization properties of QW VCSELs will be

discussed along this work.
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5.3 Spin-Flip Model

The evolution of the electric field within the VCSEL cavity is governed by the Maxwell’s

equations whereas the the carrier populations can be determined using the density-

matrix formalism [60] applied to a four level system. In the absence of transverse

effects, the polarization dynamics of a single longitudinal and transverse mode VC-

SEL is described by the spin-flip model. The original equations read [37]

Ȧ±(t) = −κA± + ig
QW

P± − (γa + iγp)A∓ + GA±(t) , (5.3a)

Ṗ±(t) = −γ⊥(1− i∆)P± − ig
QW

(N ± n−N0)A± + GP±(t) , (5.3b)

Ṅ(t) = −γe(N − σ)− ig
QW

[
A∗

+P+ + A∗
−P− − c.c.

]
+ GN (t) , (5.3c)

ṅ(t) = −γsn− ig
QW

[
A∗

+P+ −A∗
−P− − c.c.

]
+ Gn(t) . (5.3d)

A± are the complex slowly-varying amplitudes of the electrical field, written in terms

of the circular polarization components. The slowly-varying circular-components of

the material polarization P± appear in a diagonal form only in the circular basis.

N ≡ (N+ + N−)/2 is associated to the total population inversion between the con-

duction and valence bands and n ≡ (N+ − N−)/2 is the difference in population

inversions of the two spin channels separately. N0 stands for the total population

inversion at transparency. The total population inversion decays with rate γe, while

the differences in population inversions n relaxes with spin-flip rate γs, introduced

at this level as a phenomenological parameter. ∆ = (Ω−ωg)/γ⊥ represents the nor-

malized detuning between the longitudinal mode resonance Ω and the transition fre-

quency ωg . The material polarization decay rate is γ⊥ whereas the cavity decay rate

is κ. g
QW

stands for the effective coupling constant between the material dipoles and

the electric field. The pumping parameter σ is related to the injection current level.

In a real situation the VCSEL structure is not perfectly symmetric under the inter-

change of the x̂ and ŷ directions due to, for instance, imperfections during the fabri-

cation. This effect is accounted through the linear cavity anisotropies. The amplitude

anisotropy γa is referred as dichroism while γp is the phase anisotropy or birefrin-

gence. The effect of the dichroism is to introduce different losses depending on the

polarization orientation while birefringence introduces different refractive indexes

and modal frequencies. Several mechanisms contribute to birefringence: mechan-

ical strain [176], linear electro-optic effect [177], and elasto-optic effect [178]. The

repercussion of these two important parameters, γa, γp, will be discussed in detail in

the next section.

The physical meaning of the different (deterministic) terms in Eqs. (5.3a)-(5.3d)

follows from the general interpretation of rate equations. Eq. (5.3a) represents a bal-

ance between the material gain, provided by∼ −Im P±, and cavity losses; while the
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imaginary terms ∼ Re P± induce a nonlinear frequency shift. The balance between

the decay of material polarization and the excitation of dipoles (electron-hole pairs)

due to the presence of an electric field is described through Eq. (5.3b). In Eq. (5.3c),

the total carrier population increases due to current injection, and decreases due to

recombination of carriers, being either spontaneous or stimulated recombination.

Finally, Eq. (5.3d) gives a detailed balance between the difference in number of stim-

ulated recombination events that take place in each spin channel separately; in ad-

dition, spin-flip processes introduce a damping in this difference.

The terms GA± , GP± , GN , Gn represent semiclassical Langevin noise sources.

GP± models the quantum fluctuations of the photon-dipole interaction. From Eq.

(C.8) in the appendix, we have that 〈GP±(t)G∗
P±

(t′)〉 = γ⊥(N ± n)δ(t− t′), (N ± n)
representing the dipole number per spin channel. Equivalently, GP± can be ex-

pressed in terms of complex random numbers ξ′±(t), with zero mean 〈ξ′±(t)〉 = 0
and correlation 〈ξ′±(t)ξ′∗±(t′)〉 = 2δ(t− t′) by means

GP±(t) =
√

γ⊥
2

(N ± n) ξ′±(t) . (5.4)

〈GA±(t)G∗
A±

(t′)〉 is proportional to the mean number of thermal photons that we

consider negligible around λ = 0.85 µm. GN and Gn include among others, the

pump fluctuations statistics and the shot noise from the time uncertainty in the re-

combination processes. For the sake of simplicity, pump fluctuations δσ(t) are also

neglected.

Adiabatic elimination

From experimental measurements of the spin relaxation rate in QWs, the different

rate constants in Eqs. (5.3a)−(5.3d) verify that

1 ns−1 ∼ γe � γs . κ � γ⊥ ∼ 104 ns−1 .

From this time scale analysis, we conclude that the material polarization is the dy-

namical variable that relaxes faster. Hence, it is justified to adiabatically eliminate

the material polarization assuming that it reaches nearly instantaneously its steady

state, i.e., Ṗ± ≈ 0 in Eq. (5.3b). In this limit, we obtain an expression for P± that

reads

P±(t) ≈ −igQW
(N ± n−N0)
γ⊥(1 + ∆2)

(1 + i∆)A± +
GP±(t)

γ⊥(1− i∆)
. (5.5)

Upon replacing Eq. (5.5) into the remaining equations, scaling the dynamical vari-

ables by

D ≡ g

κ
(N −N0), d ≡ g

κ
n, g ≡

g2
QW

γ⊥(1 + ∆2)
,
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and performing a change of reference frame for the electric field from Ω to Ω− κ∆

E± ≡
√

2g

γe
e−iκ∆ tA± ,

we arrive to the following rate equations describing the polarization dynamics of sin-

gle longitudinal and transverse mode VCSELs in presence of spontaneous emission

Ė±(t) = κ(1− iα)[D ± d− 1]E± − (γa + iγp)E∓ + F±(t) , (5.6a)

Ḋ(t) = −γe

[
D − µ + (D + d)|E+|2 + (D − d)|E−|2

]
− FD(t) , (5.6b)

ḋ(t) = −γsd− γe

[
(D + d)|E+|2 − (D − d)|E−|2

]
− Fd(t) . (5.6c)

A correct description of the semiconductor dynamics requires to identify the normal-

ized detuning ∆ with the linewidth enhancement factor of semiconductor lasers; for

the two-level system α ≈ −∆. The linewidth enhancement factor is the respon-

sible of the phase-amplitude coupling and it plays an important role in enhancing

the emission linewidth, causing frequency-chirped pulses, and in many other phase-

induced instabilities [179]. The scaled injection current µ ≡ g(σ−N0)/κ is such that

at threshold µth ≈ 1. This reduced version of the SFM constitutes a nonlinear system

of six real ordinary differential equations. In contrast to the traditional formulation of

rate equations in EELs [9], in the SFM phase and amplitude variables can not be de-

scribed separately, but they are directly coupled through the linear anisotropies and

the α-factor. The Langevin noise sources resulting from the adiabatic elimination of

P± read

F±(t) =
√

βspγe(D ± d) ξ±(t) , (5.7a)

F(D
d)(t) =

γe

2κ

[√
βspγe(D + d) E+ξ∗+(t)

±
√

βspγe(D − d) E−ξ∗−(t) + c.c.

]
. (5.7b)

ξ±(t) are two independent complex white noise terms with the same properties than

ξ′±(t) in Eq. (5.4). In terms of the new variables, the scaled spontaneous emission

factor reads3

βsp = β0
1

(1 + α2)
κ

γe
. (5.8)

3β0 stands for the fraction of spontaneously emitted photons that goes into the lasing
mode [180].
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Accordingly, the scaled spontaneous emission rate is Rsp = 4γeβspD0, D0 ∼ 1 be-

ing the degree of inversion. To get an impression of the magnitude of the rescal-

ing, a noise level in the original equations of 〈AA∗〉SQL = 1/2 corresponds to

〈EE∗〉SQL = β0/(1 + α2) ≈ 10−7 in the new variables.

Linearly-polarized solutions

We start our discussion, by analyzing the steady-state solutions of Eqs. (5.6a)-(5.6c).

A generic monochromatic solution can be expressed by

E±(t) = Q±e−i(ν0t±φ+ϕ0) , (5.9)

where Q± are the real circular amplitudes, ν0 the frequency shift, φ a relative phase

among the circular components, and ϕ0 an arbitrary global phase for the electric

field. The linearly-polarized (LP) solutions are restricted to Q+ = Q− ≡ Q and

φ = 0 (φ = π/2) providing a solution LP along the x̂ (ŷ) axis. Therefore, LP states

can be regarded as phase locking of the two circular components to a relative angle

2φ. In addition, D(t) = D0 and d(t) = d0 in the steady state. Upon inserting these

conditions in Eqs. (5.6a)−(5.6c) and neglecting the noise terms, we find

ν0 = ε(γp + αγa) ,

D0 = 1 + εγa/κ , (5.10)

ε = 1 (−1) when a x̂ (ŷ)-LP solution is considered. The birefringence splits in fre-

quency the two LP solutions by a distance 2γp. When γp > 0, x̂ (ŷ) is referred as the

high (low) frequency mode. It is worth remarking that for a perfectly symmetric VC-

SEL, i.e., γp = 0 and γa = 0, any polarization orientation φ provides a possible LP

state. Finally

Q2 =
1
2

(µ−D0)
D0

,

d0 = 0 . (5.11)

Linearized spin-flip model

In this section, we present the equations governing the linearized dynamics close to

an arbitrary LP solution. A fundamental question is to understand the role of the

spin-flip in determining the stability of the LP solutions. In addition, the resulting

linear systems are the basis for the study of fluctuations. The stability and fluctua-
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tions of a LP solution are studied by writing it as

E±(t) = [Q + a±(t)] e−i(ν0t±φ) ,

D(t) = D0 + ∆(t) , (5.12)

d(t) = d0 + δ(t) ,

with ν0, Q, φ, D0, d0 given above. a±(t) are complex perturbations of the electric

field, while ∆(t) and δ(t) stand for real perturbations of the carrier variables. The

stability analysis of the LP solutions provides a system of equations that decouple (in

the linear approximation) for the new variables, S = a+ + a− and R = a+−a−. The

first subset, {S, S∗,∆}, describes the fluctuations of the total intensity Ṡ

Ṡ∗

∆̇

 =

 0 0 κ(1− iα)Q
0 0 κ(1 + iα)Q

−γeD0Q −γeD0Q −γeµ/D0


 S

S∗

∆

 . (5.13)

From this subset, a complex pair of eigenvalues determines the frequency and damp-

ing of the relaxation oscillations (ROs) that undergo the total intensity, i.e., λ± =
−ΓR ± iΩR. Their expressions are

ΓR =
γeµ

2D0
, ΩR =

√
2κγe (µ−D0)− Γ2

R . (5.14)

The remaining4 eigenvalue is zero and it is associated with the arbitrariness in a

global phase ϕ0, or equivalently, with the invariance in temporal translations.

The second subset, {R,R∗, δ} Ṙ

Ṙ∗

δ̇

=

 ±2(γa + iγp) 0 2κ(1− iα)Q
0 ±2(γa − iγp) 2κ(1 + iα)Q

−γeD0Q −γeD0Q −(γs + 2γeQ
2)


 R

R∗

δ


(5.15)

characterizes the polarization stability. An alternative way to study the polarization

stability is to introduce the polarization orientation angle φ and the ellipticity angle

χ through the real and imaginary parts of the complex amplitude difference R(t)

δχ =
R + R∗

4Q
, δφ = i

(R−R∗)
4Q

.

4Note that under multitransverse mode operation additional RO frequencies of the total
intensity associated with different transverse modes might appear [181].
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This description will be useful when describing fluctuations of the polarization an-

gles in Sec. 5.6. The second subset provides a third order characteristic polynomial

that reads

D(λ) = λ3 +
(
γs + 2γeQ

2 ∓ 4γa

)
λ2 +

4
[
γ2

p + γ2
a + κγeQ

2D0 ∓ γa

(
γs + 2γeQ

2
)]

λ +

4
[
γ2

p + γ2
a

] (
γs + 2γeQ

2
)
∓ 8κγeQ

2D0 (γa − αγp) . (5.16)

The signs−,+ are associated to the stability of x̂, ŷ - LP states, respectively. D(λ) = 0
determines the polarization stability, i.e., the state is unstable when there exists at

least one eigenvalue with Re λ > 0, while the state is stable when Re λ < 0 for the

three eigenvalues.

Polarization switching

Polarization switching (PS) takes place as consequence of a change in the stability

of the polarization states, for instance, when increasing the injection current. Let us

consider that γa & 0, therefore the ŷ-LP state has lower losses and it is consequently

selected when the current crosses the threshold. Both x̂-LP and ŷ-LP states are stable

below PS (coexistence region) except for currents close to threshold, due to the pres-

ence of γa [See Fig. 5.3]. Increasing further the injection current, the ŷ-LP solution

becomes unstable and a PS from the low frequency to the high frequency solution

takes place [See Fig. 5.4]. This type of switching, is successfully explained within the

SFM [30, 32], and it is commonly referred as nonthermally induced PS since it occurs

at constant active region temperature [169]. We remark that this type of switching is

restricted to finite value of the spin-flip rate γs, and non-vanishing α and γp. Another

type of PS, commonly present in experiments [31, 176, 182], is the thermally induced

PS. It arises from the temperature dependence of the gain difference between the two

polarization states. A unified description of thermal and nonthermal induced PS has

recently been introduced in terms of a dressed SFM in [33, 183] that will be presented

in the following chapter.

5.4 Regimes of Operation

The dynamical behavior, in the approximation of linear perturbations, is determined

from the eigenvalues and eigenvectors associated to a stable fixed point. Hence, we

focus in regions where at least one linearly-polarized solution is stable. A (negative)

real eigenvalue determines the damping while a pair of complex conjugated eigen-

values determine the damping and oscillation frequency. In presence of fluctuations



5.4 Regimes of Operation 113

Figure 5.3. Linear stability of the
linearly-polarized solutions in the plane
current-birefringence. The regions are:
x̂-LP stable (x), ŷ-LP stable (y), both sta-
ble (bistable). The parameters are: α =

3, γe = 1 ns−1, κ = 300 ns−1, γa =

0.1 ns−1, and γs = 100 ns−1. The ar-
row indicates a nonthermal polarization
switch from LF to HF states. 0 5 10 15 20
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(noise), the understanding of the deterministic behavior is useful to interpret the

noise spectra in each of these regions, as will be shown later.

A detailed analysis of the possible regimes of operation in the SFM has been de-

scribed in [30, 184], discussing the effect of the spin-flip relaxation rate, birefrin-

gence, and current injection. The behavior of the total intensity is already under-

stood. From Eq. (5.14), we have oscillations at frequency ΩR and damping rate ΓR.

Hence, the main issue is to understand the polarization behavior described by the

linear system of Eq. (5.15). In spite of narrow regions where the polarization is un-

stable, and other ones without oscillations5, two qualitative different situations arise

[30].

• Polarization relaxation oscillations (PROs): This regime is characterized by os-

cillations of the ellipticity angle χ(t) and the carrier difference d(t). The polar-

ization angle φ(t) displays an exponential decay. This regime tends to appear

for small linear anisotropies and currents far from threshold.

• Coupled oscillations (COs): This regime is characterized by coupled oscilla-

tions of the ellipticity angle χ(t) and the polarization angle at a frequency

ΩP given by Eq. (B.3). The carrier difference d(t) exhibits an exponential de-

cay. This regime is favored for large spin-flip values and currents close-to-

threshold .

Further characterization of these regions can be found in Appendix B.

5.5 Fluctuation of the Intensity Components

In order to better understand the intensity fluctuations of the polarization compo-

nents, Eqs. (5.6a)−(5.6c) can be translated from the field description E±(t) to equa-

tions for the circular intensities P±(t) and the phase difference φ(t) ≡ φ+(t)−φ−(t)
through E±(t) =

√
P±(t)eiφ±(t). The stochastic transformation in the Itô sense [Ap-

5The limits κ � γe, γp, γs and γe ∼ γs � κ, γp also correspond to qualitative different
regimes; however being unusual in SCL. In both cases the typical time scales for the decay of
the electric field κ and those for the carrier variables γe, γs decouple. The exchange of energy
is unfavored avoiding the appearance of oscillations.
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pendix C] of Eqs. (5.6a)−(5.6c) reads

Ṗ±(t) = 2κ[D ± d− 1]P± − 2
√

P+P−[γa cos φ± γp sinφ]

+2βspγe[D ± d] + FP±(t), (5.17a)

φ̇(t) = 2καd−

√
P−
P+

[γp cos φ− γa sinφ] +

√
P+

P−
[γp cos φ

+γa sinφ] + Fφ, (5.17b)

Ḋ(t) = −γe[D − µ + (D + d)P+ + (D − d)P−]− FD(t), (5.17c)

ḋ(t) = −γsd− γe[(D + d)P+ − (D − d)P−]− Fd(t), (5.17d)

with the Langevin terms

FP± =
√

4βspγe(D ± d)P± ξP± , (5.18a)

Fφ =

√
βspγe(D + d)

P+
ξφ+ −

√
βspγe(D − d)

P−
ξφ− , (5.18b)

F(D
d ) =

γe

κ

[√
βspγe(D + d)P+ ξP+ ±

√
βspγe(D − d)P− ξP−

]
, (5.18c)

ξP± , ξφ± being real white Gaussian random numbers with zero mean and correla-

tion 〈ξa(t)ξb(t′)〉 = δa,bδ(t − t′), resulting from an orthogonal transformation of ξ±

[Eqs. (C.16)-(C.17)].

In order to calculate the power fluctuations of the total intensity and circular

components, we linearize Eqs. (5.17a)−(5.17d) around their steady states. We have

P±0 = Q2, d0 = 0, and D0 = 1 + εγa/κ when φ0 = 0, π. For convenience, we calcu-

late the fluctuations of the total intensity δP (t) = δP+(t) + δP−(t) and the intensity

difference δq(t) = δP+(t) − δP−(t). The linearized equations can be straightfor-

wardly solved via Fourier transform, yielding the expressions

˜δP (ω) =
√

2Q2Rsp
[γe − iω] ξ̃P

[ω − ΩR − iΓR] [ω + ΩR − iΓR]
, (5.19a)

δ̃q (ω) = −
√

2Q2Rsp ×[
ε4αQ2γeγp + (iω + ε2γa)(γs − iω)

]
ξ̃q + ε2γp

(
γs + 2γeQ

2 − iω
)
ξ̃Φ

D(−iω)
,

(5.19b)

where ΓR and ΩR are given by Eq. (5.14) and D(λ) is given by Eq. (5.16); ε = 1(−1)
stands for a x̂ (ŷ) LP solution. The Fourier transformed noise sources ξ̃P (ω), ξ̃q(ω)
and ξ̃φ(ω) verify that 〈ξ̃i(ω)ξ̃j(ω′)〉 = δi,j δ(ω − ω′) for i, j = P, q, φ.
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The power spectra of the total and difference intensities can be derived from its

definition in Eq. (C.11)

SP (ω) =

∞∫
−∞

〈 ˜δP (ω) ˜δP
∗
(ω′)〉 dω′ ,

and from Eqs. (5.19a)−(5.19b) yielding

SP (ω) = 2Q2Rsp

(
ω2 + γ2

)[
(ω − ΩR)2 + Γ2

R

] [
(ω + ΩR)2 + Γ2

R

] , (5.20a)

Sq(ω) = 2Q2Rsp
(Aχ(ω) + Bχ(ω))

C(ω)
. (5.20b)

The functionsAχ,Bχ, C are given in Appendix D, and Rsp = 4γβspD0. We note that

the relative intensity noise is defined as the power spectrum divided by the square of

the mean value of the total power, P
2

= (2Q2)2.

The power spectrum of the circular components S±(ω) can be obtained from

Eqs. (5.20a) and (5.20b) by taking into account that the noise terms appearing in the

fluctuations ˜δP (ω) and δ̃q(ω) are independent,

δP± ≡
δP ± δq

2
, S+(ω) = S−(ω) =

SP (ω) + Sq(ω)
4

. (5.21)

It is worth remarking that the contribution to the noise of the circular components

arises from the linear superposition of the total intensity noise SP and the polariza-

tion fluctuations Sq . This separation is possible in LP states because the total inten-

sity fluctuations and the intensity difference fluctuations decouple (at first order).

However, for other states (elliptical [185] and dynamical states [32]) the decoupled

description is not valid requiring, in principle, the study of a five-dimensional sys-

tem.

Let Pu and Pv be the power of each orthogonal component (u = +, v = − for

the circular components, or alternatively u = x, v = y for the linear components).

Since the fluctuation of the total intensity is an scalar we can express it in any of the

two basis

δP = δP+ + δP− = δPx + δPy .

However, this result does not hold for the power spectra. Instead one finds

SP (ω) = Su(ω) + Sv(ω) +

∞∫
−∞

2Re〈δP̃u(ω)δP̃ ∗
v (ω′)〉 dω′ . (5.22)
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In the particular case of the circular components and making use of Eq. (5.21) we

obtain

Re

∞∫
−∞

〈δP̃+(ω)δP̃ ∗
−(ω′)〉 dω′ =

SP (ω)− Sq(ω)
4

, (5.23)

which implies that the fluctuations of the circular components δP+, δP− are corre-

lated when SP (ω) > Sq(ω), anticorrelated when SP (ω) < Sq(ω) and uncorrelated

where SP (ω) = Sq(ω). In the Sec. 5.8 we will come back to the correlation between

polarization components.

5.5.1 Fluctuations of the circular components

We present analytical and numerical results of the polarization resolved intensity

noise. Since the circular basis is the most natural representation of the optical tran-

sitions, we begin investigating the power fluctuations of the circular components.
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Figure 5.5. Power spectra in arbitrary units for currents below PS (a,b), and above
PS (c,d). Solid thin lines in (a) and (c) represent the theoretical predictions given by
Eqs. (5.20a) and (5.21). Parameters: γe = 1 ns−1, κ/γe = 300, α = 3, γp/γe = 1,
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Their experimental determination can be performed by using λ/4 plate techniques

[160].

We compute the power spectra for different values of the spin-flip rate and bire-

fringence while maintaining the rest of the laser parameters fixed. We concentrate

our study on moderate values of the spin-flip rate and relatively small birefringence

which corresponds to COs regime. The dichroism is set to γa & 0 in order to select

the low frequency mode (ŷ) at threshold. A nonthermal PS takes place from the low

frequency mode (ŷ-LP) to the high frequency one (x̂-LP) when the injection current

is increased.

In Fig. 5.5 we plot the power spectra obtained for γs = 100 ns−1, γp = 1 ns−1;

µ = 1.04 < µsw in panels 5.5(a,b), while µ = 1.5 > µsw in panels 5.5(c,d). Ana-

lytical results obtained from Eqs. (5.20a) and (5.21) are plotted in Fig. 5.5(a,c) with

solid thin lines. As can be seen, they are in very good agreement with the numerical

results. The spectrum of the total intensity has a single peak located at the relax-

ation oscillation frequency νR = ΩR/(2π). This peak is due to fluctuations in the

total photon number. In contrast, the power spectra of the circular components co-

incide and display an additional peak at the CO frequency ΩP /(2π), which moves

toward γp/π when γs → ∞, in agreement with Eq. (B.3). We note that the height of

the CO peak is larger and it appears at lower frequency before the PS, in qualitative

agreement with Ref. [160]. It can be clearly seen that the noise in the two circular

components is much larger than the total intensity noise at low frequencies, a sign of

anticorrelation between δP+ and δP−. This anticorrelation is interrupted at higher

frequencies due to the peak associated with the fluctuations in the total intensity. In

fact, we find maximum correlation at ΩR, as will be discussed later.

5.5.2 Fluctuation of the linear components

When a LP state is considered, there is a linear component that captures nearly the

total intensity (lasing component), with mean power level P l, and one with very

small intensity (nonlasing component) with Pnl. Although a LP state is considered,

we find that fluctuations in the nonlasing component are relevant.

It is illustrative to analyze the way in which the fluctuations are distributed

among different polarization components. The probability density function (PDF)

of an intensity component P is computed through

p.d.f(P0) ≈
P[P0 < P < P0 + ∆P0]

∆P0
,

where P[P0 < P < P0 + ∆P0] is the probability that the intensity takes the values

within the interval [P0, P0 + ∆P0]. We approximate this quantity by the fraction of

data points within [P0, P0 + ∆P0], i.e. N [P0 < P < P0 + ∆P0]/N . The PDF of circu-

lar components p.d.f(P±), in Fig. 5.6(b), coincide and display a Gaussian shape with
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a maximum around its mean value. In the same panel, we plot the PDF associated

with the total intensity that is also Gaussian but with narrower width as a result of

anticorrelated fluctuations between circular components [see Fig. 5.6(a)]. The PDF

of the lasing component, in panel (d), and the total intensity are similar. Hence, the

fluctuations of the total intensity, circular components, and the lasing component

can be described by Ornstein-Uhlenbeck stochastic processes, which their associ-

ated Fokker-Planck equations have Gaussian distributions as stationary solutions.

However, we observe in Fig. 5.6(c) that the fluctuations of the nonlasing component

prefer intensity levels lower than the mean value. In addition, the associated PDF

displays a single-sided exponential decay like that of “thermal” fluctuations.

The power spectrum of the total intensity and the linear lasing component has a

peak located at the RO frequency, as can be seen in Fig. 5.5(b, d). However, the CO

peak is not present in this case. While the lasing component captures nearly all the

noise at high frequency, the power spectrum of the nonlasing component has a small

contribution to the total noise at high frequencies, displaying a clear Lorentzian de-
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cay [162]. For weak birefringence, the nonlasing component also display a small peak

close to the frequency beating between ΩR and ΩP . The power spectrum of the total

intensity results from the superposition of the fluctuations of the lasing and non-

lasing components. The behavior at the MHz frequencies requires a more subtle

study. The noise in the two polarization components can exceed the total noise by

several orders of magnitude at low frequencies. This particular behavior occurs in

LP states with important fluctuations in the polarization orientation, yielding rela-

tive high values of the partition noise M ≡ Pnl/P l. Below the PS, in the coexistence

regime, strong anticorrelated fluctuations appear at low frequencies [Fig. 5.5(b)]. On

the contrary, above the PS, M decreases and anticorrelation nearly vanishes as can

be seen in Fig. 5.5(d). PPN has been claimed to be sensitive to the parameter M [145].

We showed that the circular components phase-lock to a relative phase φ =
φ+−φ−. However, phase-locking among linear components is not possible because

they operate at different frequency due to the birefringence. By expressing the lin-

ear components of the electric field through Ex,y =
√

Px,yeiφx,y , the relative phase

φx − φy evolves at a typical time scales of ∼ 2γp. It is then possible, by invoking the

limit of large γp, to eliminate the information carried by the phase dynamics and re-

duce the SFM to equations describing a two-mode laser [159, 166]. An approximate

expression for M can be determined from a simplified version of the SFM based on a

high-friction or low mass limit Kramers’ problem. In this limit, the expression for M

reads [160]

M ∼ γsβsp

κ(µ−D0)
,

which tells that the noise in the nonlasing component increases when the noise

strength is increased, when operating close-to-threshold, and when large values of

the spin-flip rate are considered.

5.6 Fluctuation of the Polarization Angles

In order to study polarization fluctuations, it is convenient to express the electric field

in terms of the polarization orientation φ and ellipticity χ angles

~E(t) =
√

P [ (cos χ cos φ− i sinχ sinφ) x̂

+ (cos χ sinφ + i sinχ cos φ) ŷ ] e−i(Ωt+ϕ0), (5.24)

or alternatively in the circular representation6

~E(t) =

√
P

2
[
(cos χ + sinχ) e−iφ ê+ + (cos χ− sinχ) eiφ ê−

]
e−i(Ωt+ϕ0), (5.25)

6The unitary circular vectors read ê± = 1√
2
(x̂∓ iŷ).
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P being the total power and ϕ0 an arbitrary phase. The meaning of these two angles

become more clear by introducing the Stokes parameters Sj defined by the following

relationships

S0 = |E+|2 + |E−|2 = |Ex|2 + |Ey|2 = P, (5.26a)

S1 = 2Re (E+E∗
−) = |Ex|2 − |Ey|2 = P cos(2φ) cos(2χ), (5.26b)

S2 = −2Im (E+E∗
−) = −2Re (E∗

xEy) = P sin(2φ) cos(2χ), (5.26c)

S3 = |E+|2 − |E−|2 = −2Im (E∗
xEy) = P sin(2χ). (5.26d)

Hence Sj/S0 for j = 1, 2, 3 describes the Cartesian components of a unit sphere. The

spherical coordinates are the polarization angle 2φ ∈ [0, 2π] and the ellipticity angle

2χ ∈ [−π/2, π/2]. The polarized light is such that the relation S2
0 = S2

1 + S2
2 + S2

3 is

fulfilled at any time.

In the steady state, φ = 0(φ = π/2) for a x̂-LP (ŷ-LP) and χ = 0. Fluctuations

of the polarization angles around LP states are obtained by linearizing Eq. (5.25). We

find that

δχ =
R + R∗

4Q
, δφ = i

(R−R∗)
4Q

, (5.27)

where R and R∗ were defined in Pag. 111. Equation (5.27) reveals the connection

between the ellipticity fluctuations and the power fluctuations of the circular com-

ponents.

The fluctuations in δφ and δχ are governed by ˙δφ
˙δχ
δ̇

=

 ±2γa ∓2γp ακ

±2γp ±2γa κ

0 −4γeD0Q
2 −(γs + 2γeQ

2)


 δφ

δχ

δ

+

 Fφ

Fχ

Fδ


(5.28)

Figure 5.7. Poincaré sphere: x(y)-
LP state along the x̂(ŷ) direc-
tion; c± are right and left circu-
larly polarized states, ε± are right
and left elliptically polarized states.
Shaded circles represent fluctua-
tions around these states.
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which is directly obtained from Eqs. (5.15) and (5.27). The real Langevin terms obey

〈Fφ(t)Fφ(t′)〉 = 〈Fχ(t)Fχ(t′)〉 =
γeβspD0

2Q2
δ(t− t′) ,

〈Fδ(t)Fδ(t′)〉 =
(γe

κ

)2

2βspD0Q
2δ(t− t′) ,

〈Fχ(t)Fδ(t′)〉 =
γ2

eβspD0

κ
δ(t− t′) , (5.29)

〈Fφ(t)Fχ(t′)〉 = 〈Fφ(t)Fδ(t′)〉 = 〈Fφ(t)Fχ(t′)〉 = 0 .

Equation (5.28) is the starting point of other works that, by invoking the limit of large

γs, i.e. δ̇ ≈ 0, reduce the dimensionality to two. In this limit, the fluctuations of δ are

slaved to the fluctuations of δχ

δ(t) ≈ −4γeD0Q
2

γs + 2γeQ2
δχ(t) +

Fδ(t)
γs + 2γeQ2

.

It is worth noting that such an approximation is only justified well within the COs

region. In spite of generality, we maintain the dynamics of δ(t), which allows us to

analyze fluctuations for any value of γs.

The spectral density of the polarization fluctuations is obtained by solving the

linear system of Eq. (5.28) in the Fourier domain. The result is

SΞ(ω) =
γeβspD0

2Q2

[
AΞ(ω) + BΞ(ω)

C(ω)

]
(5.30)

where Ξ = φ, χ, δ and A,B, C are polynomial functions of ω defined in the Ap-

pendix D.

Some other interesting relationships, connecting the fluctuations of the polar-

ization components and polarization angles, can be obtained upon linearization of

Eqs. (5.26a)−(5.26d)

Sq(ω) = 4Q2Sχ(ω) , (5.31a)

S+(ω) = S−(ω) =
1
4
SP (ω) + Q2Sχ(ω) , (5.31b)

M ≡
〈

Pnl

Pl

〉
≈ 〈|δφ(t)|2〉+ 〈|δχ(t)|2〉 =

=
1
2π

∞∫
−∞

[Sφ(ω) + Sχ(ω)] dω . (5.31c)

First, we consider a situation where a PS takes place within a region of COs. The

power spectra of the polarization fluctuations, Sφ(ω), Sχ(ω), Sδ(ω) in Fig. 5.8, dis-

play a single peak at the COs frequency ΩP . Note that the peak at ΩR is absent in all
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the cases. When increasing the injection current from threshold up to PS, the LF so-

lution lases and the frequency ΩP decreases while the effective dichroism increases

reflecting itself in broad peaks in the power spectra. Below the PS, the fluctuations in

the ellipticity angle are considerably larger than in the polarization orientation, be-

ing reflected in the ratio Sφ(ω)/Sχ(ω) shown in Fig. 5.8(d). Once the PS takes place,

the HF solution starts to lase and the frequency ΩP increases linearly when increas-

ing the current level. We also note that in this situation, the peaks are much narrower

and the polarization fluctuations prefer the polarization orientation angle. Fig. 5.9

illustrates the behavior of the polarization fluctuations in the limit of small linear

anisotropies. PS does not occur in this case and the VCSEL always operates in the

HF solution. Close-to-threshold there exists a narrow region of COs that leads to a

behavior similar to that already mentioned in Fig. 5.8. For higher injection levels a

region of PROs appears, where the fluctuations in the polarization angle φ decouple

and experience a damped relaxation without oscillation. Consequently, the power

spectra of Sφ(ω) does not display any peak, while Sχ(ω), Sδ(ω) have a peak at the

PROs frequency, rather broad due to the relatively large damping.

5.7 Role of the Spin-Flip and Birefringence

Since our theoretical description is valid for arbitrary values of the birefringence and

spin-flip rate, in this section we give a complete description of the role of these pa-

rameters. We look at the power spectra while the polarization state is followed on the

Poincaré sphere.

Power spectra for small and large values of γs, in the absence of birefringence,

are shown in Fig. 5.10. As expected, the CO peak is absent in the power spectra of

the circular components [See Fig. 5.10(a,d)]. The main difference between the two

cases appears at low frequency: while P± have large anticorrelation for large γs, this

anticorrelation is reduced for small γs. This effect can be understood as follows: for

slow spin-flip rates each one of the two circular components burns carriers from its

own reservoir N± separately. In this case there is no competition and therefore small

anticorrelated fluctuations are observed in Fig. 5.10(a). On the other hand, for fast

spin-flip rates, the two circular components have to share almost the same carrier

reservoir since N+ ≈ N−. The latter causes strong anticorrelation because of polar-

ization partition noise [Fig. 5.10(d)]. The power spectra of the two linear components

coincide displaying a similar trend for any γs [Fig. 5.10(b,e)]. They show pronounced

anticorrelations at low frequencies linked to important fluctuations of the polariza-

tion orientation. Both spectra display a peak at the relaxation oscillation frequency.

The role of the birefringence is shown in Fig. 5.11 for a fixed value of the spin-

flip rate. For small birefringence, γp = 0.1 ns−1, we observe large anticorrelation of
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Figure 5.10. Study of the effect of γs in the absence of birefringence, in the power spectra
of the circular (a,d) and linear components (b,e). Evolution of the polarization state on
the Poincaré sphere (c,f) for small values of the spin-flip rate γs = 10 ns−1 in (a,c),
γs = 100 ns−1 in (d,f). The normalized current is µ = 1.8. The meaning of the symbols
is: (T ) = SP , (+/−) = S±, (x) = Sx and (y) = Sy . The average is performed over
different initial conditions and noise realizations.

the circular and linear components at low frequencies [Fig. 5.11(a,b)]. This fact indi-

cates important polarization fluctuations. The main role of the birefringence is to fix

a polarization orientation, thus reducing the polarization fluctuations. For a larger

birefringence, γp = 10 ns−1, we observe that the anticorrelation of the circular com-

ponents has been considerably reduced [Fig. 5.11(d)] being negligible for the linear

components [Fig. 5.11(e)]. We note that a PS occurs when the birefringence is in-

creased and the fluctuations on the Poincaré sphere move to the opposite direction

on the equator of the sphere. In addition, the CO peak appears at larger frequency

than the RO one.
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Figure 5.11. Study of the effect of γp on power spectra of the circular (a,d) and linear (b,e)
components when γs = 50 ns−1. Evolution on the Poincaré sphere for small birefrin-
gence γp = 0.1 ns−1 (a,c) and γp = 10 ns−1 (d,f). The normalized current is µ = 1.1.
The meaning of the symbols is the same as in Fig. 5.10.

It is also illustrative to analyze the evolution of the polarization state on the

Poincaré sphere [Fig. 5.7]. We observe that for small γp the fluctuations prefer the

equatorial direction [Fig. 5.11(c)]. In the limiting case of γp=0, there is a zero eigen-

value of Eq. (5.16) associated with the arbitrariness of the polarization orientation,

and the polarization diffuses along LP states with different orientation angles due to

the presence of noise. The polarization evolves along the equator of the sphere with

small ellipticity fluctuations controlled by γs [Fig. 5.10(c,f)]. When γs is large, the two

remaining eigenvalues become real. One of them approaches to zero when γs →∞,

describing diffusion of the ellipticity angle. In the latter, there is no preference for

any polarization state and the fluctuations cover the whole surface of the Poincaré

sphere [186]. When γp 6= 0, the eigenvalue that describes the diffusion of the po-
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larization orientation angle becomes nonzero, providing the stability of the steady

state. For moderate to large values of γp, we observe that the polarization orienta-

tion is fixed and the fluctuations on the Poincaré sphere have a rather circular shape

[Fig. 5.11(f)].

5.8 Polarization Anticorrelations

To better characterize the correlations among two orthogonal components we com-

pute the normalized cross-power spectral density [163] which reads

CAB(ω) =
SA+B(ω)− SA(ω)− SB(ω)

2
√

SA(ω)SB(ω)
, (5.32)

where A(t) and B(t) are two given signals, while SA and SB represent their respec-

tive power spectra. CAB(ω) = 1 (−1) corresponds to perfect correlation (anticor-

relation) in the fluctuations of the two signals. The normalized cross-power spectral

density between the power fluctuations of the two circular components δP+ and δP−
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Figure 5.12. Normalized crosscorrelation of the circular components C+− (a,c) and
of the linear components Cxy (b,d) corresponding to the same situation as in Fig. 5.5.
Dotted lines in (a,c) represent theoretical prediction given by Eq. (5.33).
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can be obtained from

C+−(ω) =
SP (ω)− Sq(ω)
SP (ω) + Sq(ω)

=
Re
∫∞
−∞〈δP̃+(ω)δP̃ ∗

−(ω′)〉 dω′∫∞
−∞〈δP̃±(ω)δP̃ ∗

±(ω′)〉 dω′
. (5.33)

By replacing the expressions for SP (ω) and Sq(ω) from Eqs. (5.20a) and (5.20b) into

Eq. (5.33) we obtain the exact expression for C+−. This expression can be simplified

at low frequencies in the case of close to perfect anticorrelation, i.e., C+−(ω ≈ 0) ≈
−1, to

C+−(ω = 0) ≈ −1 +
1

2Q4

[γp

κ Γ− εα
]2

[α2 + Γ2]
, (5.34)

with Γ ≡ γs/(2γeQ
2). It is easy to see from Eq. (5.33) that the fluctuations are corre-

lated at the frequency where SP (ω) � Sq(ω), close to ΩR, whereas the fluctuations

are anticorrelated when SP (ω) � Sq(ω), near the CO peak ΩP . We can interpret

these two limits with the help of the Poincaré sphere. The fluctuations of the total

number of photons are linked to movements perpendicular to the Poincaré sphere

surface [Fig. 5.7]. These movements are equivalent for all the points on the sphere,

and therefore provide correlation between circular components. Anticorrelations be-

tween components are associated with movements on the Poincaré sphere, i.e., po-

larization orientation and ellipticity fluctuations .

In Fig. 5.12 we show the results for the normalized crosscorrelation function,

Eq. (5.33), under the same conditions as in Fig. 5.5. In the circular basis C+−, we find

close to perfect anticorrelations for low frequencies, and strongly correlated fluctua-

tions (C+− ≈ 1) for frequencies close to the RO peak. In the linear basis, Cxy displays

partially anticorrelated fluctuations at low frequency (ν ≤ 1 GHz) due to polarization

partition noise [145, 187] above the PS, and large anticorrelation below the PS which

corresponds to the two LP states being stable. The lack of anticorrelation above PS

might be attributed to the modification of the effective birefringence due to the non-

linearities when the injection current is increased. Below the PS, the effective bire-

fringence ΩP /π, reaches a minimum. This fact leads to preferential fluctuations of

the polarization orientation, and consequently anticorrelated fluctuations of the lin-

ear components. On the contrary, above the PS, the effective birefringence gradually

increases with increasing distance from the PS leading to a reduction of the anticor-

relation.
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5.9 Summary, Discussion and Perspectives

The polarization field vector of vertical-cavity surface-emitting lasers (VCSELs) has

been investigated within a model that consider optical transitions among the mag-

netic sub-levels of the conduction and valence bands of QW-semiconductors, namely,

the spin-flip Model (SFM) introduced by San Miguel-Feng-Moloney in 1995. We

put forward the governing equations that apply for single longitudinal VCSELs op-

erating in the fundamental transverse mode. We justified, from the fluctuation-

dissipation theorem, the semiclassical Langevin noise sources that arise from spon-

taneous emission processes. The linearization of the SFM, when considering fluctu-

ations around stationary linearly polarized solutions, was introduced as the starting

point for a later investigation of intensity and polarization fluctuations. We concen-

trated our discussion in those physical parameters that can be relevant in the polar-

ization mode selection and in the determination of the polarization fluctuations.

We have presented analytical and numerical investigations of the polarization re-

solved power spectra of the linearly-polarized states based on a semiclassical frame-

work, valid for arbitrary values of the spin-flip rate and birefringence. It constitutes

a generalization of previous studies where the adiabatic elimination of the spin dy-

namics was taken. A proper classification of the regimes of operation in terms of the

eigenvalues and eigenvectors of the linearized systems has been useful for the sub-

sequent formulation and interpretation of the polarization fluctuations. Two quali-

tative different regimes of operation were observed, namely polarization relaxation

oscillations of the ellipticity angle and carrier difference (PROs), and coupled oscilla-

tions of the polarization angles (COs). Most of the reported results apply to VCSELs

operating the COs regime but the access to the PROs is just a matter of parameters:

the current level and the spin-flip rate. We have presented specific results for the

power spectra of linearly polarized states when the VCSEL is driven across a non-

thermal polarization switching. The power spectrum of the total intensity fluctua-

tions displays a peak at the relaxation oscillation frequency. In the regime of coupled

oscillations, the power spectra of the two circular components coincide and show an

additional peak associated with the effective birefringence splitting. When analyz-

ing the evolution of the polarization state on the Poincaré sphere, we were able to

separate the effects of the birefringence and the spin-flip rate. In the absence of bire-

fringence, the spin-flip rate controls the ellipticity fluctuations that are related to the

fluctuations of the circular components. On the other hand, for a fixed spin-flip rate

the birefringence controls the polarization orientation fluctuations. The frequency

dependence of the normalized cross-correlation function for both linear and circular

components was also presented. In particular, we found that the two circular com-

ponents are strongly anticorrelated at low frequencies while they display a nearly
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perfect correlation close to the relaxation oscillation peak. The linear components

(lasing and nonlasing) present a nonvanishing crosscorrelation function at low fre-

quencies. Linear components display partially anticorrelated fluctuations below the

polarization switching which correspond to the two linearly polarized states being

stable. Above the polarization switching, the anticorrelation nearly vanishes being

attributed to an abrupt increase of the effective birefringence that reduces the mag-

nitude of the polarization fluctuations. Further investigations of the polarization re-

solved power spectra of elliptical and dynamical states, where the total intensity and

polarization fluctuations do not decouple, should provide a complete understanding

of the noise properties of vertical-cavity surface-emitting lasers.

Although our semiclassical analysis of fluctuations is consistent with quantum

noise sources, there are several aspects that become important to achieve quantum

noise levels, such as the standard quantum limit and quantum squeezing. They in-

clude shot noise in the carrier recombination, statistics of the pump fluctuation and

interference of the vacuum field entering in to the VCSEL cavity (input-output for-

malism [188]). Notwithstanding, the semiclassical approach have led to valuable the-

oretical predictions that successfully compares with the experiments, namely: polar-

ization switching from the low frequency to the high frequency mode of nonther-

mal origin, existence of anticorrelated fluctuations between the polarization compo-

nents, interpretation of the characteristic frequencies in the power spectra, nonlin-

ear anisotropies, etc. Hence, our study should establish the elementary concepts for

further investigation based on sophisticated fully quantum-mechanical models.

There exist however several hypothesis when deriving the SFM rate equations,

some of them have been already commented, that fix the limits of applicability. Some

of the more restrictive are

• Flat gain spectrum: When replacing the band structure of the semiconductor

material by a four-level system, we lose the contribution of the possible opti-

cal transitions at electron wavevectors k⊥ 6= 0. The resulting gain spectrum

that results has a Lorentzian shape –typical of an atomic system–. This spec-

trum becomes flat when invoking the limit of large γ⊥ , i.e., when the material

polarization is adiabatically eliminated.

• α-factor: The α-factor in a two-level system has to be artificially introduced as

the normalized frequency detuning with respect to the gain peak. Operation

on the blue side of the gain spectrum (Ω > ωg) leads to negative values for the

α-factor and to carrier-guiding, being in contradiction with the basic proper-

ties of semiconductor lasers. Moreover, the α-factor in a quantum well semi-

conductor laser is not a constant, but in general, a function of the frequency

and the carrier inversion.
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• Transverse effects: The standard SFM assumes fundamental transverse mode

operation. However, it is commonly observed that high-order transverse modes

start to appear when the VCSEL is driven far from the threshold current. Trans-

verse effects inherently occur in a quite broad frequency-band and involve in-

homogeneous carrier distributions; thus a correct description of the gain and

α-factor spectra is essential.

• Thermal effects: The SFM assumes constant active region operation. However,

two thermal effects appear when the injection current increases. First, when

the current flows through the VCSEL structure, predominantly heats the spa-

tial zone close to the cavity axis, which leads to an inhomogeneous temper-

ature distribution across the lateral direction. And second, the cavity modes

and gain curve redshifts due to the temperature dependence of the materials

composing the VCSEL.

In the following chapter we account for some of these effects by developing a

dressed SFM. This model will include: realistic gain and refractive index spectra of

QWs, realistic α-factor for the quantum well, carrier-antiguiding, thermal effects,

transverse and polarization dynamics. The resulting model will be suitable for in-

vestigating large-signal dynamics.





Chapter 6

Spatiotemporal Modeling of
the Optical Properties of
VCSELs

6.1 Introduction

Most1 studies of polarization dynamics have been concerned with devices where

the spatial degrees of freedom can be disregarded, e.g., small active-region

diameter devices subject to moderate injection currents. A first explanation for

the observed polarization dynamics and instabilities was put forward by Choquette

and coworkers [189, 190]. Their main argument was that, due to residual cavity

anisotropies, linearly-polarized modes experience different net modal gains, and

consequently at threshold the mode with larger gain (usually that closest to the gain

peak) is selected. However, as the current is increased the temperature of device

also increases, leading to a redshift of the gain curve relative to the linearly polar-

ized modes that may cause a polarization switching from the high-frequency mode

to the low-frequency mode. This model has been further extended to account for the

effects of thermal lensing, gain-dispersion and temperature-dependent free-carrier

absorption [176, 191]. A different kind of explanation for polarization switching in

singlemode devices is given by the so-called Spin-Flip Model (SFM) [37] that has been

used in the preceding chapter to analyze polarization fluctuations across a nonther-

mal polarization switching. The SFM explains the polarization switching in vertical-

cavity surface-emitting lasers (VCSELs) as the result of an instability of the phase-

locking among the circularly-polarized components of the optical field that arises

1 This chapter is based on the papers:
J. Mulet and S. Balle, IEEE J. Quantum Electron 38, 291 (2002);
J. Mulet, C. R. Mirasso, S. Balle, and M. San Miguel, Proc. SPIE 4283, 139 (2001).
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from the coupling between amplitude and phase through the linewidth enhance-

ment factor. The SFM has been extensively applied to analyze the polarization se-

lection and instabilities: the interplay of linear and nonlinear cavity anisotropies in

polarization switching, the influence of magnetic fields [30], polarization mode hop-

ping, and the polarization resolved intensity noise [192]. Recently, the SFM has been

justified from a microscopic point of view [193] and it has also been extended for in-

cluding the frequency-dependence of the carrier-induced gain and refractive index,

showing [183, 194] that the thermal mechanism discussed before and that coming

from phase instabilities can coexist in some VCSELs.

On the other hand, several methods have been recently devised to analyze the

cavity modes of VCSELs in a scalar, semi-vectorial or fully-vectorial description [195]-

[199]. These methods are able to determine the modal frequencies, profiles and

threshold gains from the distribution of index of refraction associated with a given

device structure. However, they cannot be directly applied to the study of spatiotem-

poral dynamics of the system because these methods are passive and static, so that

they disregard the coupling of the optical field with the carrier density and the associ-

ated index change through spatial hole burning, which has been found to be relevant

in VCSELs despite the presence of other guiding mechanisms [200]. Moreover, the in-

dex of refraction of the materials defining the cavity is temperature dependent, hence

the refractive index distribution changes as the current increases due to device self-

heating (Joule heat dissipation). Heat is generated mainly close to the cavity axis, so

a radial profile of temperature develops with higher temperatures close to the cavity

axis [Fig. 6.1]. As a consequence, besides a global increase of the average index that

is responsible for the observed redshift of the cavity modes, the refractive index is

higher at the center of the device than in the outer regions, a phenomenon known

as thermal lensing (TL). TL effects are usually weak, since the thermal rate of change

in index of refraction is |∂n/∂T |λ ∼ 5 × 10−4 K−1. Nevertheless, TL can strongly

influence the transverse mode properties in weakly-index guided lasers —such as

oxidized VCSELs with the oxide layer placed close to a field node— or purely gain-

guided diode lasers which do not possess any built-in index waveguide and where

lateral confinement of the optical field occurs only via a combination of gain-guiding

and index anti-guiding mechanisms [38, 200].

In order to model the dynamics of VCSELs with spatial degrees of freedom, a

modal expansion of the electric field is often used [156, 201], thereby including spa-

tial holeburning effects. However, a drawback of such an approach is that the num-

ber and type of modes considered in the description has to be fixed and determined

a priori, and usually only a few low order modes are included. In the following chap-

ter we will identify the limitations of an optical modal expansion when describing

the transverse mode structure in gain-guided devices. In relatively large VCSELs that
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support several transverse modes, some of which may have quite similar frequen-

cies, it is preferable to directly investigate the spatiotemporal dynamics of the optical

field, either considering [202, 203] or not [204, 205] the polarization of the optical

field. The inclusion of transverse effects in the dynamics of multimode VCSELs re-

quires the consideration of the frequency dependence of both gain and refractive

index of the material that constitutes the active region. In addition, they should also

correctly incorporate the nonlinear dependence on the carrier density because of the

inhomogeneous carrier distribution arising from the localized injected current. The

most natural way to incorporate both the gain and refractive index is through the

optical susceptibility of the active region, which could be obtained in either a mi-

croscopic [206]-[210] or mesoscopic framework [211]-[213]. The former gives a very

accurate description but requires a huge computational effort; the latter, despite ap-

proximations, can provide an accurate description of the active medium and allows

to be included directly into the laser dynamics [183, 210, 214].

In this chapter, we develop an optical dynamical model for VCSELs which de-

scribes, in an unified way, polarization and spatial effects. In section 6.2 we present

a detailed description of the optical model, which generalizes the SFM in order to

include i) the spatial dependence of both the field and carrier densities and ii) a sus-

ceptibility tensor that describes the frequency-dependence of the gain and refractive

index distributions induced by the carriers. The model is based on equations for the

lateral dependence of the slowly-varying amplitudes of the optical field in both circu-

lar polarization components, and equations for the carrier density in both spin ori-

entations. In its present form, the model assumes a given functional dependence of

the guiding mechanisms (built-in refractive index and thermal lensing) as well as the

spatial dependence of the current density. Section 6.5 discusses the selection of po-

Figure 6.1. Temperature distribution in a
top-emitting VCSEL using a color scheme
from blue (coldest) to red (hottest). Ar-
rows indicate the current flux from the top
to the bottom electric contacts.
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larization modes when spatial effects are disregarded. In section 6.6 we analytically

and numerically investigate the selection of transverse modes for close-to-threshold

operation. In section 6.7 we present the results for the subnanosecond electrical ex-

citation. Finally, section 6.8 is devoted to summarizing and concluding the chapter.

6.2 Optical model

In order to obtain our dynamical model for the VCSEL taking into account both the

polarization and transverse degrees of freedom, we recall the concepts outlined in

Sec. 5.2. We start from Maxwell’s equations in the frequency domain assuming that,

in gain-guided devices, the optical field inside the VCSEL cavity can be considered

as almost totally polarized in the plane perpendicular to the cavity axis [Fig. 6.2].

The optical susceptibility of the active region is diagonal in the basis of circularly-

polarized states of the optical field, resulting in a simplified description of the dy-

namical interaction with the active material. It is then also natural to distinguish

between spin-up and spin-down electrons and holes densities, since they couple to

optical transitions with opposite circular polarization. After determining the opti-

cal carrier frequency of the VCSEL emission, we return to the time domain in or-

der to find the dynamical equations for the slowly-varying amplitudes (SVA) of the

circularly-polarized optical field components.

From Maxwell’s equations in the frequency domain, the distribution of each

linearly-polarized component of the optical field, Ẽk(~r;ω) (with k = x̂, ŷ) is given

x y

z

 oxide layer
active region

    top contact

EyEx

| f(z)|2

(b)(a)
z

Figure 6.2. (a) Polarization of the field vector in the VCSEL cavity. The oxide layer deter-
mines the active region and the shape of the optical mode which is displayed Gaussian.
(b) Standing longitudinal wave.
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by{
∇2
⊥ + ∂2

z +
ω2

c2
[1 + χk

b (~r;ω)]
}
Ẽk(~r;ω) =

− ω2

c2

{
P̃k(~r;ω)

ε0
− χk

b (~r;ω)Ẽk(~r;ω)

}
RW (z, z0) , (6.1)

where∇2
⊥ = ∂2

x+∂2
y and χk

b (~r;ω) is the frequency dependent susceptibility distribu-

tion of the passive material filling the cavity for a field polarized along the k-direction.

P̃k(~r;ω) stands for the k-component of the material dipole density due to the active

material, thus providing both gain and refraction-index change. RW (z, z0) is a rect-

angle function, which is 1 if z0 < z < z0 + W and zero otherwise, that specifies the

position of the active region, which we consider made of a single QW whose thick-

ness is W . In the case of multiple QWs, we assume that they are all in the same elec-

trical state, so that the total thickness of the active region is scaled with the number

of wells.

By considering that due to the short cavity length L, the VCSEL supports a single

longitudinal mode in the vicinity of the gain maximum, the optical field components

can be split into their longitudinal and transverse parts,

Ẽk(~r;ω) =
(

eiqkz +
e−iqkz

rk
1

)
Ãk(~r⊥;ω) ≡ fk(z)Ãk(~r⊥;ω) , (6.2)

where ~r⊥ = (x, y). The longitudinal modes of the VCSEL cavity are determined by

the round-trip condition in the plane-wave approximation. For a linearly-polarized

wave, it reads

rk
1rk

2e2iqkL = 1 , (6.3)

where qk stands for the complex propagation constant of the longitudinal mode lin-

early polarized along the k-direction, with its real and imaginary parts determining

the wavelength and threshold gain for this mode, and L is the physical cavity length

corresponding to the separation between the two Bragg mirrors. rk
1 and rk

2 denote

the frequency-dependent amplitude reflectivities of the top and bottom Bragg re-

flectors. Moreover, Bragg mirrors contain some residual birefringence, displaying

polarization dependent reflectivities rx
1,2 6= ry

1,2. This effect provides different prop-

agation constants and, in general, different longitudinal profiles for the two linearly

polarized modes.

Upon substitution of Eq. (6.2) into Eq. (6.1) and by projecting onto the longitu-

dinal mode fk(z), the transverse field distributions in the cavity section, Ãk(~r⊥;ω),

are given by{
∇2
⊥ +

ω2

c2

[
1 + χk

e(~r⊥;ω)
]
− q2

k

}
Ãk(~r⊥;ω) = − ω2

ε0c2
B̃k(~r⊥;ω) , (6.4)
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where we have defined

Fk(z) =
eiqkz + 1

rk
1

e−iqkz√∫ L

0
dz

∣∣∣∣eiqkz + 1
rk
1

e−iqkz

∣∣∣∣2
, (6.5a)

χk
e(~r⊥;ω) =

L∫
0

dzχk
b (~r;ω)|Fk(z)|2 −

z0+W∫
z0

dzχk
b (~r;ω)|Fk(z)|2, (6.5b)

B̃k(~r⊥;ω) =

z0+W∫
z0

dz P̃k(~r;ω)F ∗
k (z) . (6.5c)

Therefore, Fk(z) represents the normalized longitudinal field profile, χk
e the longi-

tudinal average of the passive material’s susceptibility, and B̃k the projection of the

active material’s dipole density onto the corresponding k-component of the longitu-

dinal mode.

As already mentioned, the selection rules for the optical transitions impose the

conservation of the axial component of the angular momentum, hence the interac-

tion with the active material is diagonal in the basis of circularly polarized optical

states. Therefore we express the optical fields in the basis of left- and right-circularly

polarized components

A± =
Ax ± iAy√

2
. (6.6)

Then, Eq. (6.4) reads{
∇2
⊥ +

ω2

c2
[1 + χe(~r⊥;ω)]− q2

}
Ã±(~r⊥;ω)+[

ω2

c2
δχe(~r⊥;ω)− δq2

]
Ã∓(~r⊥;ω) = − ω2

ε0c2
B̃±(~r⊥;ω) , (6.7)

where we have defined

χe(~r⊥;ω) =
χx

e (~r⊥;ω) + χy
e(~r⊥;ω)

2
, (6.8a)

δχe(~r⊥;ω) =
χx

e (~r⊥;ω)− χy
e(~r⊥;ω)

2
, (6.8b)

q2 =
q2
x + q2

y

2
, (6.8c)

δq2 =
q2
x − q2

y

2
, (6.8d)

B̃±(~r⊥;ω) =
B̃x(~r⊥;ω)± iB̃y(~r⊥;ω)√

2
. (6.8e)
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Given the QW’s susceptibility components in the circular basis, P̃± = ε0χ±(~r;
ω)Ẽ±, the linear components of the material dipole density can be expressed as

P̃x(~r⊥, z;ω) = ε0

[
(χ+ + χ−)

2
fx(z)Ãx(~r⊥;ω)

− (χ+ − χ−)
2i

fy(z)Ãy(~r⊥;ω)
]

, (6.9a)

P̃y(~r⊥, z;ω) = ε0

[
(χ+ − χ−)

2i
fx(z)Ãx(~r⊥;ω)

+
(χ+ + χ−)

2
fy(z)Ãy(~r⊥;ω)

]
, (6.9b)

and upon substituting the above expressions into Eqs. (6.5c) and (6.8e), we obtain

B̃± = ε0

(
Ã+S± + Ã−T±

)
, (6.10)

where

S± =

z0+W∫
z0

dz

[
χ+ + χ−

4
(
|Fx(z)|2 ± |Fy(z)|2

)

+
χ+ − χ−

4

(
f∗x(z)fy(z)∫ L

0
dz|fx(z)|2

±
fx(z)f∗y (z)∫ L

0
dz|fy(z)|2

)]
, (6.11a)

T± =

z0+W∫
z0

dz

[
χ+ + χ−

4
(
|Fx(z)|2 ∓ |Fy(z)|2

)

− χ+ − χ−
4

(
f∗x(z)fy(z)∫ L

0
dz|fx(z)|2

∓
fx(z)f∗y (z)∫ L

0
dz|fy(z)|2

)]
. (6.11b)

By splitting the total carrier density inside the QW as N = N+ + N− –where

N± stand for the electron density with spin up and down, respectively– the suscepti-

bility components in the circularly polarized basis are χ± ≡ χ±(ω, N+, N−). Since

the QW thickness W is much smaller than the diffusion length, it can be assumed

that, inside the QW, the carrier density is almost constant along z, i.e., N±(~r) '
N̄±(~r⊥) ≡ (1/W )

∫ z0+W

z0
dz N±(~r). Moreover, for weak cavity anisotropies the lon-

gitudinal propagation constants qx and qy are quite similar, so that we can consider

that the longitudinal mode profiles are almost the same, fx(z) ≈ fy(z) ≡ f(z). In

this case, Eq. (6.10) simply reduces to

B̃±(~r⊥;ω) = ε0Γχ±
(
ω, N̄+(~r⊥), N̄−(~r⊥)

)
Ã±(~r⊥;ω) , (6.12)
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where

Γ =

∫ z0+W

z0
dz |f(z)|2∫ L

0
dz |f(z)|2

(6.13)

is the longitudinal optical confinement factor that represents the fraction of the in-

tracavity power that is confined in the QW active region. As already mentioned, in

the case of a multiple QW active region, we consider that all the QWs are identical

and in the same state, hence we simply scale the single-QW confinement factor by

the number of wells. Therefore, Eq. (6.7) becomes

{
∇2
⊥ +

ω2

c2
[1 + χe(~r⊥;ω)]− q2

}
Ã±(~r⊥;ω) +

[
ω2

c2
δχe(~r⊥;ω)

− δq2

]
Ã∓(~r⊥;ω) = −Γ

ω2

c2
χ±
(
ω, N̄+, N̄−

)
Ã±(~r⊥;ω) . (6.14)

We then define

1 + χe(~r⊥;ω) = [ne(ω) + iᾱi(ω) + ∆n(~r⊥;ω)]2 , (6.15)

where ne(ω) corresponds to the effective background refractive index experienced

by the field in the isotropic and homogeneous cavity. ᾱi(ω) � ne(ω) determines the

effective absorption in the passive material, and ∆n(~r⊥;ω) represents the (small)

excess index distribution responsible for the lateral confinement of the optical field.

∆n(~r⊥;ω), contains all the waveguiding mechanisms present in the device except

the carrier induced refractive index, which is included through the real part of χ±.

Hence, in a cavity without anisotropies we have that the longitudinal mode consid-

ered has an optical frequency Ω, determined, from Eqs. (6.3), (6.14) and (6.15), by the

condition

Ω
c

ne(Ω) = Re q(Ω) , (6.16)

where Re q(Ω) stands for the real part of the propagation constant of the longitudinal

mode. The frequency dependence of q stems from the frequency-dependent reflec-

tivity of the Bragg mirrors, which mainly arises from the reflection phases within the

stop-band of the reflectors. Since the indexes of the materials forming the passive

cavity and the Bragg reflectors are temperature dependent, Eq. (6.16) incorporates

the thermal shift of the cavity mode.

Time-domain equations

Once the longitudinal mode frequency, Ω, has been determined, we can tackle the

dynamical evolution of the transverse field profile in the SVA approximation. For
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the active VCSEL, the optical field is quasimonochromatic around the carrier optical

frequency Ω, so that Ã±(~r⊥;ω) ≡ Ẽ±(~r⊥; ν), with ν = ω − Ω, is different from

zero only in the close vicinity of Ω. Thus, in time domain the circularly-polarized

components of the optical field can be written as

A±(~r⊥; t) = E±(~r⊥; t)e−iΩt + c.c. , (6.17)

where E±(~r⊥; t) are the SVAs of the circularly polarized components of the optical

field, which verify that |∂tE±| � Ω|E±|.
For frequencies ω ' Ω, we approximate

ω2

c2
[1 + χe(~r⊥;ω)]− q2 ≈ 2

Ω
c

ne
ng

c
ν

+
(

Ω
c

)2

2ne [∆n(~r⊥; Ω) + iαi(Ω)]− 2i
Ω
c

neIm q(Ω) , (6.18)

where ne ≡ ne(Ω) is the effective index at the cavity frequency, and ng ≡ | d
dω (ωne −

cRe q)|ω=Ω is the corresponding group refractive index. By neglecting the frequency

dependence of δχe and δq in Eq. (6.14) and transforming it to time domain (−iν →
∂t), we have that

2i
Ω
c

ne
ng

c
∂tE±(~r⊥; t) +

{(
Ω
c

)2

2ne [∆n(~r⊥; Ω) + iαi(Ω)]

−2i
Ω
c

neIm q(Ω)
}

E±(~r⊥; t) +
[
Ω2

c2
δχe(~r⊥; Ω)− δq2(Ω)

]
E∓(~r⊥; t)

= −Γ
Ω2

c2
P (~r⊥; t) , (6.19)

where

P (~r⊥; t) ≡
∞∫

−∞

dν

2π
e−iνtχ±(Ω + ν, N̄+, N̄−)Ẽ±(~r⊥; ν) . (6.20)

The above expression does not allow for an exact integration, except for very partic-

ular forms of χ±, e.g., Lorentzian shapes. We take this expression as a formal solu-

tion, but keeping in mind that some approximation is required as will be discussed

in Sec. 6.4. After some straightforward algebra we get

∂tE± = −κE± + iL̂E± + i
Γ
2

c

ng

Ω
cne

P± −
[
γ̄a,Ω(~r⊥) + iγ̄p,Ω(~r⊥)

]
E∓ . (6.21)

In the above equation, we have defined

κ =
c

ng

[
Ω
c

ᾱi(Ω)− Im q(Ω)
]

, (6.22)
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as the total cavity loss rate, and

γa,Ω(~r⊥) =
Ω

2neng
Im

[
Ω2

c2
δχe(~r⊥; Ω)− δq2(Ω)

]
, (6.23a)

γp,Ω(~r⊥) = − Ω
2neng

Re
[
Ω2

c2
δχe(~r⊥; Ω)− δq2(Ω)

]
, (6.23b)

which represent the effective dichroism and birefringence in the cavity. Anisotropies

have two different contributions: δχe, which represents the anisotropies that arise

from the passive material filling the cavity, and δq2, which arises from the Bragg mir-

rors. For simplicity, we consider that γa and γp are constant, independent of both

position and frequency.

The waveguide operator in Eq. (6.21) reads

L̂E± =
c2

2Ωneng

[
∇2
⊥ +

(
Ω
c

)2

2ne∆n(~r⊥; Ω)

]
E± , (6.24)

since we have assumed weak guidance2, i.e., ∆n(~r⊥; Ω) � ne. It is worth remark-

ing that L̂ does not incorporate the carrier-induced refractive index, which is in-

cluded separately through the real part of the susceptibility. However, all other guid-

ing mechanisms, and in particular thermal effects due to carrier injection, are in-

deed included in L̂ because both the cavity frequency Ω and the excess refractive

index distribution ∆n(~r⊥; Ω) are sensitive to the injected current due to device self-

heating. The eigenfunctions of L̂ are thus the cavity modes corresponding to the

effective waveguide and if this guide is strong enough, the interaction with the carri-

ers will not distort them too strongly. It is worth remarking that with our definition of

L̂, the cavity modes and modal frequencies are polarization independent. This effect

is accounted for through the linear cavity anisotropies γa and γp.

6.3 Material model

As already mentioned, due to the quantum-mechanical selection rules that apply to

optical transitions in the QW, the interaction with the active material is diagonal in

the basis of circularly polarized states. It is then natural to split the total carrier den-

sity into spin-up and spin-down carrier reservoirs. Each of them interacts only with

one of the two circularly polarized components of the optical field, but scattering

processes that reverse the spins of the carriers couple the two densities. We model

this coupling by means of an effective spin-flip rate , γj , that phenomenologically de-

scribes the equalization of the densities of spin-up and spin-down carriers [30, 173].

2More details are given in the Appendix E.
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The evolution of each of the spin-resolved electronic densities can be found from

the density matrix formalism [60] applied to semiconductor systems, which leads to

[193, 205]

∂tN̄± =
J(~r⊥; t)
2eW

−Rsp(N̄±) +D∇2
⊥N̄± ∓ γj(N̄+ − N̄−)

+
Γ
W

2ε0

~

L∫
0

dz |f(z)|2 1
2i

(
P±E∗

± − P ∗
±E±

)
, (6.25)

where e is the absolute value of the electron charge,D is the in-plane ambipolar dif-

fusion coefficient, Rsp(N̄±) = AN̄± + BN̄2
± is the total spontaneous recombina-

tion of carriers (we neglect Auger recombination), and γj(N̄+ − N̄−) represents all

spin-flip processes that tend to equalize the two carrier densities with opposite spin.

Finally, J(~r⊥; t) denotes the distribution of the current flowing through the active re-

gion, which is assumed to be equally distributed among the two spin orientations.

Thus, the total injected current is I =
∫

d2~r⊥J(~r⊥; t).

Our optical model is given by Eqs. (6.21) and (6.25) which determines the distri-

bution of the SVA fields and carrier densities. However, it still has to be completed by

providing a specification for the optical susceptibility components, χ±, that describe

the interaction of the optical field and the QW material: the imaginary parts describe

the energy exchange (absorption or stimulated emission) between the circular com-

ponents of the field and the medium, while the real parts describe the dispersive

effect (refractive index change) accompanying such a process [215]. Therefore, once

the susceptibility components and evolution of the carrier densities have been spec-

ified, our model naturally includes the effects of spatial-hole burning that enters in

the determination of both the modal frequencies and the modal profiles. For index-

guided devices, this last effect can be usually neglected and it is enough to determine

the imaginary parts of χ± as a function of the frequency and the carrier densities.

Models for calculating gain and refraction index spectra from the electronic

structure of the semiconductor material have been developed, some of them ne-

glecting many-body effects [216]-[223] while others taking into account [42, 206]-

[210, 224]. These microscopic theories describe individual transitions by the occu-

pation of the initial and final electronic states, and the material polarization by su-

perposing the contributions from each transition. A dynamical description of the

lasing process then requires dealing with plenty of Two-Level-like systems, coupled

among them by carrier scattering processes and by the optical field. In this way, all

physical mechanisms in the material are accounted for, but the complexity of such a

description is so high that it requires intensive numerical computation even without

considering spatiotemporal dynamics.

In order to reduce the computational cost and to gain physical insight, it is useful
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to develop simpler descriptions for the optical susceptibility of semiconductor me-

dia. One possibility is to use a semi-analytical approximation for the optical gain (see

for instance [225] and references therein) and then determine the refractive index by

Kramers-Krönig relations. Another possibility is to use an analytical approximation

to the full optical susceptibility [211]-[213], which although less accurate, it still cap-

tures the essential features of the gain and index spectra. For this reason, we consider

an analytical approximation to the optical susceptibility of the QW, equivalent to that

given in Ref. [211], but for the circular components of the optical field. The circular

components (±) of the optical susceptibility in the rotating wave approximation and

perfect k conservation reads [60]

χ±(ω) = − i

ε0

1
V

∑
lm

∑
k

|Mlms(k)|2 fls(k)− fms(k)
i[Elms(k)− ~ω] + ~γ⊥(k)

, (6.26)

where s =↓ (↑) stands for the spin band orientation, V the crystal volume, |Mlms|2

the dipole matrix element, fms and fls electronic occupation probabilities, Elms the

energy difference between electronic states, and γ⊥(k) the transition linewidth. The

summation runs over the all the bands (lm) and electron wavenumbers k within the

first Brillouin zone3.

We proceed along the lines given in [211], and we consider only one valence and

one (heavy-hole) conduction bands, both parabolic and degenerated for the two spin

orientations [See Fig. 6.3]. This situation is appropriate for describing thin, strained

QW where the light-hole band has substantially higher energy than the heavy-hole

3The summations are replaced by integrals according to the density of states.

E

k⊥
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E

γJ
h

E− γp

k⊥

N+ N−

E+

γJ

Jz=1/2

3/2

-1/2

-3/2

Figure 6.3. Scheme of the allowed transitions in the spin subbands of a strained QW,
(HH) heavy hole with Jz = ±3/2 and (CB) conduction bands with Jz = ±1/2. Elec-
trons with opposite spin are mixed at rate γj . Emitted photons with opposite circular
polarization (E±) are coupled through the linear birefringence γp.
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band, so it is not optically active until quite high carrier densities. By assuming

Mlms(k) and γ⊥(k) independent of k and spin, the optical susceptibility reduces to

χs(ω) =
|Meh|2

V ε0

∑
k

fe
s (k) + fh

s (k)− 1
[~ω − Ec(k) + Ev(k)] + i~γ⊥

, (6.27)

where the quasi-equilibrium Fermi-Dirac distributions read

f
e(h)
↑(↓) =

1

1 + e
β(E−F

e(h)
↑(↓) )

, (6.28)

with β−1 = kBT the plasma temperature, and F
e(h)
↑(↓) the quasi-Fermi levels for elec-

trons and holes with spin orientation up (down)4. The density of carriers in each of

these spin bands is obtained from the corresponding quasi-Fermi level through

N
e(h)
+(−) =

1
V

∑
k

f
e(h)
↑(↓) . (6.29)

It is impossible to analytically treat the full optical susceptibility at finite temper-

atures due to the long tails of the Lorentzian contributions. A further approximation

consists in assuming low temperature (T =0 K), where the quasi-equilibrium Fermi-

Dirac distributions can be replaced by step functions. In this limit the analytical ex-

pression for the optical susceptibility reads

χ±(Ω + ν, Ne
±, Nh

±) =

− χ0

[
ln
(

1−
2De

±
u + i

)
+ ln

(
1−

2Dh
±

u + i

)
− ln

(
1− b

u + i

)]
. (6.30)

where the first term on the right-hand side represents the contribution of the elec-

trons, the second one that of the holes, and the third one the susceptibility of the

system when no carriers are excited. In the above equation, we have defined

χ0 =
m|Meh|2

2Wπε0~2
, b =

~k2
m

2mγ⊥
, Deh

± =
πW~
mγ⊥

N̄eh
± ≡

N̄eh
±

Nt
,

u = ∆ +
ν

γ⊥
+ σ(De

− + De
+)1/3 ,

where m is the reduced mass of the electron-hole pair, km the maximum wavenum-

ber contained in the first Brillouin zone, Nt is the (total) transparency carrier den-

sity, and |Meh|2 and γ⊥ are the oscillator strength and width of the transition, both

4 The difference between quasi-Fermi levels with opposite spin orientation introduces un-
balance spin densities, that in turn, is responsible for the magnetization. In a semiconductor
this difference is usually small due to the spin flip processes. Currently, the development of
magnetic semiconductors, including localized magnetic ions, Mn+, etc., is of great interest
for spintronic applications [226].
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assumed constant over the whole band. The frequency dependence is incorporated

through u; ∆ = (Ω − ωg)/γ⊥ measures the normalized detuning of the longitu-

dinal mode resonance with respect to the nominal bandgap, and σ(De
− + De

+)1/3

phenomenologically describes bandgap renormalization due to Coulomb interac-

tion between electrons and holes, σ being the bandgap renormalization parameter.

A last approximation allow us to elude the hole densities in the susceptibility and

carrier dynamics. The spin relaxation rate for the holes is commonly large [173] and

thus Dh
+ ≈ Dh

−. If we also assume charge neutrality, De
+ + De

− = Dh
+ + Dh

−, we find

that the second term in Eq. (6.30) can be expressed as 2Dh
± ≈ (De

+ + De
−). In order

to simplify the notation, we skip in what follows the superindex e when denoting

electronic carrier densities.

As discussed in detail in Ref. [211], the optical susceptibility given by Eq. (6.30)

provides a good qualitative description of the characteristics of both gain and refrac-

tive index spectra [Fig. 6.4(a),(b)], including bandfilling effects (i.e., the blue shift of

the gain peak relative to the bandedge as the carrier density is increased) and the

nonlinear dependence of the gain and index spectra on the carrier density. Now, the

linewidth enhancement factor

α(ω, D) ≡ Re (∂χ±/∂D)
Im (∂χ±/∂D)

(6.31)
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Figure 6.4. Optical gain (a), refractive-index (b), differential gain spectrum (c), and alpha
factor (d). Eq. (6.30) for the parameters given in Table 6.1. Symbols correspond to a total
carrier density 1.0 Nt (◦), 1.8 Nt (•), 2.6 Nt (�), and 3.4 Nt (N).
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and the differential gain

GN (ω, D) ≡ −g0
∂Im χ±

∂D
(6.32)

with g0 = ω/(cneNt) become functions of the frequency and carrier density [Fig.

6.4(c),(d)]. By using this approximation for χ± in Eqs. (6.21) and (6.25), the spa-

tiotemporal description of the system incorporates the frequency dependence of

both the gain and refractive index in a simple, although efficient and qualitatively

accurate way. Anyway, it should be stressed once again that other approximations

for the susceptibility components could be used. In particular, when one wishes to

analyze in detail the behavior of a particular device, computational complexity arises

because of the need for a realistic and accurate modeling of the the gain and index

spectra.

6.4 Dimensionless model

For the sake of clarity and numerical purposes it is convenient to use a dimensionless

version of the VCSEL model. To this end, we work with the carrier densities normal-

ized to the transparency carrier density, D± = N̄±/Nt, and we scale the fields as

A±(~r⊥; t) =

2ε0ngne

~Ω
Γ

WNt

L∫
0

dz |f(z)|2
1/2

E±(~r⊥; t) . (6.33)

We also consider that the shape of the transverse current density distribution is fixed

by the structure of the device, so that J(~r⊥; t) = eWNtC(~r⊥)µ(t), where C(~r⊥) is the

current shape and µ(t) its time dependence, hence the total injected current reads

I(t) = µ(t)eNtW

∞∫∫
−∞

C(~r⊥) d2~r⊥ . (6.34)

Then, the final form for the model is

∂tA±(~r⊥; t) = −κA± + iL̂A± + i
aΓ
2

P±(~r⊥; t)

−(γa + iγp)A∓ +
√

AβspD± ξ±(~r⊥; t) , (6.35a)

∂tD±(~r⊥; t) =
µ(t)
2

C(~r⊥)−AD± − (BNt)D2
± ∓ γj(D+ −D−)

+D∇2
⊥D± +

a

2i

(
P±A∗

± − P ∗
±A±

)
, (6.35b)

P (~r⊥; t) ≡
∞∫

−∞

dν

2π
e−iνtχ±(Ω + ν, N̄+, N̄−)Ã±(~r⊥; ν) , (6.35c)
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where a ≡ Ω/(neng), and the susceptibility is that given in Eq. (6.30). Since ν � Ω we

expand χ±(Ω + ν) to first order in ν, integrate term by term, and formally summing

the series, the evolution of the material polarization is determined by

P±(~r⊥; t) =

∞∫
−∞

dν

2π

[
χ±(Ω) + νχ′±(Ω) + . . .

]
Ã±(ν)e−iνt =

= χ±(Ω)A±(t) + χ′±(Ω)i∂tA±(t) + . . . ≈

≈ χ±

(
Ω + i

∂tA±(~r⊥; t)
A±(~r⊥; t)

)
A±(t), (6.36)

The carrier densities are assumed to be constant in the material polarization time

scales (γ−1
⊥

). Also note that the final result in Eq. (6.36) is exact for a monochro-

matic solution. In the first place, the optical frequency Ω is selected by the cavity

through Eq. (6.16). In the second place, a correction to the optical frequency Ω ap-

pears through the “instantaneous frequency” i∂tA±/A± in χ±; such a contribution

takes into account the changes in the susceptibility due to the frequency pulling or

pushing due to nonlinearities. It also describes the variations in susceptibility ex-

perienced through frequency chirping during the transients but, more important, it

also determines that the carrier-induced gain and refractive index experienced by

different transverse modes are different due to their different modal frequencies.

For the sake of simplicity, we assume that the lateral current distribution at the

active layer, is given in terms of explicit functional forms of C(r). We approximate

this function by a supergaussian distribution in the case of bottom-emitting devices,

while a ring-shaped current distribution is taken for top-emitting devices. In the

same way, the radial dependence of the excess refractive index ∆n(r), that arises

from the TL effect, is assumed to be parabolic. Although the electrical and thermal

models have not been implemented yet, they may be included in our optical model

in order to self-consistently determine the distribution in current density, tempera-

ture and optical field. A summary of the meaning and numerical values of the device

and material parameters can be found in Table 6.1.

Finally, the last term in Eq. (6.35a) models spontaneous emission processes in

the semiclassical approximation [192]. ξ±(~r⊥; t) are random numbers with zero

mean (〈ξ±(~r⊥; t)〉 = 0) and delta-correlated in both space, time and polarization

(〈ξ∗i (x, y; t)ξj(x′, y′; t′)〉 = 2δi,jδ(x − x′)δ(y − y′)δ(t − t′), with i, j = +,−). Al-

though noise effects are not essential for the scope of this work, they may affect the

performance of the system through switch-on time jitter, reduction of the eye dia-

gram aperture, and mode hopping in the case of multimode operation.
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Symbol Meaning Value Dimensions

aχ0 effective gain constant 1.3 · 104 ns−1

Γ longitudinal confinement factor 0.045 —

γ⊥ polarization decay rate 20 ps−1

ne background refractive index 3.3 —

ng group refractive index 3.5 —

λ free-space wavelength 0.85 µm

σ bandgap shrinkage 0.2 —

b empty band contribution to χ 104 —

κ cavity losses 300 ns−1

γa linear dichroism 0.5 ns−1

γp linear birefringence 30 ns−1

A non-radiative recombination rate 1.0 ns−1

B bimolecular recombination rate 10−10 cm3 s−1

Nt transparent carrier density 1018 cm−3

γj spin flip rate 50 ns−1

D bimolecular diffusion 0.4 µm2 ns−1

βsp spontaneous emission factor 10−5 —

Table 6.1: Device and material parameters.

6.5 Polarization Mode Selection in the Fundamental
Transverse Mode

In this section we show how a joint interplay of semiconductor nonlinear dynamics,

spin dynamics, and thermal shift, enters in the selection of polarization modes in

VCSELs [33, 183]. The complexity of the spatiotemporal model (6.35a)−(6.35c) can

be largely simplified by neglecting spatial effects, namely, field diffraction and carrier

diffusion. In this case the VCSEL equations simply read

dtA±(t) = −κA± + i
aΓ
2

χ±

(
Ω + i

dtA±

A±
, D+, D−

)
A±

−(γa + iγp)A∓ +
√

AβspD± ξ±(t) , (6.37a)

dtD±(t) =
J

2
−AD± −BD2

± ∓ γj(D+ −D−)

+a Im χ±

(
Ω + i

dtA±

A±
, D+, D−

)
|A±|2 . (6.37b)

J = I/(eV Nt) is the total injection current I divided by the carrier density at trans-

parency Nt.
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Monochromatic solutions

The two orthogonal linearly-polarized solutions can be expressed as

A±(t) = Qe−i(ν0t±φ) , D±(t) = D0 , (6.38)

with φ = 0 in x̂-polarized states and φ = π/2 in ŷ-polarized states. Inserting

Eqs. (6.38) into Eq. (6.37a) we obtain a set of two nonlinear algebraic equations for

(ν0, D0) 
−aΓ

2
Im χ (Ω + ν0, D0) = κ± γa ,

−aΓ
2

Re χ (Ω + ν0, D0) = ν0 ∓ γp ,

(6.39)

that is solved by Newton-Raphson iteration [227]. From Eq. (6.37b) we obtain the

total optical intensity

2Q2 =
Γ
2

[
J − Jth

κ± γa

]
, (6.40)

where the sign +(−) corresponds to x̂-polarized (ŷ-polarized) solution. The thresh-

old current is given by Jth = 2
(
AD0 + BD2

0

)
which is temperature-dependent

through the relative detuning ∆.

Nonthermal and thermal polarization switching

The linear stability analysis of the linearly-polarized solutions allows to determine

the domain in parameter space where each LP state is stable and thus the possible
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Figure 6.5. Current-detuning linear stability diagram for the linearly polarized solutions.
The lower curves give the dependence of threshold current on the detuning ∆. Param-
eters used are those of Table 6.1 with (a) γp = 3 ns−1, γa = 0 and (b) γp = 35 ns−1,
γa = 0. The stability regions are identified as follows: (x) only x̂-LP is stable, (B) both x̂

and ŷ-LP are stable, (y) only ŷ-LP is stable.
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occurrence of polarization switching. PS can occur as the system is brought from one

parameter region to another region of different stability properties. We follow the

procedure outlined in Pag. 111, although we skip here the details of the calculations.

A typical stability diagram for a relatively small value of the birefringence (γp =
3 ns−1) are shown in Fig. 6.5(a) in the current versus detuning plane. There is a mini-

mum threshold around ∆m ≈ 0.5 corresponding to the alignment of the cavity reso-

nance with the gain peak. Generally, for a given ∆, the LP state selected at threshold

is the closest to the gain peak, i.e., x̂ for ∆ < ∆m and ŷ for ∆ > ∆m (in the absence

of dichroism). Well above the threshold line we find that only the high-frequency

solution x̂-LP is stable despite the sign of the detuning. A rather wide bistability re-

gion also appears due to nonlinear gain saturation induced by the lasing mode. A

PS occurs as the system is brought from ŷ to x̂ by increasing the current at constant

detuning (temperature).

Fig. 6.5(b) displays a typical stability diagram for a higher birefringence (γp =
35 ns−1). An important difference with Fig. 6.5(a) is that now ŷ is stable on almost the

whole frequency range and currents far from threshold. Therefore, no PS at constant

temperature appears for detunings ∆ > ∆m. Instead, a PS occurs for constant J

as ∆ is varied across ∆m. Within our framework, we call this as thermally-induced

PS since it appears by scanning ∆, either by changing substrate temperature or by

device self-heating as the current is increased [See path in Fig. 6.5(b)].

Hence two possible independent ways to produce a PS have been identified [33].

One that typically occurs for relatively large birefringence is thermally-induced and

corresponds to the mechanism discussed by Choquette et al. [31]. A second mech-

anism may occur for small birefringence while increasing the current at constant ∆
[169]. We call this second mechanism nonthermal since it occurs at constant detun-

ing while staying on one of the sides of the gain peak. These two mechanisms can

coexist depending on the device characteristics [Fig. 6.5(b)].

6.6 Transverse Mode Selection at Threshold

A basic step in the characterization and modeling of VCSELs is to determine their

threshold properties. In particular, the difference in threshold currents for the differ-

ent transverse modes provides a rough estimate of the modes that can be excited for

a given current, although above threshold the excitation of higher order transverse

modes is favored because of spatial hole burning. In addition, the modal profiles and

frequencies can be modified, especially for very weak guiding. One of the primary ef-

fects of TL is to modify the threshold characteristics of the VCSEL by changing both

the threshold current and the mode selected at threshold.

The threshold current and the transverse mode selection for a given VCSEL can
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be determined in a simple way by analyzing the linear stability of the “off” state, i.e.,

A± = 0. We apply to the “off” state a small perturbation δA±(~r⊥, t), in such a way

that stimulated emission can be neglected when determining the carrier densities.

Hence, from Eq. (6.35c) we have that the carrier densities in each spin orientation

are equal, D+ = D− = Ds(~r⊥) since electrons with opposite spin orientations are

in average equally injected, and given by

0 =
µ

2
C(~r⊥)−ADs − (BNt)D2

s +D∇2
⊥Ds . (6.41)

The solutions of Eq. (6.41) in turn determine the inhomogeneous distribution of the

optical susceptibility, that in this case is the same for the two polarization compo-

nents. The dynamics of δA±(~r⊥; t) is given by

∂tδA± = −κδA± + iL̂δA± + i
aΓ
2

χ
(
Ω + i

∂tδA±
δA±

, Ds

)
δA± − (γa + iγp)δA∓ .

(6.42)

It is natural to expand the perturbation in modes of the waveguide operator L̂,

δA±(~r⊥; t) =
∑
ml

δAmle
∓iφ+λmlt Φml(~r⊥)e−iωmlt . (6.43)

δAml stands for the perturbation’s amplitude and λml the perturbation’s eigenvalue

in each of these modes. Phase-locking among the two circularly polarized compo-

nents at φ = 0, π/2 provides linearly polarized light along the x̂ and ŷ axis respec-

tively. The cavity modes Φml and the modal frequencies ωml are determined by the

eigenvalue problem[
∇2
⊥ +

(
Ω
c

)2

2ne∆ntl(r)

]
Φml =

(
Wml

rg

)2

Φml . (6.44)

As we have already mentioned, the refractive index distribution is approximated

by a truncated parabolic profile

∆ntl(R) =

{
∆ntl

[
1−R2

]
if R < 1

0 if R ≥ 1
, (6.45)

with R ≡ r/rg , rg being the TL radius. The eigenmodes and eigenfrequencies are

given in Appendix E.

From Eqs. (6.24) and (6.35a) the modal frequencies, referred to Ω, read

ωml = − c2

2Ωneng

(
Wml

rg

)2

. (6.46)
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Inasmuch as ωml < 0, it describes the redshift of the modes due to the thermal lens-

ing with respect to the flat index distribution. The stronger the TL strength the larger

the redshift, which also increases as the mode orderO ≡ (2m + l − 1) decreases.

Upon substituting Eq. (6.43) into Eq. (6.42) and projecting onto a mode LPml,

the perturbation’s eigenvalue λml is given by the solution of the implicit equation

λml = −κ∓ (γa + iγp) + i
aΓ
2

∫∫
χ (Ω + ωml + iλml, Ds(r;µ)) |Φml|2 d2~r∫∫

|Φml|2 d2~r
,

(6.47)

where the sign −(+) corresponds to x̂(ŷ) linearly-polarized light. The perturbation’s

growth rate is Re λml, while it oscillates at a frequency shifted by Im λml respect to

Ω + ωml. The integral term on the right-hand side of Eq. (6.47) describes the modal

gain (real part) and the nonlinear frequency shift (imaginary part) of the transverse

mode under consideration, taking into account any possible frequency pulling or

pushing of the modal frequencies due to the carrier induced refractive index change.

Therefore, the threshold current for every linearly polarized transverse mode

LPml, µth(m, l,±;∆), is found from the condition Re λml = 0. Threshold currents

for the two linearly polarized solutions (±) are slightly different in the presence of

linear anisotropies, hence we define the threshold for a given transverse mode as

µth(m, l;∆) ≡ min
±
{µth(m, l,±;∆)} . (6.48)

and the absolute laser threshold is thus determined by

µth(∆) ≡ min
m,l

{µth(m, l;∆)} .

It is worth remarking that, given the carrier density distribution associated with

the current injection in Eq. (6.41), the threshold current of transverse modes is de-

termined jointly by the modal frequencies, that establish the material gain, and the

overlap of the modal profile with the carrier distribution. These effects are in turn

dependent on both the relative detuning and the thermal lensing strength. In the

next two subsections, we discuss the threshold behavior of bottom and top emitter

VCSELs corresponding to different shapes of the injected current.

Bottom-Emitting VCSEL

The current distribution across the active region of bottom-emitting VCSELs is quite

homogeneous due to their circular p+ contact and the typical high doping levels of

the n-substrate [38], although current crowding at the aperture edges is observed

when the VCSEL diameter is large. As we have already commented, we consider that
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for this device structure the current distribution at the active layer is supergaussian,

C(r) = exp[−(r/rc)6], with rc being the radius of the active region. The total in-

jected current is then I(t) = µ(t)π
3 Γ( 1

3 )eNtWr2
c , and the exponential tails of the

supergaussian function take into account the current spreading effect [228]. We con-

sider a device with an active region diameter, rc = 7.5 µm, and a larger diameter of

the thermal lens, rg = 9 µm, in order to mimic heat diffusion across the cavity axis.

In Fig. 6.6, we represent the threshold curves obtained from Eq. (6.48) for the fun-

damental (solid lines) and first-order (dash-dot lines) transverse modes as function

of the normalized detuning, ∆. We consider different values of the TL refractive in-

dex strength ∆ntl = 10−2 (a), ∆ntl = 10−3 (b) and ∆ntl = 5 · 10−4 (c). For a fixed

∆ntl, the threshold curves for the different modes as function of the detuning dis-

play a minimum when the modal frequency aligns with the gain peak. The position

of such a minimum notably depends on the thermal waveguide, but also on the cou-

pling with the carrier density through bandfilling and bandgap shrinkage included

in χ. The curves are asymmetric around the minimum threshold with a smoother

increase toward the blue side of the gain spectrum as a result of a higher differential

gain. For small ∆ntl, which corresponds to an on-axis temperature excess of about

1 K, we observe that besides the global increase of the threshold current, the thresh-

old for the first-order transverse mode is very large (out of scale in Fig. 6.6). For mod-

erate ∆ntl, the threshold of the fundamental mode is sensibly smaller than the first-

order transverse mode, so the laser displays fundamental transverse mode operation

at moderate currents above threshold. We observe that the threshold discrimination

of the first-order transverse mode is more noticeable when the cavity resonance is

located on the blue side of the gain curve, although in this case the threshold cur-

rent increases. For large ∆ntl, we observe that the threshold differences between the

two modes are very small over the whole range of detunings, thus indicating a strong

tendency toward multimode emission. An interesting aspect is that, when the VC-

SEL operates in the red side of the gain spectrum, the first-order transverse mode

has lower threshold than the fundamental one.

This general scenario can be interpreted from Eq. (6.47) as the interplay of two

separate aspects. On one hand, the TL waveguide establishes the modal profiles Φml,

and frequencies ωml. The latter alone would define the modal gain if the active region

were of infinite extent and homogeneously injected. Then the threshold curves for

the different modes would follow the material gain spectrum, and one would there-

fore expect that the threshold would correspond to the mode whose frequency is the

closest to the gain peak. However, due to the finite extent of the carrier density distri-

bution, a geometrical correction that accounts for the overlap of the carrier density

and the mode profile sets in. This effect is usually described by means of a lateral

confinement factor that corresponds to the fraction of the modal power contained in
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Figure 6.6. Threshold curves for the fundamental (solid lines) and first-order trans-
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the nucleus of the waveguide. In our case, however, the carrier distribution is inho-

mogeneous, thus we define a lateral confinement factor through

Γml ≡
∫∫
|Φml|2 S(~r⊥) d2~r∫∫

|Φml|2 d2~r
, (6.49)

where S(~r⊥) is a normalized weight function, ranging from zero to one, that de-

scribes the shape of the active region. For simplicity, we take S(r) ≡ Ds(r)/ max{
Ds(r)} with Ds(r) the steady state carrier distribution given by Eq. (6.41). When the

carrier density in the active region is approximated by a disc, S(r) = Θ(rc − r),

our definition of the lateral confinement coincides with the fraction of modal power

within the active region. With our choice for S, the lateral confinement factor de-

scribes the degree of overlap of the modal profiles with the carrier distribution. Note

that Γml does not depend either on the modal frequencies or on the cavity detuning.

Hence, we are able to separate the geometrical contributions to the laser threshold

from those arising from the frequency dependence of the gain curve.

The lateral confinement, obtained from Eq. (6.49) for the guided modes consid-

ered above, is depicted in Fig. 6.7. As expected, we observe a fast decrease of the

confinement factors as the TL strength decreases, suddenly dropping to zero when

the mode is no longer confined by the TL waveguide. It is clear from Fig. 6.7 that

for strong TL the confinement factors for the fundamental and the first-order trans-

verse modes become very similar and close to one. In such a case, the material gain

differences arising from different modal frequencies may be large enough to over-

compensate the difference in confinement factors. Hence, the device can start to

lase in the first-order transverse mode in spite of being homogeneously pumped. In

order to improve the range of single-mode operation, it is desirable to work below

the cut-off for the first-order transverse mode, which —for a fixed geometry— can

be achieved by reducing the amount of TL through an increase of the device’s lateral

heat conductivity. For our particular configuration, the TL strength has to be mod-

erate, and our analysis suggests that the on-axis excess temperature should be kept

below ∼ 5 K, since in this case the confinement factor for the first-order transverse

mode is only 7% below that of the fundamental mode. However, it must be noted

that the first-order transverse mode could start lasing well above threshold due to

spatial-hole burning in the carrier density.

Top-Emitting VCSEL

Top-emitting VCSELs have a top contact of annular shape that leads to preferential

injection in the outer edges of the active region both due to the ring contact and to

current crowding at the aperture edges in the case of oxidized VCSELs. This strongly

affects the overlap of the modal profiles with the carrier density, and thus the mode
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selection at threshold. In order to illustrate this effect, we take the radial dependence

of the injected current as: C(ρ) = e−ρ6
eρ2

, with ρ = r/rc in such a way that the

total injected current in the device is I(t) ≈ 1.24µ(t)eWNtφ
2
c . The variation in car-

rier density from the center to the carrier crowding radius is of the order of 25% for

the actual diffusion coefficient. For simplicity and an easier comparison with the

bottom-emitting VCSEL, we assume that the thermal lensing profile is unaffected by

the ring in the current distribution, although such an approximation is unrealistic in

the case of small radial thermal conductivity and when a marked ring-shaped current

distribution is considered.

The threshold curves of the transverse modes, for a moderate value of TL (∆ntl =
5 · 10−3), are shown in Fig. 6.8. The fundamental transverse mode is unfavored, with

respect the other modes, due to its poor overlap with the carrier density resulting

from the ring-shaped current injection. For these specific operating conditions, the

lowest threshold corresponds, over the whole range of detunings, to the four lobed

LP12 mode. Again, it can be observed that the range of single-mode operation of

the device can be improved by detuning the cavity resonance to the blue side of the

gain peak. It must be noted, however, that in this case the LP12 mode is further away

from the gain peak than modes of lower order, hence clearly showing the dominance

of the geometrical effects over the material gain.

The lateral confinement factor defined in Eq. (6.49) is plotted in Fig. 6.9 versus

the TL strength. As the TL strength is increased, we observe that different transverse

modes are favored depending on the TL conditions. From this purely geometrical

point of view, the fundamental mode LP10 tends to dominate due to a better overlap

with respect to the other modes for ∆ntl < 1.2 · 10−3. For 1.2 · 10−3 < ∆ntl <

2.7 · 10−3 the first-order transverse mode LP11 is favored while for ∆ntl > 2.7 · 10−3

the four-lobed LP12 displays the maximum confinement factor.

6.6.1 Numerical simulations

In order to give more specific evidences of the interplay of TL and the shape of

the gain distribution, we perform numerical simulations of Eqs. (6.30), (6.35a) and

(6.35c). We discuss the switch-on dynamics of bottom- and top-emitting VCSELs

when they operate close to threshold. Some guidelines about the numerical integra-

tion scheme can be found in the Appendix F.

In this section, we assume that the nominal detuning is ∆ = 0.25, chosen to

achieve operation near the gain peak, and a moderate value for the TL strength

∆ntl = 5 · 10−3. In these conditions, the threshold analysis presented in the pre-

vious section shows that the mode with the lowest threshold is the fundamental one,

with ŷ-polarization. In Fig. 6.10 we show the dynamics of the bottom-emitting VC-

SEL when is biased close to threshold. The evolution of the total intensity near fields
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is shown in panels (a)-(c) for three different currents ranging from µ = 1.05µth up

to µ = 1.25µth. Near field images are plotted with an inverted scale scheme using

maximum contrast, therefore comparison of the relative intensity between images

is not possible. For the lower injection current we obtain stable fundamental mode

operation in a well established polarization. When the current is slightly increased

the near field is still Gaussian but its position changes from image to image. Increas-

ing further the injection current, we find that this last stage ignites the appearance of

the first-order transverse mode as can be clearly seen in panel (c). As it is commonly

observed, the first-order transverse mode switches-on in the orthogonal polariza-

tion of the lasing one. We note that this result is not a direct consequence of the

threshold analysis presented in Sec. 6.6, but a nonlinear competition between trans-

verse and polarization degrees of freedom. The total intensity evolves according to

Fig. 6.10(d) when the current is µ = 1.10µth. The VCSEL emits preferentially in the

lower frequency polarization component (ŷ-LP), being selected by the actual value

of the dichroism. The orthogonal component is considerably suppressed in CW, al-

though it appears during the transient following the switch-on. The optical spectra

of the linear components of the electric field, defined through

OSk(ω) =
∫∫

dx′dy′
∣∣∣∣
∞∫

−∞

dt Ak(x′, y′; t)eiωt

∣∣∣∣2 , (6.50)

with k = (x, y), is an efficient way to separate the spectral content of the signal.

The optical spectrum of the dominant polarization, under CW operation, displays a

dominant peak at the position of the fundamental transverse mode frequency. The

orthogonal polarization component clearly exhibits the dominance of the first-order

transverse mode. It is worth remarking that the current at which such a mode ap-

pears is smaller than that predicted by the threshold analysis due to the role of the

spatial hole burning. This is, the steady state carrier distribution for this current is

no longer supergaussian but displays a hole at the center due to the increased stim-

ulated recombination in this region.

In view of the above results, one might think to preferentially excite one of the

transverse modes by proper selection of the current profile. To explore this possi-

bility, we perform numerical simulations of the top-emitting VCSEL biased close to

the threshold current. The current is switched-on from slightly below threshold to

above threshold, µ = 1.1µth. In Fig. 6.11(a) we represent the evolution of the to-

tal intensity accompanied by the near field images at different stages. In the ‘off’

state, the spontaneous emission near field displays a hole at the center as a result

of the ring-shaped carrier distribution. As soon as the laser switches-on we observe

that a transverse mode with four lobes is selected. Nevertheless, the orientation of

the mode is not fixed and starts to rotate, alternating between odd and even LP12
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Figure 6.10. Switch-on dynamics of the bottom emitter VCSEL. Evolution of the total
intensity near-fields: (a) µ = 1.05µth, (b) µ = 1.10µth, and (c) µ = 1.25µth. (d) Tem-
poral evolution of the total intensity at µ = 1.10µth. (e) Optical spectra of both linear
polarizations under CW operation at µ = 1.10µth.

modes. The polarization-resolved optical spectra, computed under CW operation

[See Fig. 6.11(b)], reveals that the device exhibits nearly single-mode operation with

a predominant peak that corresponds to the four-lobed LP12 mode. However, a

daisy mode with six lobes is weakly excited (∼ 40dB of side mode suppression ra-

tio). The four-lobed structure of the LP12 mode burns a hole in the carrier distribu-

tion along the angular direction that induces the rotation of the mode, and this yields

the weak excitation of the daisy mode. We also note reminiscent peaks, with much

lower power, at the frequency positions of the fundamental and first-order transverse

modes.
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Figure 6.11. Higher-order transverse mode selection for the top-emitter VCSEL. (a)
Close-to-threshold temporal evolution of the total intensity at µ = 1.10µth. (b) Cor-
responding optical spectra in both polarizations under CW operation. Near field images
are obtained using the maximum contrast of an inverted scale.

6.7 Subnanosecond Electrical Excitation

The mechanisms governing the selection of transverse modes close to the lasing

threshold have been identified from the previous analysis. An important question

that we now address is the transient multimode dynamics during subnanosecond

electric excitation (large-signal). In particular, we analyze the influence of thermal

lensing on the spectral properties of these devices. The understanding of these ef-

fects is essential in applications that include high-speed current modulation. More-

over, the numerical results can be contrasted with reported experimental investiga-

tions [229, 230] using gain-guided VCSELs: the onset of transverse modes is charac-

terized by a turn-on delay which strongly depends on the device geometry as well as

the thermal lensing strength.
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We numerically integrate the partial differential Eqs. (6.35a)−(6.35c) for VCSELs

of two different aperture diameters. The lateral dimensions of the VCSEL A are

rc = rg = 6.25 µm whereas VCSEL B rc = 11 µm and rg = 15 µm. The electrical

excitation consists in a current pulse that is switched-on at t = 0 from µb = 0.85µth

to µon varying from µth up to 9µth. µth represents the laser threshold current at the

detuning of operation, ∆ = 0.5. Pulses have 1 ns of duration and 50 ps of rise and

fall times. Since the duration of the pulse is much shorter than the thermal time

(τt ∼ 1µs), it is justified to use a fixed TL which effective value is determined from

the operating bias current. From the near field images, we find fast changes on the

spatial distribution of power suggesting that many transverse modes are involved.

In order to better characterize this dynamics we perform a spectral analysis of the

spatiotemporal data.

Optical spectra

Optical spectra of both polarization components, x̂-LP (solid lines) and ŷ-LP (dotted

lines), under pulsed excitation are shown in Figs. 6.12−6.13. Both linear polariza-

tions are excited by the current pulse and remain active during all the transient. We

observe a birefringence splitting of ∼ 10 GHz between the two polarizations that

results from the birefringence splitting γp/π. The position of the fundamental mode

(α) is redshifted with respect to the longitudinal mode resonance Ω as result of the TL

and nonlinear frequency shift effects described through Eq. (6.47). The full-width at

half-maximum (FWHM) of the fundamental mode, that almost corresponds to the

first optical peak in Fig. 6.14, is broaden during the transient due to the α-factor

that for our case is α ∼ 1 − 2. The effective detuning of the fundamental mode

with respect the bandgap is ∆eff ≈ 0.47. Therefore the fundamental mode posi-

tion is located close to the maximum of the gain spectrum, where the material gain

for the successive higher-order transverse modes decreases. The peculiar excitation

scheme favors the excitation of higher order transverse modes (β, ξ, · · · ) that can

be also identified in the optical spectra. The frequency separation between trans-

verse modes decreases with the waveguide radius according to Eq. (6.46), thus re-

ducing the differences in material gain. For the VCSEL A, the typical mode sepa-

ration in frequency is of the order of 100 GHz [Fig. 6.12] while for the VCSEL B is

only 44 GHz [Fig. 6.13]. Moreover, the relative confinement of the modes improves

with the waveguide radius that induces the excitation of more high-order modes in

Fig. 6.13 than in Fig. 6.12. The amplitude of the current pulse is also decisive for de-

termining the transient variations of carrier densities, and thus the number of excited

transverse modes.
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Figure 6.12. Optical spectra for the VCSEL A in both polarizations: µon = 1.5µth (a),
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Figure 6.13. Optical spectra for the VCSEL B in both polarizations under the same con-
ditions than in Fig. 6.12.
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Modal evolution

In order to investigate the separate evolutions of the transverse modes, we filter the

optical field components Ak(x, y; t), k = x, y around each modal frequency, as done

when using a monochromator. Numerically, we use a Lorentzian filter of width ∆ν

[Ak ∗ Li](x, y; t) ≡ 1
2π

∞∫
−∞

Ãk(x, y; ν)

1 +
( ν−νi

∆ν

)2 e−iνtdν . (6.51)

We can reconstruct i) the time-averaged power distribution of the modes in each

orthogonal polarization (modal profiles)

NF
i

k(x, y) =
1
T

T∫
0

[Ak ∗ Li](x, y; t) dt , (6.52)

and ii) the temporal evolution of the modal optical power

P i
k(t) =

∫∫
dxdy [Ak ∗ Li](x, y; t) . (6.53)

We note however that high-order peaks may contain several nearly degenerated LPml

modes that the filtering process is not able to separate. Proceeding in this way, the

polarization-resolved near field images in Figs. 6.12 and 6.13 correspond to the time-

averaged power distribution of each transverse mode. Near fields become more com-

plex as the ‘on’ current and the active region diameter are increased.

In Fig. 6.14 we plot the temporal evolution of the total optical power of the dif-

ferent transverse modes by using the filtering technique. In both VCSEL A and B, we

observe that the laser switches-on in the fundamental transverse mode (α) followed

by the successive excitation of several higher-order transverse modes. We also ob-

serve that the laser switch-off occurs in a higher-order transverse mode. We note that

the same qualitative behavior is observed for different turn-on events. For the larger

VCSEL the modes tend to operate simultaneously, exhibiting a strong competition

for the available gain in the active region [Fig. 6.14(b)]. In addition, stronger multi-

transverse mode behavior was expected owing to a better overlap of the higher-order

transverse modes with the spatial gain distribution. We observe that the excitation

of the mode (β) rapidly ignites the state (χ). Hence, the onset for the excitation of

higher order transverse modes appears much faster in VCSEL B.

These results are in good agreement with the reported experimental observa-

tions [229, 230] where a roughly estimation of the turn-on delay for large-aperture

VCSELs was carried out in terms of a simple model. The latter treats each mode

as independent; neglecting the current profile, spatial hole burning and frequency
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dependence of the gain curve. From our description, and going beyond this sim-

ple analysis, we find that two independent mechanisms are crucial to determine the

switch-on sequence of transverse modes: spatial hole burning and transient blue

shift of the gain curve. In the former, once a low order mode has switched-on, spa-

tial hole burning favors higher order modes because of their better overlap with the

resulting carrier distribution. In the latter, the transient increase in carrier density

after the application of the current pulse leads, due to bandfilling, to a blue shift of

the gain spectrum that progressively enhances the material gain corresponding to

higher-order modes. Consequently, our model contains the ingredients that allow us

to describe the sequence of excited modes without any restriction, neither on aper-

ture diameter nor on the current profile.

Turn-on delay

The modal evolution can be better characterized by computing the switch-on times

of the transverse modes: the time required for a mode to reach a predefined inten-
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Figure 6.14. Evolution of the modal power of each transverse mode and the total inten-
sity for the VCSEL A (a), and B (b).
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sity threshold. Let Tξ be the switch-on time of a higher-order mode LPξ, the turn-on

delay of a higher order transverse mode is the switch-on time referred to the funda-

mental one, i.e. ∆Tξ = Tξ − Tα. In Fig. 6.15 we show the dependence of the turn-on

delay of the transverse modes on the pulse current (normalized to threshold). As was

expected the turn-on delay for all the modes rapidly increases when approaching

to threshold, displaying an asymptotic behavior for µon/µth & 1. Another striking

property is that after the application of the current pulse, the transverse modes ap-

pear in a quite definite sequence. For this reason, we always find that the turn-on

delay increases when increasing the order of the transverse mode for any value of

the ‘on’ current. The turn-on delay for the VCSEL B [Fig. 6.15(b)] is considerably

reduced for the same modes that are present in VCSEL A [Fig. 6.15(a)]. As already

mentioned, a larger number of transverse modes become excited in the VCSEL B. In

general we find that these results are in good agreement with those experimentally

reported [229]-[231].

Dependence with thermal-lensing

We consider the transient response of a bottom-emitter VCSEL with rc = 7.5 µm and

rg = 9µm for three different TL strengths: ∆ntl = 10−2 (a), ∆ntl = 5 · 10−3 (b), and

∆ntl = 5 · 10−4 (c). The bias current determines the heat dissipated by Joule effect,

and provides a means of experimentally vary the TL strength. In Fig. 6.16, we rep-

resent snapshots of the intensity distribution in the two linear components. When

analyzing the spatiotemporal response to the current pulse, we observe that laser

initially switches-on in the fundamental transverse mode followed by the successive
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Figure 6.15. Turn-on delay as function of the ‘on’ current. Results for the VCSEL A (a)
and VCSEL B (b).
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excitation of higher-order transverse modes. Modal behavior depends dramatically

on TL: the weaker the TL, the smaller the number of excited modes with much longer

turn-on times .

In Fig. 6.17, we show the polarization resolved optical spectra corresponding to

the previous dynamics. Both linear polarizations x̂-LP (ŷ-LP) are depicted in solid

(dashed) lines. We find that the frequency separation between successive transverse

modes, that is approximately constant for a parabolic waveguide, depends drastically

on the TL properties. We obtain a frequency separation between the fundamental

and first-order transverse mode of 120 GHz (a), 80 GHz (b) and 54 GHz (c). For the

first two cases, these frequency differences agree quite well with those predicted by

Eq. (6.46), (ω11 − ω10)/(2π) =118GHz and 83GHz, respectively. However, this is not

so in Fig. 6.17(c), where Eq. (6.46) predicts a frequency difference of 23 GHz. The

reason is that the waveguide distortion caused by the carrier-induced refractive in-
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Figure 6.16. Response to a current pulse of the bottom-emitter VCSEL of 15µm, µb =

0.85µth and µon = 4µth. Snapshots of the near field power distribution in x̂ and ŷ

polarization components. The thermal lensing strength is ∆ntl = 10−2 (a), ∆ntl =

5 · 10−3 (b) and ∆ntl = 5 · 10−4 (c).
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dex strongly modifies the modal profiles and frequencies. In this case, the analysis

performed in Sec. 6.6 is no longer valid and alternative methods, that take into ac-

count these effects, are required in the calculation [232]. In addition, we can see that

both polarizations are active during the transient regime displaying similar dynam-

ics. Their spectra show a birefringence splitting of 10 GHz that corresponds to γp/π.

The near-field images, in this figure, depict the time-averaged power distribution in

each linear polarization. As consequence of the number of modes excited by the cur-

rent pulse, we go from complex near fields resulting from the superposition of several

transverse modes (a) to simpler ones (c).

6.8 Summary and Discussion

We have developed an optical model for the large-signal dynamics of multimode VC-

SELs that incorporates both spatial and polarization degrees of freedom simultane-

ously. We have assumed that the lateral current distribution at the active layer is

known, a explicit functional form that only depends on the structure of the device.

We have approximated these functions by a supergaussian in the case of bottom-

emitting devices, while a ring-shaped current distribution has been taken for top-

emitting devices. Similarly, the radial dependence of the excess refractive index

∆n(r) has been assumed to be parabolic, thus allowing to analyze the effects of

thermal lensing in the device. Although the electrical and thermal models have not

been yet implemented, they might be included in our optical model in order to self-

consistently determine the distribution in current density, temperature and optical

field.

In the absence of spatial effects, the selection of polarization modes reveals that

two different ways for polarization switching are possible: one that typically occurs

for relatively large birefringence is thermally-induced, and a second mechanism that

may occur for small birefringence has a nonthermal origin. The selection of trans-

verse modes has been systematically discussed in top- and bottom-emitting VCSELs

in two different operating conditions: close-to-threshold and under large-signal ex-

citation of the current.

The close-to-threshold behavior of top- and bottom-emitting VCSELs have been

analyzed by means semi-analytical methods and corroborated by the results of nu-

merical simulations. We have found that transverse mode selection (close to thresh-

old) depends on a joint interplay between the lateral confinement factor and the

material gain spectrum. VCSELs with disk-shaped current injection select the funda-

mental transverse mode at threshold unless the cavity resonance is strongly detuned

to the red side of the gain peak. The evolution of the near fields has been followed,

demonstrating that the laser onset of a top emitting VCSEL, with ring-shaped cur-
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rent profiles, may be initiated from a higher-order transverse mode depending on

the strength of the thermal lens. In this case, the overlap of the mode profile with

the ring-shaped carrier density dominates for the mode selection at threshold. Low

to moderate values of the thermal lensing are required in order to maintain single-

mode operation since for strong thermal lensing the confinement of all the modes in-

creases while their frequency spacing is not strongly affected, hence leading to poor

mode discrimination at threshold.

The selection of transverse modes in gain-guided VCSELs subject to an electrical

excitation of short duration have been investigated for different active-region diam-

eters, excitation amplitudes and thermal lensing conditions. This setup has simpli-

fied considerably the analysis because the temperature distribution is approximately

constant during the pulse. We have obtained a well defined sequence for the excita-

tion of the different transverse modes that were characterized by a turn-on delay.

The dependence of the turn-on delay with the amplitude of the current pulse and

with the thermal lensing strength is in good agreement with experimental observa-

tions. In view of the results, we infer that when these devices are used in optical

communication systems, and when they are being modulated across threshold by a

sequence of bits, the ratio of a single bit duration with respect to the modal turn-on

delay provides an estimation of the number of modes that can be excited. In this case,

however, one has to include all possible memory effects that arise from variations in

the initial conditions for the emission of each optical pulse [233]. We have found a

clear tendency toward multimode emission even in the case of weak TL, which may

affect the performance of the device in data-transmission applications because of an

enhanced pulse dispersion that lowers the degree of spatial coherence of the beam

profile and therefore the modal noise in multimode-fiber optical links. In order to

enhance single-mode operation, cavity detunings on the blue side of the gain peak

would be recommended, although in this case there would be an increase in thresh-

old current. Moreover, the thermal shift of the cavity mode as the current is increased

would reduce the operation range through thermal roll-off.



Chapter 7

Transverse Mode Dynamics:
Spatiotemporal versus modal
expansion descriptions

7.1 Introduction

Vertical-cavity1 surface-emitting lasers (VCSELs) display instabilities associated

with the polarization state of the light and/or the excitation of transverse modes

of higher order that have been described in the previous chapters. As already com-

mented, the large complexity of the problem arises from the fact that several phys-

ical mechanisms are involved [38]; namely, diffraction, thermal effects, gain and

refractive-index spectra, current distribution, etc. The initial studies of polarization

instabilities in VCSELs [32, 37] considered the polarization dynamics in the absence

of spatial effects, but the increasing evidence of the interplay of polarization and spa-

tial effects has stimulated research incorporating this dependence [193, 234]. The

numerical complexity of a spatiotemporal description of the VCSEL can be largely

alleviated by expanding the optical field in cavity modes [156], specially for devices

with a low number of confined modes. This approach has been extensively used in

index-guided devices (air-post [196, 235], etched mesa [236], or oxidized layer [237])

where methods for obtaining both scalar [238] and vectorial [198, 239] modes are

well-known. However, lateral confinement of the optical field in gain-guided devices

solely relies on the spatial distribution of the gain, with the help of a generally weak,

thermally-induced lens [38]. Different approximate analytical methods have been

1 This chapter is based on the papers:
J. Mulet and S. Balle, Phys. Rev. A. 66, 053802 (2002);
A. Valle, J. Mulet, L. Pesquera, and S. Balle, Proc. SPIE 4649, 50 (2002);
J. Mulet and S. Balle, IEEE J. Quantum Electron 38, 291 (2002).

171



172 Transverse mode dynamics: Spatiotemporal vs. modal expansion

proposed for determining the modal structure of these devices, e.g., the complex

square-law medium [232] or variational methods [240]. However, their applicabil-

ity to study large signal dynamics in these systems is dubious because the modes

can be quite sensitive to the spatial distribution of the carrier density, which in turn

depends on the optical pattern through spatial hole burning. The dynamical descrip-

tion of the interplay between optical field and carrier density requires consideration

of the full2 optical susceptibility of the active medium, obtained either from micro-

scopic theories [210] or from some semiclassical approximation [211]. In any case,

the gain and refractive-index spectra induced by the carriers, as well as their nonlin-

ear dependence on carrier density, are required.

In this chapter, we investigate the limits of validity and usefulness of a modal de-

scription of gain-guided VCSELs by analyzing the impact of the carrier-induced gain

and refractive-index spectra on the stability of the transverse modes. We compare the

results obtained from the spatiotemporal description and the modal expansion, un-

der dynamical conditions. The study focuses on the off-state bounce phenomenon

that, induced by carrier diffusion, appears under large-signal modulation of the cur-

rent: secondary pulsations of the optical power follow the current turn-off transient

[241]. We demonstrate that there exists a critical value for the lateral guiding above

which the predictions of the modal expansion coincide with those of the full spa-

tiotemporal model. In the opposite case the modal description yields results that

deviate from those in the spatiotemporal model. The differences arise from the dy-

namical redistribution in carrier-induced refractive index that produce a shrinkage

of the mode profile. This last effect is not included in the modal expansion, and it

determines the limits of validity of such an approach for gain-guided devices. The

chapter is organized as follows: In Sec. 7.2 we perform the modal expansion of the

spatiotemporal model presented in chapter 6. In Sec. 7.3 we perform the comparison

between both models, and finally Sec. 7.4 is devoted to summarizing and concluding

the chapter.

7.2 Optical Modal Expansion

We consider the spatiotemporal model for the dynamics of the optical field in VC-

SELs given in the preceding chapter. This model describes the lateral dependence

of the slowly-varying amplitudes (SVA) of the electric field around the optical carrier

frequency Ω, expressed in the basis of circular polarization components, A±. The

circular components interact only with spin-up or spin-down carriers, and the two

carrier densities are coupled among them by spin-flip processes.

2Both gain and refraction-index spectra are required.
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Obtaining the solutions of this model requires intensive computation due to the

explicit spatial dependence of the optical field components. Such an explicit depen-

dence can be eluded, in the same way as in Refs. [156, 241]-[244], by expanding the

SVAs of the optical field in “cold-cavity” modes, Φml, of the transverse waveguide op-

erator L̂ [Eq. (6.24)]. Then the electric field evolves according with a set of ordinary

differential equations for the mode amplitudes. The major inconvenience in such

an approach is that the interaction with the active material has to be weak so that

possible distortions of the cold-cavity modes can be neglected. In this chapter, we

demonstrate that the last hypothesis is not always fulfilled in gain-guided VCSELs

and that there exists a minimum required lateral guiding.

The modes Φml and the modal frequencies ωml are determined by the eigenvalue

problem [238][
∇2
⊥ +

(
Ω
c

)2

2ne∆n(r)

]
Φml(r, θ) =

(
Wml

rg

)2

Φml(r, θ) , (7.1)

rg being the waveguide radius. The modal frequencies ωml, given in Eq. (6.46), de-

scribe the frequency redshift between the mode considered and the longitudinal car-

rier frequency Ω. The eigenmodes verify the orthogonality relation∫∫
Φml(~r⊥)Φ∗m′l′(~r⊥) d2~r⊥ = δmm′ δll′ . (7.2)

We express the SVA of each circular component of the field as

A±(~r⊥; t) =
∑
ml

Φml(~r⊥)a±ml(t)e−iωmlt , (7.3)

where a±ml(t) stands for the complex circular components of the modal amplitude

associated with the transverse mode Φml. In the frequency domain, Eq. (7.3) reads

Ã±(~r⊥; ν) =
∑
α

Φα(~r⊥)ã±α(ν − ωα) , (7.4)

where α = {m, l} is a shorthand index for the transverse modes, with m = 0, 1, · · ·
and l = 0,±1, · · · . By substituting it into the constitutive relationship for the mate-

rial polarization (in frequency domain), we have

P̃±(~r⊥, ν) = χ±(Ω + ν,D+, D−)Ã(~r⊥; ν)

=
∑
α

χ±(Ω + ν,D+, D−)ã±α(ν − ωα)Φα(~r⊥) . (7.5)

Since the modal amplitudes are nearly monochromatic around each modal fre-

quency (ã±α(ν − ωα) 6= 0 only when ν ≈ ωα) we use the modal reference frames
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uα ≡ ν − ωα for transforming to time domain. Using the same technique as in

Eq. (6.36) for performing such a step, we obtain

P±(~r⊥, t) ≈
∑
α

[
χ±(Ω + ωα + i

ȧ±α(t)

a±α(t) , D+, D−)a±α(t)Φα(~r⊥)e−iωαt
]

. (7.6)

Upon substitution of Eqs. (7.3) and (7.6) into the field equation (6.35a) and by pro-

jecting onto a mode Φ∗β(~r⊥), we arrive at the rate equation for the amplitude of the

mode considered

ȧ±β(t) = −κa±β +
iaΓ
2

p±β(t)− (γa + iγp)a∓β + Fβ(t) , (7.7)

while by substituting Eqs. (7.3) and (7.6) into Eq. (6.35c) we obtain

∂tD±(~r⊥; t) =
µ(t)
2

C(~r⊥)−AD± − (BNt)D2
± ∓ γj(D+ −D−)

+D∇2
⊥D± +

a

2i

∑
α,β

[
ei(ωβ−ωα)ΦαΦ∗β ×

χ±

(
Ω + ωα + i

ȧ±α(t)

a±α(t) , D+, D−

)
a±α(t) a∗±β(t)− c.c.

]
. (7.8)

Note that the stimulated recombination terms in the above equation retain the local

spatial dependence of the carrier variables. On the contrary, in the modal material

polarization defined through

p±β(t) =
∑
α

[
ei(ωβ−ωα)ta±α(t) ×

∞∫∫
−∞

Φ∗β χ±

(
Ω + ωα + i

ȧ±α(t)

a±α(t) , D+, D−

)
Φα d2~r⊥

]
, (7.9)

the carriers appear under an integral sign. Hence, the dependence of p±β on the

carrier variables has a nonlocal character. p±β represents the projection of the ac-

tive material polarization onto the modal profile Φ∗β(~r⊥), i.e., the carrier-induced

gain and refractive-index change experienced by the mode. The model is thus simi-

lar to that developed in Refs. [156, 244], where the spatial dependence on the carrier

density is explicitly maintained for the computation of the modal gains, thus includ-

ing the effects of spatial-hole burning. Our description, though, includes not only

self-saturation effects of the modal gains, but also cross-saturation effects among

the modes, because the β-component of the material polarization is not diagonal in

the field amplitudes aβ , rather it contains a superposition of different contributions

arising from all the modes. By taking the usual definition of the modal gain X±
α of a
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transverse mode α, as the imaginary part of the coefficient of the diagonal element

of p±β

X±
α ≡ −aΓ

2

∫∫
Im χ±(Ω + ωα, D+, D−)|Φα|2d2~r⊥ , (7.10)

it is clear that the other, nondiagonal terms in p±β lead to crosssaturation. Moreover,

it is worth noting that the modal beat notes (ωβ − ωα) appear in the evolution of the

carrier densities, Eq. (7.8). These beat terms will be negligible when the frequency

splitting between transverse modes is large enough, since in this case nonstimulated

carrier recombination induces a low-pass filtering effect that strongly damps them,

but not otherwise. We shall thus include in our description only the terms arising

from frequency-degenerate modes and neglect the other ones.

Finally, the statistical properties of the projected Langevin noise sources F±β(t)
are

〈F±β(t)〉 = 0 , (7.11a)

〈F±β(t)F ∗
±α(t′)〉 = δ±δ(t− t′)2Aβsp

∞∫∫
−∞

Φ∗β(~r⊥)D± Φα(~r⊥) d2~r⊥ ,

(7.11b)

indicating that, in general, correlation may exist between the spontaneous emission

terms into different transverse modes due to the limited extent of the pump region.

Injection and response of the active medium

For the sake of simplicity, we assume that the radial distribution of injection current

in the quantum well (QW) plane is approximated by

C(ρ) = e−ρ6
enρ2

, (7.12)

with ρ = r/rc, rc being the radius of the contact. When n = 0, the current dis-

tribution is super-Gaussian and describes a disk-shaped electrical contact, while a

ring-shaped contact is described by n > 0, with larger current crowding the larger

n. In addition, a truncated parabolic waveguide mimics the effect of a thermal lens

[Eq. (6.45)]. Finally, we consider an analytical approximation to the optical suscepti-

bility of the QW, equivalent to that given in Eq. (6.30). This description captures the

essential features of the gain and index spectra in QWs.
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7.3 Results

In this section we perform a comparison between both methods in order to discuss

the usefulness and limits of validity of a modal description. We focus our discus-

sion on the VCSEL dynamics during turn-on and turn-off transients accompanying

a large-signal modulation of the current.

7.3.1 Single-mode operation

As a starting point, we consider the case of a single-mode VCSEL (rc = rg = 3 µm)

with a disc-shaped contact (n = 0) being modulated by a square-wave signal from

threshold to four times threshold with a modulation period T = 10 ns.

In Fig. 7.1 we plot the results obtained from direct integration of the two dimen-

sional (2D) model (solid lines) together with those obtained after performing the

modal expansion (dashed lines) for a relatively strong thermal lens, ∆ntl = 10−2.

The two models yield very similar results for the dynamics of both the power and

carrier density, although it can be seen that for very low power levels, there are some

small differences among them due to the different way of including spontaneous

emission noise in each model. During the current switch-on, the intensity and modal

gain undergo typical relaxation oscillations. Following the turn-off transient, we ob-

serve the appearance of an optical pulse, generally, with low intensity levels. We ex-

plicitly define a secondary pulsation [241] as the first optical peak that follows the

current turn-off. This effect is also referred as off-state bounce in optical transmis-

sion systems using digital encoding [243, 245]-[248]. Since this is a detrimental effect

that can influence the performance of the bit recovering process, it is imperative to

have a thorough understanding and control of such a phenomenon, thus requiring

fast and accurate simulation tools. Secondary pulsations can be characterized by two

figures of merit, namely: the OFF/ON ratio that measures the power relation between

the maximum of the first optical secondary peak with respect to the CW mean power,

and the time Toff elapsed between the current turn-off and the first secondary pul-

sation. The presence of spontaneous emission noise induces small fluctuations in

these magnitudes from one bit to the other [249]. As has been already commented,

these pulsations can not be explained in terms of the typical relaxation oscillations

that appears in gain-switched semiconductor lasers, since the bias current is usually

set at the threshold or slightly below it. In contrast to relaxation oscillations, sec-

ondary pulsations are explained in terms of a diffusive spatial effect. When the laser

switches-on, the spatial-hole burning effect causes a hole in the center of the carrier

distributions [See Fig. 7.1(c)]. When the current is turned-off, the hole in the car-

rier distribution is filled by diffusion processes and, under appropriate conditions,

provides extra gain during a short period that finally produces the optical pulses.
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Both models exhibit, for the parameters considered, anomalous turn-off transients

with multiple secondary pulsations, whose peak power reaches about 40% of the CW

power in both models. Also, the time at which the secondary pulses occur are almost

the same in both models (Toff ≈ 0.22 ns), and the degree of spatial hole burning

in the carrier density is also very similar. We also find that the strength of the sec-

ondary pulsations, OFF/ON ratio, decreases both when the bias current is reduced

and when the ‘on’ current approaches threshold in correspondence with previous

studies [241, 242].

Performing the same analysis for a weaker thermal lens, ∆ntl = 3 × 10−3, the

agreement between the two models becomes worse. Solid lines in Fig. 7.2 represent

the results obtained by direct integration of the 2D-model, whereas dashed lines are

those obtained after performing the modal expansion. In this case, although the two

models yield the same qualitative turn-off dynamics and they lead to the same CW
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Figure 7.1. Turn-on and turn-off transients for strong lateral guiding conditions. Nu-
merical simulation of the spatiotemporal dynamics (solid lines) in comparison with
modal expanded method (dashed lines). The same parameters that in Table 6.1 except
for γ⊥ = 20 ps−1, and b = 104. Parameters: disk electric contact with n = 0, µb = µth,
µon = 4µth, rc = rg = 3 µm,D = 0.5 µm2/ns, ∆ntl = 10−2, ∆ = 1.0.
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Figure 7.2. Evolution of the optical intensity in log-scale (a), modal gain scaled to losses
(b), detail of the turn-off transients in linear scale (c), and cross-section of the carrier
densities at different time stages (d). The results from the 2D model are plotted in solid
lines and the corresponding optical profiles are shown in Fig. 7.4(c). We use dashed lines
for the modal expansion, except in panel (b). The secondary pulsations obtained from
the 2D model have OFF/ON ∼ 22% and Toff ∼ 0.34 ns while OFF/ON ∼ 16% and Toff

∼ 0.52 ns from the modal expansion. Disk electric contact with n = 0, µb = µth,
µon = 4µth, rc = rg = 3 µm,D = 0.5 µm2/ns, ∆ntl = 3× 10−3, ∆ = 1.0.
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Figure 7.3. Typical secondary pulsations during the turn-off transient of a VCSEL with
a ring-shaped electrical contact with (n = 2). Secondary pulsations from the 2D model
OFF/ON∼ 59% and Toff = 0.22 ns, and from the modal expansion OFF/ON≈ 40% and
Toff ≈ 0.30 ns. The remaining parameters are the same as in Fig. 7.2.
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powers, significant quantitative differences can be observed among them during the

dynamics. In particular, the ratio of the secondary pulse height to the CW power

(OFF/ON ) is significantly higher for the 2D-model (≈ 22%) than for the modal expan-

sion (≈ 16% only). Moreover, the time at which the secondary pulses appear is also

significantly different for the two models: in the first, the secondary pulse appears

with a delay Toff ≈ 0.34 ns after the current is switched-off, while in the second, the

delay is Toff ≈ 0.52 ns. Finally, the spatial hole burnt in the carrier density is larger in

the 2D-model. Further reduction of ∆ntl leads to larger differences between the two

models.

In Fig. 7.3 we compare the results obtained with the two models for the same pa-

rameters as before, but in the case of a ring contact with depth n = 2. In this case, the

carrier distribution develops a marked peak at the carrier crowding radius in order to

provide sufficient gain to reach lasing in the fundamental mode, and the threshold is

larger than in the former case due to the smaller overlap among the Gaussian mode

and the ring-shaped carrier distribution. This effect finally leads to carrier distribu-

tions with strong radial gradients. When the current is turned-off, this large gradi-

ent produces a rapid filling of the hole, providing small Toff times and rather large

OFF/ON ratios. However, the shape of the current injection does not affect the con-

clusions regarding the influence of ∆ntl on the agreement between the two models:

the quantitative discrepancies between the two models are even larger than for the

disk-contact VCSEL and they also increase as the thermal lens weakens, although

their results match for relatively large ∆ntl. In panels 7.2(b) and 7.3(b), we represent

the evolution of the modal gain of the fundamental mode (obtained from the modal

expansion). The modal gain equals losses at the threshold, X10 ≈ κ, which coin-

cides with our bias current. Following the turn-on transients, we observe modal gain

variations resulting from the relaxation oscillations. On the other hand, during the

turn-off transients, the hole filling produces oscillations in the modal gain that finally

lead to the appearance of secondary pulsations. However, as already mentioned, the

spatial hole is deeper in the 2D model, which leads to an underestimation of the

height and time of the secondary pulsations.

In order to clarify the origin of these discrepancies, we have analyzed how ro-

bust the modal profiles are during the switch-on and turn-off dynamics due to the

changes in refractive index associated with the carrier density. Any changes in the

modal profiles are naturally accounted for within the spatiotemporal description,

but not in the modal expansion. In Fig. 7.4, we represent a cross-section of the optical

profiles at different time stages. For large thermal lensing strength, the modal pro-

files and modal frequencies are quite robust against perturbations produced by the

carrier-induced refractive index. In this limit, the modal expansion provides an ac-

curate description of the turn-off dynamics since the modal profiles do not change.
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However, this is not the case when the thermal lens is weak [See Fig. 7.4(d)]. In

this case, following the laser switch-on, we observe a considerable mode shrinkage.

When the laser switches-on, it produces spatial-hole burning in the carrier distribu-

tion. Thus, the resulting distribution of refraction index is disturbed, being larger in

the center than in the carrier crowding radius. This leads to a waveguide that pro-

vides an extra lateral confinement of the electric field that, in turn, is responsible for

the mode shrinkage. The above observations allow to simply explain the discrep-

ancies between the two models observed in the dynamics: for weak thermal lens-

ing, the passive waveguide is noticeably distorted due to the carrier-induced index

change, as can be seen in Fig. 7.5. The extra lateral confinement of the field in the

2D-model due to the spatial hole burnt in the carrier density favors the activation

of secondary pulsations, which are stronger and occur sooner than in the modal ex-

pansion method because in this case the field is less confined to the injection region.

From this analysis we conclude that in the single-mode case the modal expansion

method requires ∆ntl ≥ 5 × 10−3 for having good quantitative agreement with the

2D-model. Qualitatively correct results can be obtained with the modal expansion
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Figure 7.4. Optical profiles computed from the numerical integration of the spatiotem-
poral dynamics at different time stages: beginning of the laser onset (solid lines and cir-
cle), under continuous wave operation (solid lines), first peak of secondary pulsations
(dotted lines), and first optical valley (dashed-dotted lines). The mode shrinkage is (a)
∼ 7% for ∆n = 10−2, (b) ∼ 12% for ∆n = 5 × 10−3, (c) ∼ 17% for ∆n = 3 × 10−3,
and (d)∼ 30% for ∆n = 9× 10−4.
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Figure 7.5. Evolution of the active-material susceptibility obtained from integration
of the 2D model. Cross section of (∗) the optical profile in arbitrary units, (�) gain
−Γ Im χ±/(2ne) and (4) total index of refraction ∆n(r) + Γ Re χ±/(2ne) both in di-
mensionless units. Two time stages are plotted: the beginning of the laser onset (dashed
lines) and cw operation (solid lines). The same parameters as in Fig. 7.2 except for
∆ntl = 9× 10−4.

method for ∆ntl ≥ 3× 10−3. Below this value, the modal expansion approximation

can no longer be used, since it leads to qualitative discrepancies with the 2D-model.

7.3.2 Multimode operation

As a final example, we consider a multimode VCSEL with larger radius rc = rg =
4 µm, and moderate thermal lensing strength ∆ntl = 4 × 10−3. So, the transverse

modes involved in the dynamics are the fundamental LP10 and the first-order trans-

verse LP11 modes in any of the two possible polarizations. In this situation, we ana-

lyze square-wave modulation of the injection current.

The total intensity and the intensity of the secondary polarization component,

obtained from the spatiotemporal model, are separately depicted in Fig. 7.6. We

considered that the fundamental mode resonance is blue shifted with respect to the

gain peak by ∆ = 1. The general trend observed is that both polarizations initially

switch-on carrying significant amount of power. The secondary polarization remains

active during a transient time,∼ 1 ns in the figure. When the secondary polarization
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Figure 7.6. Secondary pulsations in a multimode VCSEL from the full spatiotemporal
model, OFF/ON ≈ 6%. Total intensity (solid line) and secondary polarization (dashed
line). Parameters: super-Gaussian current profile, rc = rg = 4 µm, µbias = µth, µon =

4µth, ∆ntl = 4× 10−3, and ∆ = 1.0.

reaches the noise level, the total intensity undergoes additional relaxation oscilla-

tions leading to a reactivation of the secondary polarization. In order to better under-

stand this phenomenon we have analyzed the computed near field images, shown in

Fig. 7.6 for certain time stages. The result is that ∼ 1 ns after the laser switch-on,

the first-order transverse mode starts lasing in the secondary polarization (dashed

lines), and coexisting with the Gaussian mode until the current is turned-off. By an-

alyzing the evolution of the near-field images in the dominant polarization, we ob-

serve that the orientation of the LP11 is not fixed, but it rotates between the cos and

sin modes. Following the current turn-off, we find that secondary pulsations take

place in the fundamental transverse mode and that both linear polarizations carry

significant amount of power. Even though the role of higher-order transverse modes

is to suppress the magnitude of secondary pulsations [242], we can still observe an

OFF/ON≈6%.

The modal expansion allow us to easily follow the separate evolution of the trans-

verse mode amplitudes LP10 and LP11 [Fig. 7.7(a)]. The fundamental transverse-

mode is initially selected. Then, as a consequence of the global increase in carrier

density and due to the spatial hole burning in the carrier distribution, the first-order

transverse mode LP11 can profit from the available material gain. The first-order

transverse mode switches-on at t ∼ 1 ns causing additional relaxation oscillations.

This mode coexists with the fundamental mode until the current is turned-off. Sec-

ondary pulsations appear in the fundamental mode and they have similar OFF/ON as

those obtained with the spatiotemporal model. In Fig. 7.7(b), we represent the evo-
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Figure 7.7. Secondary pulsations in a multimode VCSEL from the modal expansion.
The same parameters as in Fig. 7.6. Power of the LP10 mode (solid line) and power of the
LP11 mode (dashed line).

lution of the modal gain for both transverse modes. During the current turn-off the

X10 modal gain exceeds the losses during a short period, which in turn originates the

appearance of the secondary pulsation. However, the monotonic decrease in modal

gain of X11 is worth noting: when the current is turned-off, there is a sudden in-

terruption in carrier injection at the edges of the distribution that produces a worse

overlap with the mode LP11 and thus a decrease in modal gain. The rotation of the

LP11 mode is also found in the modal expansion, resulting from the cross-saturation

terms between the two degenerated first-order transverse modes. The reconstructed

near-field images in Fig. 7.7(a) are in good agreement with those computed from the

full spatiotemporal model.

7.4 Conclusions

The usefulness and limits of validity of a modal expansion for analyzing large-signal

dynamics in gain-guided VCSELs have been investigated by comparing the predic-

tions of the modal expansion method with those from the full spatiotemporal de-

scription. The modal expansion presented in this work generalizes previous models

by incorporating polarization effects and gain cross-saturation terms among degen-

erate transverse modes. The comparison has mainly focused on the secondary pul-
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sations that appear under square-wave modulation of the injection current. We have

found that the modal expansion yields qualitatively correct results for thermal lens-

ing strengths above ∆ntl ∼ 3× 10−3. However, quantitative agreement between the

two models requires ∆ntl > 5×10−3 independently of the shape of the current injec-

tion. This value of ∆ntl is about one order of magnitude larger than the contribution

arising from the carrier-induced refractive index, thus confirming that the discrep-

ancies originate from the fact that the modal expansion neglects the effects of the

carrier-induced index of refraction on the modal profiles and frequencies: for weak

lateral guiding the mode profiles significantly change during the evolution. Further-

more, we conclude that the practical applicability of the modal expansion is limited

to small VCSELs where a reduced number of transverse modes is involved. Other-

wise, the computational times required for accounting for such a large number of

modes is nearly equivalent to that when directly dealing with the full spatiotemporal

model.





Chapter 8

Conclusion to Part Two

In the second part of the thesis, we have explored the optical instabilities displayed

by vertical-cavity surface-emitting lasers (VCSELs). In chapter 5, we focused on

the light-polarization state of VCSELs operating in the fundamental transverse mode.

Our starting point was the Spin-Flip model that generalized the atomic laser theory to

the magnetic sub-levels of the quantum well. This model describes the interaction of

circularly-polarized light with spin up/down carrier reservoirs. Using a semiclassical

description of the spontaneous emission processes, we discussed the small fluctua-

tions in the polarization components of the laser light. We found that the magnitude

of the anticorrelated fluctuations between the circular components depends on the

spin-flip rate. On the contrary, the anticorrelation between the linear components is

sensible to the polarization mode partition noise. The birefringence tends to fix a po-

larization orientation, thus reducing the anticorrelation between linear components.

In conclusion, evidences of the spin dynamics in the determination of the light po-

larization state and fluctuations have been found, specially in devices that present

weak linear anisotropies.

In chapter 6 we described transverse effects in VCSELs simultaneously with the

polarization of the light. We investigated the transverse mode selection mechanisms

in gain-guided devices. The modeling of multimode gain-guided VCSELs can be

more easily tackled by directly considering the spatiotemporal dynamics through a

frequency-dependent susceptibility because the important variations in index of re-

fraction induced by the active material. Therefore, we developed a spatiotemporal

optical description for the large-signal dynamics of multimode VCSELs. The main

results are

1. Polarization mode selection in the absence of transverse effects depends on

a joint interplay of spin dynamics, semiconductor dynamics and thermal ef-

fects. Two possible ways, thermal and nonthermal, of producing a polarization
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switching have been identified.

2. Transverse mode selection at threshold depends on the relative position on

the gain curve but also on the geometry of the electric contact. The laser onset

can be initiated from a high-order transverse mode for devices that develop a

sufficiently marked ring-shaped current distribution.

3. Transverse mode selection under large-signal excitation presented a peculiar

behavior characterized by a defined sequence for the onset of modes, that

appear after a certain turn-on delay. The dependence of the turn-on delay

with the current pulse, contact diameter, and thermal lensing strength have

been investigated using the spatiotemporal model. The numerical results

are in good agreement with reported experiments using gain-guided VCSELs

[229, 230].

4. Thermal effects are important in 2. and 3. We have found a clear tendency

toward multimode emission even in the case of weak thermal lensing. More-

over, the thermal shift of the cavity mode as the current is increased reduce the

operation range through thermal roll-off.

Finally in chapter 7, we discussed the feasibility of an optical modal expansion,

derived from the spatiotemporal model, for the transverse dynamics of small gain-

guided VCSELs. We analyzed the secondary pulsations that appear during the turn-

off transients occurring under large-signal modulation of the current. We demon-

strated that there exists a critical value of the lateral guiding to ensure that the de-

scription in terms of a cold-cavity modes (modal expansion) to be valid. Below this

value, the modal expansion provides results with quantitative discrepancies with re-

spect the original spatiotemporal model. The evolution of the active material suscep-

tibility showed that spatial-hole burning cause a redistribution of carrier-induced re-

fractive index in such a way that tends to enhance the effective thermal lens and then

to focalize the modes.



Concluding Remarks

This thesis contributes to the study of the semiconductor laser dynamics. We

have paid special attention to the optical processes occurring in these devices.

The modeling work mainly considered two configurations depending on the geom-

etry of the laser resonator: i) compound-cavity edge-emitting lasers, and ii) vertical-

cavity surface-emitting lasers. The advantages of each configuration was outline in

Chap. 1. We recall here some of the interesting instabilities displayed by these de-

vices. The identification of the relevant physical mechanisms underlying each insta-

bility has been one the major challenges of the thesis. A thorough understanding of

the physical mechanisms behind the laser instabilities is essential for they manipula-

tion and avoidance. In i) the compound-cavity modes define the standing-wave so-

lutions in the longitudinal direction. Since the frequency separation between modes

is commonly small the competition for the available gain is strong. Consequently

the dynamics involves many of these modes being very irregular (chaotic form). In

ii) the peculiar cavity is able to select only one longitudinal mode, however instabili-

ties associated with the polarization of the light as well as the excitation of transverse

modes are favored. The need of controlling these instabilities in communication ap-

plications has been pointed out. The selection and dynamics of polarization and

transverse modes stem from a very complex interplay of many physical mechanisms:

optical, thermal and electrical.

In many examples treated in the thesis, the importance of the coherence of the

laser field is evident: the system cannot be simply described by photon-number and

carrier-number rate equation, but the optical phase of the electric field have to be

considered. The phase of the optical field plays a crucial role because it introduces

interferometric effects (constructive and destructive). Furthermore, phase varia-

tions induce amplitude variations through the linewidth enhancement factor of SCL.

We recall some examples where these effects occur: the existence of external-cavity

modes in a laser with optical feedback, compound-cavity modes and achronal syn-

chronization in two bidirectionally coupled lasers, linearly-polarized light as phase-

locking of circular waves, and polarization switching of nonthermal origin.

There are several methodological aspects used in the different problems ad-
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dressed in the thesis. The laser structure is regarded as a weakly perturbed waveg-

uide. Hence, the electromagnetic problem begins from frequency-domain equations

imposing boundary conditions for monochromatic plane waves. Then, the slowly-

varying approximation is applied. Time domain equations describe the evolution of

the slowly-varying envelope of the electric fields and the evolution of the carrier den-

sities. We assumed adiabatic elimination of the material polarization of the active

material. The light-matter interaction is described through an optical susceptibility

function. The details of this function, specially its frequency dependence and the

nonlinear dependence with the carrier density, are important in dynamics occurring

in a wide spectral range. For this reason in chapter 6 and 7, where we dealt with trans-

verse mode dynamics of gain-guided VCSELs, the gain and refractive index spectra

are included into the equations.

Even using simplified formulations of the physical models there not exist, in gen-

eral, exact solutions and requires the use of numerical approaches. So, part of the

work has required the use of advanced computational methods. A proper design of

the laser is essential for improving its characteristics. Modeling should also be con-

sidered as an alternative to the trial-error approaches. The feedback between the-

oreticians and manufacturers is extremely important. For instance, the mesoscopic

model of the VCSEL presented in the second part of the thesis can be used as a tool

for VCSEL design. One of the major advantages of the model is its simplicity, and flex-

ibility for incorporating additional modules. In its present form, the inconvenience

is the lack of thermal and electrical modules and the use of self-consistent solutions.

So, the work presented is not closed.

Are semiconductor lasers the technology of the future? This is a very diffi-

cult question to answer. In the case that they would be, the technology would de-

mand low consume, miniaturization, and faster devices. Then, quantum effects and

nonequilibrium processes would be every time more significative. One has to realize

that the borderline defining the limits of validity of the semiclassical framework can

be crossed. My personal belief about laser physics is that it constitutes a multidisci-

plinary branch of knowledge. Many fields of physics are involved, such as, electro-

magnetism, optics, quantum mechanics, electronics, solid state physics, nonlinear

physics, etc. An irrefutable proof of such a sentence is the number of diverse appli-

cations of lasers ranging from industry, medicine, to nuclear fusion physics. In my

opinion, the description of each of the processes occurring in a real laser may be a too

ambitious goal. I consider that it is preferable a model that can be applied to a broad

class of devices instead to a particular device. Then, some abstraction, simplification

and hypothesis is always present in the modeling of semiconductor lasers. I hope

that the work performed in the thesis provide a grain of sand to the understanding

and development of semiconductor lasers.



Appendix A

Stability Analysis of LK Model

We apply a small perturbation to the steady state monochromatic solution (de-

noted by bars)

P (t) = P̄ + δP (t) , φ(t) = φ̄(t) + δφ(t) , D(t) = D̄ + δD(t) . (A.1)

Upon linearizing the equations (2.30a)−(2.30c) for small fluctuations we arrive to the

linear system involving time delays

d

d(κt)
δP (t) = x δD(t)− sxD̃ δP (t) + κ̄f cos Φ [δP (t− τ)− δP (t)]

−2κ̄f P̄ sinΦ [δφ(t− τ)− δφ(t)] , (A.2a)

d

d(κt)
δφ(t) = −α

2
ã
[
δD(t)− sD̃ δP (t)

]
+

κ̄f sinΦ
2P̄

[δP (t− τ)

−δP (t)] + κ̄f cos Φ [δφ(t− τ)− δφ(t)] , (A.2b)

d

d(κt)
δD(t) = −T

[
(1 + x) δD(t) + ãD̃ δP (t)

]
. (A.2c)

where we have introduced the following definitions

ã ≡ a

1 + sP̄
, x ≡ ãP̄ , D̃ ≡ D̄

1 + sP̄
,

κ̄f ≡ κf/κ , Φ ≡ η̄s + Ω0τ , T ≡ γe/κ .

We propose an exponential-like solution δP (t)
δφ(t)
δD(t)

 =

 δPλ

δφλ

δDλ

 eλκt . (A.3)
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For any nontrivial solution, λ must obey a characteristic equation that reads

λ3 + c2(λ)λ2 + c1(λ)λ + c0(λ) = 0 , (A.4)

with

c2 = −2K(λ) cos Φ + (1 + x)T + sD̃x

c1 = K2(λ) + TxãD̃(1 + sP̄ )− 2T (1 + x)K(λ) cos Φ

+sxD̃
[
T −

√
1 + α2K(λ) cos(Φ + atan α)

]
c0 = T (1 + x)K2(λ)− xTD̃[ã + s(1 + x)]

√
1 + α2K(λ)×

cos(Φ + atanα)

K(λ) =
κf

κ
[e−λκτ − 1] .



Appendix B

Regimes of Operation

We present an asymptotic analysis of Eq. (5.16) for two different limits, i) small

linear anisotropies and ii) large spin-flip rate. Proceeding along the lines described

in [30], we summarize the behavior in each of these two regions. Some examples can

be found in Fig. B.1, where we represent the regimes of operation in a current versus

spin-flip portrait.

A. Small linear anisotropies

In this limit, the birefringence verifies that γp � γe < γs < κ, while for simplicity we

take γa = 0. We recall that γa = γp = 0 describes a perfectly symmetric VCSEL, i.e.,

any linear polarization direction is allowed. The eigenvalues of Eq. (5.16),D(λ) = 0,

can be expanded in power series of γp, that at first order read

λ0 = −2εαγp ,

λ1,2 = λo
1,2 + ε

αγp

1 + γs+2γeQ2

8κγeQ2 λo
1,2

, (B.1)

with ε = ±1 for x̂, ŷ-LP solutions. λo
1,2 are the two non-vanishing eigenvalues calcu-

lated at γp = 0

λo
1,2 = −γs + 2γeQ

2

2
± i

√
4κγeQ2 − (γs + 2γeQ2)2

4
.

In the absence of birefringence, the eigenvalue λ0 = 0 is associated with the arbi-

trariness in the polarization orientation. In the presence of small birefringence, this

non-vanishing real eigenvalue determines the stability: the high frequency solution

is stable (x̂-LP if γp > 0). The direction of the eigenvector associated with λ0 is the
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Figure B.1. Regions of operation represented in the phase diagram current versus spin-
flip. The parameters are: α = 3, γe = 1 ns−1, κ/γe = 300, γp = γa = 0 in panel
(a). α = 3, γe = 1 ns−1, κ/γe = 300, γp/γe = 0.5 γa/γe = 0.1 in panel (b). α = 1,
γe = 1 ns−1, κ/γe = 150, γp/γe = 3 γa/γe = 0.1 in panel (c). α = 1, γe = 1 ns−1,
κ/γe = 150, γp/γe = 10 γa/γe = 0.1 in panel (d). Meaning of the symbols: Polariza-
tion relaxation oscillations (PROs), coupled oscillations (COs), absence of polarization
oscillations (NOs), polarization switching current from LF to HF solution (PS). Note also
narrow white regions where no linearly polarized solution is stable.

polarization orientation angle and it decouples of the fluctuations of the ellipticity

and carrier difference d(t). The remaining eigenvalues {λ1,2} are complex when

γs < γc
s ≡

√
8κγe(µ− 1)− γe(µ− 1) ,

which implies small to moderate values of γs and injection currents relatively far

from threshold. In such a case, |Imλ1,2| describes the oscillation frequency that

undergo the ellipticity angle and d(t), known as polarization relaxation oscillations

(PROs). Similarly to ROs, the PROs frequency grows with the square-root of the dis-

tance to its threshold, ∼ (µ − µc)1/2. Finally, for larger spin-flip, γs > γc
s , the polar-

ization fluctuations experience damped relaxation without any kind of oscillation.
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B. Large spin-flip rate. Nonlinear anisotropies

Another interesting limit is when the spin-flip rate is large, i.e, γe < γp < κ � γs.

There exists a pair of complex eigenvalues and a real one. The real eigenvalue is

λ0 ≈ −γs and describes the damped relaxation of d(t). The two complex conju-

gated eigenvalues of Eq. (5.16), are expanded in power series of γ−1
s . They have two

different contributions

λ1,2 = λlin + λnon .

The linear contribution λlin, that corresponds to the limit1 γs → ∞, reads λlin =
2ε(γa ± iγp). They represent oscillations whose damping and frequency are ex-

clusively determined by the linear anisotropies. The nonlinear contribution λnon

is the result of a finite value of γs. It is common to define the nonlinear dichro-

ism and nonlinear birefringence [160] as the real and imaginary parts of λnon, i.e.,

λnon = γnon ± iωnon. Finally, the complex pair reads

λ1,2 = 2ε(γa ± iγp)−
1
γs

γeκ(µ−D0) [1∓ iαε sign(γp)] . (B.2)

The imaginary part of these eigenvalues describes coupled oscillations (COs) of the

polarization angles. The approximate expression for the COs frequency in the limit

of large γs is then

ΩP ≡ |Imλ1,2| = 2|γp|+ ε
γe

γs
ακ(µ−D0) + o

(
γe

γs

)2

, (B.3)

where ΩP increases (decreases) for the HF (LF) mode corresponding to the sign

ε = +(−). In contrast to ROs and PROs, the COs frequency varies linearly with the

distance to threshold, i.e. ∼ (µ−1). From the last expression, the ΩP frequency2 can

be identified with the birefringence splitting 2γp although modified by the nonlin-

earities. It can be seen that the nonlinear anisotropies obtained from the adiabatic

elimination of d(t) [160, 161] coincide, at first order in γe/γs, with those predicted by

Eq. (B.2). Consequently, these previous works, based on the adiabatic elimination of

d(t) are unsuitable to describe the dynamical properties within the PROs region. In

contrast to PROs, where the real eigenvalue determined the stability properties, the

stability is now determined by the complex pair.

In the limit of the adiabatic elimination of d(t), polarization switching is not

present. When analyzing the real part of the eigenvalues [Eq. (B.2)], we go from a

situation where only one polarization is stable to one of optical bistability when the

1We note that the same result is obtained close to threshold, where Q2 is treated as a small
parameter, regardless of the magnitude of γs.

2ΩP is also referred as effective birefringence splitting.
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current is increased. Polarization switching occurs for moderate values of γs, reflect-

ing itself in the expression of γnon when orders (γe/γs)2 are considered. Hence, in

this work, we deal with the dynamics of d(t) being capable to describe, without any

restriction, the fluctuations in both PROs and COs regimes.



Appendix C

Langevin Equations

As a starting point, we consider that a complex dipole’s amplitude σ, in absence

of electric field and decaying at rate γ⊥ , is governed by the simple Langevin equation

dσ

dt
= −γ⊥σ + f(t) , (C.1)

where f(t) is a rapidly fluctuating random term. A mathematical formulation of such

a highly irregular function, is that f(t) and f(t′) are statistically independent when

t 6= t′. Hence the correlation function 〈f(t)f∗(t + τ)〉 = 2Dδ(τ), with D the diffu-

sion coefficient, is zero everywhere except at τ = 0 where has the rather pathological

result of an infinite variance. Furthermore, we also require that f(t) has zero mean,

i.e. 〈f(t)〉 = 0, where 〈· · · 〉means average over different noise realizations. An object

with these properties is known as (complex) white Gaussian noise. An efficient algo-

rithm we use to generate these random numbers is based on the numerical inversion

method developed in [61].

The formal solution of Eq. (C.1) can be expressed as

σ(t) = σ(0)e−γ⊥ t +

t∫
0

dt′f(t′)e−γ⊥ (t−t′) . (C.2)

If one assumes that the initial condition is deterministic or Gaussian distributed,

then mean value and variance of σ(t) read

〈σ(t)〉 = 〈σ(0)〉e−γ⊥ t , (C.3)

var{σ(t)} = 〈σ(t)σ∗(t)〉 − |〈σ(t)〉|2 =

=
(

var{σ(0)} − D
γ⊥

)
e−2γ⊥ t +

D
γ⊥

. (C.4)
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Making use of these results, the correlation function of σ(t) can be expressed as fol-

lows

〈σ(t)σ∗(t + τ)〉 =
[
|〈σ(t)〉|2 + var{σ(t)}

]
e−γ⊥ |τ | . (C.5)

In the case of a stationary process σs, being that in which statistical properties are

time independent, we have

〈σs(t)σ∗s (t + τ)〉 = lim
t→∞

〈σ(t)σ∗(t + τ)〉 =
D
γ⊥

e−γ⊥ |τ | , (C.6)

which describes an Ornstein-Uhlenbeck process that displays a more realistic corre-

lation function when comparing with the white noise f(t). Note however that the σs

process tends to a white noise in the limit of large damping

γ2
⊥
〈σs(t)σ∗s (t + τ)〉 −−−−−→

γ⊥→∞
2D δ(τ) . (C.7)

The consistent semiclassical description of quantum noise must be formulated

in such a way that the noise terms acting on the fields and dipoles always preserve the

uncertainty relations of the corresponding quantum operators. Let us assume that at

t = 0, var{σ(0)} = 1
2 . From Eq. (C.4), we assure that var{σ(t)} = 1

2 only when the

strength of noise verifiesD = γ⊥/2. In dissipative systems, the loss of quantum noise

must be compensated by a corresponding fluctuation of the time derivative. This

rough justification can be rigorously presented in terms of the quantum mechanical

fluctuation-dissipation theorem [180, 188], that determines

〈f(t)f∗(t + τ)〉 = γ⊥δ(τ) . (C.8)

In the case of an ensemble of N0 dipoles providing a macroscopic material polariza-

tion P =
∑

i σi, Eq. (C.8) is generalized to 〈F (t)F ∗(t + τ)〉 = γ⊥N0δ(τ).

In many calculations, it is useful to define the Fourier transform of a white Gaus-

sian noise f(t) as

f̃(ω) =

∞∫
−∞

dt f(t)eiωt . (C.9)

The Fourier transformed white Gaussian noise f̃(ω) has a correlation

〈f̃(ω)f̃∗(ω′)〉 = 2Dδ(ω − ω′) . (C.10)

A more convenient way to describe a generic stationary noise process Gs(t) is by

means of the spectral density function at frequency ω [62]

SG(ω) ≡
∞∫

−∞

〈G̃s(ω)G̃∗
s(ω

′)〉 dω′ =

∞∫
−∞

〈Gs(t)G∗
s(t + τ)〉eiωτ dτ , (C.11)
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where the second equality results from the Wiener-Khintchine theorem. In the case

of a white noise, Gs(t) = f(t), the spectral density function reduces to Sf (ω) = 2D,

which implies that Langevin noise sources have a white (frequency-independent)

spectrum. Finally, the spectral density of an Ornstein-Uhlenbeck process σs(t) is

a Lorentzian function

Sσ(ω) =
2D

ω2 + γ2
⊥

. (C.12)

The generalization of Eqs. (C.11) and (C.12) to a linear system of n differential equa-

tions is given in Ref. [62]. For a review of stochastic processes and its application to

physical systems the reader is address to Ref. [143].

Itô transformation

Let us concentrate in Eq. (5.6a) for the complex slowly-varying amplitude of the elec-

tric field

dE± = {κ(1 + iα)[D ± d− 1]E± − (γa + iγp)E∓} dt

+
√

βspγe(D ± d) dW±(t) , (C.13)

where we have introduced the complex Wiener process as dW±(t) ≡ ξ±(t)dt. We are

interested to know the stochastic equations governing the amplitudes and phases of

the electric field, P±(t) and φ±(t), with E±(t) =
√

P±(t)eiφ±(t). For these purposes,

we introduce an auxiliary variable ρ± = 1
2 lnP±, then

d(ρ± + iφ±) = d(lnE±) = ln(E± + dE±)− ln(E±) .

We expand the right hand of the above equation at first order in dt. Making use of the

Itô rules for a generic real Wiener process dWa(t) [62, 143]

dWa(t)2 = dt , dWa(t)2+N = 0 for N > 0 ,

we arrive at

dρ± = κ(D ± d− 1)dt− (γa cos φ± γp sinφ)

√
P∓
P±

dt (C.14)

+

√
γeβsp(D ± d)

P±
dWP± −

1
2

γeβsp(D ± d)
E2
±

[dWR,± + i dWI,±]2 ,

dφ± = ακ(D ± d− 1)dt− (γp cos φ∓ γa sinφ)

√
P∓
P±

dt (C.15)

+

√
γeβsp(D ± d)

P±
dWφ± ,
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with φ = φ+ − φ−. It is worth noting that since dWR,± and dWI,±, representing the

real and imaginary parts of dW±, are independent, the last term of Eq. (C.14) van-

ishes. The second remark is that the Wiener processes dWP± , dWφ± , being defined

through the orthogonal transformation

dWP±(t) = cos φ± dWR,±(t) + sinφ± dWI,±(t) , (C.16)

dWφ±(t) = − sinφ± dWR,±(t) + cos φ± dWI,±(t) , (C.17)

are also independent. As a final step, we apply the Itô rules to the variable ρ±

dP± = d[e2ρ± ] = e2(ρ±+dρ±) − e2ρ± = 2P±
(
dρ± + dρ2

± + · · ·
)

.

Introducing Eq. (C.14) in to this last expression, we arrive at

dP± = 2κ(D ± d− 1)P±dt− 2 (γa cos φ± γp sinφ)
√

P+P−dt

+2γeβsp(D ± d) dt +
√

4γeβsp(D ± d)P±dWP± , (C.18)

that is nothing but Eq. (5.17a). The interesting result from this stochastic transfor-

mation, is the term 2γeβsp(D ± d) in Eq. (C.18), that accounts for the mean value of

spontaneously emitted photons in each circular polarization. The remaining equa-

tions in Sec. 5.5 can be straightforwardly derived, by defining ξP± = dWP±/dt and

ξφ± = dWφ±/dt.



Appendix D

RIN Expressions

The following functions define the power spectra of the polarization components

as was described in Eq. (5.30),

C(ω) ≡ D(iω)D(−iω) =

=
[
(Γs − 2εa)ω2 −

{
(ε2

a + ε2
p)Γs − b(εa − αεp)

}]2
(D.1)

+ω2
[
ω2 −

{
ε2

a + ε2
p + b− 2εaΓs

}]2
.

Aφ(ω) =
[
ω2 − b± εaΓs

]2
+ ω2 [Γs − εa]2 ,

Bφ(ω) = ω2(εp + αc)2 + [αb + εpΓs − c(εp + αεa)]2 . (D.2)

Aχ(ω) = ε2
p(ω

2 + Γ2
s) ,

Bχ(ω) = ω2(γs − εa)2 + (ω2 + γsεa + αcεp)2 . (D.3)

Aδ(ω) = (εpb)2/κ2 ,

Bδ(ω) =
[
{c(ε2

a + ε2
p − ω2)− bεa}2 + ω2(b− 2cεa)2

]
/κ2 , (D.4)

where for the sake of clarity we have defined these new quantities

εa,p ≡ 2γa,p , Γs ≡ γs + 2γeQ
2 , b ≡ 4κγeD0Q

2 , c ≡ 2γeQ
2 .

These expressions are valid for an arbitrary x̂-LP (HF solution). For a ŷ-LP (LF solu-

tion) the signs of εa and εp have to be changed.

In Chapter 5, we defined the power spectra of polarization fluctuations by means

SΞ(ω) =
γeβspD0

2Q2

[
AΞ(ω) + BΞ(ω)

C(ω)

]
, (D.5)
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where Ξ = φ, χ, δ. The asymptotic behavior of the power spectra in the limit of large

frequencies is

Sφ(ω) = Sχ(ω) =
(κ

c

)2

Sδ(ω) −−−−→
ω→∞

1

1 +
(

ω
∆ω

)2 , (D.6)

that behaves like the spectra of an Ornstein-Uhlenbeck process [Eq. (C.12)] with cor-

relation time

τ−1 ≡ ∆ω =
√

Γ2
s + 2(ε2

a − ε2
p − b) .

Another interesting aspect is the shape of the fluctuations onto the Poincaré plane

φ− χ. At low frequencies we find that∣∣∣∣Sφ

Sχ

∣∣∣∣
ω=0

≈ b2 + [αb + εpγs]2

ε2
p[Γ2

s + α2c2]

−−−→
εp→0

(1 + α2)
b2

ε2
pΓ2

s

� 1

−−−−→
µ→D0

1 .

Fluctuations display a circular shape in the φ−χ plane close-to-threshold, while they

preferably follow the φ-direction for small birefringence.
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Optical Modes

We consider a cylindrical optical waveguide which physical properties are in-

variant along the propagation direction z. The electric and magnetic fields can be

expressed as

~E = (~e⊥ + ẑez)eiβz , (E.1)

~H = (~h⊥ + ẑhz)eiβz , (E.2)

~e⊥, and ~h⊥ are the projection of the fields onto the transverse plane, whereas ez and

hz stand for their longitudinal components, and β the propagation constant. This

structure resembles a VCSEL except for the unbounded propagation in z direction.

In absence of sources, the Maxwell’s equations lead to{
∇2 + k2

0n
2 − β2

}
~e⊥ = −~∇

{
~e⊥ · ~∇⊥ lnn2

}
, (E.3){

∇2 + k2
0n

2 − β2
}

ez = −iβ~e⊥ · ~∇ lnn2 , (E.4){
∇2 + k2

0n
2 − β2

}
~h⊥ = (~∇× ~h⊥)× ~∇ lnn2 , (E.5){

∇2 + k2
0n

2 − β2
}

hz = (~∇hz − iβ~h⊥) · ~∇ lnn2 , (E.6)

with k0 = ω/c, and n(~r⊥) the transverse distribution in index of refraction. The

right-hand term in Eqs. (E.3)−(E.6), mainly the term ~∇ lnn2, defines the polariza-

tion properties of the waveguide. This framework is suitable for the description of

the vectorial modes in strong index-guided VCSELs (air-post or mesa structure). In

gain-guided VCSELs, the variations in refractive index δn onto a background value

ne are generally small, and thus ~∇ lnn2 is an small term. In the weak guidance ap-

proximation [238], the bound modes of (E.3)−(E.6) and the propagation constant β

are expanded in a power series of the small parameter ∆ = δn/ne � 1, e.g.,

~e⊥ = ~e
(0)
⊥ + ~e

(1)
⊥ ∆ + · · · (E.7)
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To lower order in ∆ we obtain the scalar wave equation that reads{
~∇2
⊥ + k2

0n
2(~r⊥)

}
Φ(~r⊥) = β̃2Φ(~r⊥) , (E.8)

where Φ(~r⊥) stands for either component of ~e
(0)
⊥ , and β̃ is the propagation constant

neglecting polarization effects.

In the case of a radially-symmetric distribution of refraction index, the modes

can be expressed as

Φ(r, θ) = F (r)eilθ , (E.9)

with l = 0,±1, · · · describing the angular order. Upon substitution of (E.9) into (E.8)

we obtain the radial equation{
R2 d2

dR2
+ R

d

dR
− l2 + R2(V 2f(R)−W 2)

}
F (R) = 0 . (E.10)

The radial coordinate is normalized with respect to the waveguide radius rg with

R ≡ r/rg . We consider a refractive index distribution varying from nc (core) to ne

(cladding). The waveguide number is V ≡ k0rg

√
n2

c − n2
e, the dimensionless prop-

agation constant with respect to the cladding W 2 ≡ r2
g(β2 − k2

0n
2
e), and f(R) is the

normalized refractive index profile, varying from 1 (core) to 0 (cladding).

The refractive index profile is approximated by a truncated parabolic profile

f(R) =

1−R2 if R < 1

0 if R ≥ 1
, (E.11)

The modes of such a waveguide can be analytically expressed as a series expansion

when R < 1 and read [238]

Fml(R) =


∑∞

n=0 anRn+l∑∞
n=0 an

if R < 1

Kl(WmlR)
Kl(Wml)

if R ≥ 1

(E.12)

where Kl is a second kind Bessel function of order l, and the coefficients an in

Eq. (E.12) are given by the recursive relations

a0 = arbitrary,

a2 = − (V 2−W2
ml)a0

4(l+1) ,

a2n = 1
4n(n+l)

[
V 2a2n−4 − (V 2 −W 2

ml)a2n−2

]
if n ≥ 2,

a2n+1 = 0 ,

(E.13)
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Figure E.1. Dependence of the di-
mensionless propagation constant
Wml with the waveguide parame-
ter V for all the guided modes.
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Figure E.2. Intensity distribution for the guided modes when V = 7.91. (c,s) represent
modes cos, sin of Eq. (E.9).
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The bound modes must verify 0 ≤ Wml ≤ V being formally equivalent to propa-

gation in a homogeneous medium with refractive index between the cladding and

the core. Their propagation constants β2
ml = (k0ne)2 + (Wml/rg)2 are obtained by

imposing continuity at R = 1. This yield a transcendental equation for Wml

Wml
Kl+1(Wml)
Kl(Wml)

= −
∑∞

n=0 nan∑∞
n=0 an

. (E.14)

These modes LPml are indexed with m = 1, 2, · · · and l = 0,±1, · · · . The mode

profile has (m− 1) zeros in the radial direction whereas (2l) zeros are in the angular

direction. LP10 is referred as the fundamental mode, LP11 the first-order transverse

mode and the remaining as higher order transverse modes. An important property

of Φml in calculations is that represents a complete set of orthogonal eigenfunctions.

It is worth recalling that these cavity modes and modal frequencies are polarization

independent, and that the cavity anisotropies that may favor one linearly polarized

state over the orthogonal one have been included through γa and γp.

Fig. E.1 depicts the dimensionless cladding propagation constant of all the guided

modes as function of the V parameter. In a cylindric waveguide always supports

at least one guided mode. Singlemode operation is possible below the cut-off V ≈
3.518, where only the fundamental mode m = 1, l = 0 is guided. Beyond this value,

several modes are guided (multimode fiber). The intensity distribution of the modes

|Φ(x, y)|2, for a fixed value of V = 7.91, are shown in Fig. E.2.



Appendix F

Integration Scheme

The equation (6.35a) is integrated by implementing a spectral method that treats

the linear terms exactly, while the nonlinear terms are integrated within an accuracy

o(dt). Eq. (6.35a) can be formally expressed as

∂tA±(~r⊥, t) = L̂A± + N±(~r⊥, t) +
√

AβspD± ξ±(~r⊥; t) , (F.1)

L̂ = −κ +
ic2

2Ωneng
∇2
⊥ ,

L̂ being a position and time-independent linear operator whereas N±(~r⊥, t) con-

tains the remaining terms of Eq. (6.35a). One starts the numerical integration from

initial conditions for A±(~r⊥, 0), taken as spontaneous emission distributions, and

D±(~r⊥, 0) that corresponds to the “off” state [See Eq. (6.41)]. The next step is to

self-consistently obtain the instantaneous “frequency” z±(~r⊥, t) ≡ ∂tA±/A±. From

Eq. (6.35a) we have

z± =
iaΓ
2

χ± (Ω + iz±, D+, D−) + G±(~r⊥, t), (F.2)

G±(~r⊥, t) =
1

A±

[
iL̂A± − (γa + iγp)A∓

]
− κ. (F.3)

At each spatial point, for a given values of A±(~r⊥, t) and D±(~r⊥, t), we use Eq. (F.3)

to calculate the spatial distribution of G±. Then, Eq. (F.2) has to be solved using

Newton-Raphson iteration to obtain z±(~r⊥, t). Proceeding in this way, now we have

perfect knowledge of the nonlinear term N±(~r⊥, t) of the right-side of Eq. (F.1). Fol-

lowing the approach used in [250], the circular components of the optical field are
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updated one time step in the Fourier space q = (qx, qy)

Ãq±(t + ∆t) = e−αq∆tÃq±(t) +
1− e−αq∆t

αq
Ñq±(t) +√

Aβsp
(1− e−2 Re αq∆t)

2 Re αq
Ψ̃q±(t) + o(∆t2), (F.4)

Ãq±, αq ≡ κ− ic2

2Ωneng
q2, Ñq±(t) represent the discrete Fourier components (FFT) of

A±(~r⊥, t), L̂, and N±(~r⊥, t) respectively. Ψq±(t) represents a white noise contribu-

tion at a transverse wavevector q obtained by Fourier transforming in space

Ψ̃q±(t) = FFT
{√

D±(~r⊥, t)ξ±(~r⊥; t)
}

(F.5)

Once the field variables have been updated, the carrier equations, being the slow

variables in the problem, are integrated using an Euler method. The carrier diffusion

in Eq. (6.35c), involving terms like∇2
⊥D±, are calculated in the Fourier space.

Newton-Raphson iteration
  (E.2)

Generate initial distributions

Compute G±(x,y) using (E.3)

Use (E.4) to update optical fields
in the q space

FFT-1 from q to r space

 Compute
using FFT

Update D±(x,y)
using Euler

);,(  and  ),,(for  tyxDtyxA ±±

);,( tyxz±

Generate N±(x,y) and Ψ±(x,y).
Fourier transform to q space±⊥∇ D2

 Generate Imχ±
at the correct z±

t→
 t+

∆t

Numerical iteration for the spatiotemporal model.



Notation

Symbol Meaning

ξ Attenuation coefficient

ne Background refractive index

B Bimolecular recombination rate

N Carrier density

γe = A + BN Carriers decay rate

N Carrier number

κ Cavity decay rate

L Cavity length

Wml Cladding propagation constant

Γ Confinement factor

~r = (x, y, z) Coordinate vector

~r⊥ = (x, y) Coordinate vector (in-plane)

κc Coupling rate

GN Differential gain

γs = 2γj + γe Electron spin-flip rate

k Electron’s wavenumber

Ω0 Emission frequency

κf Feedback rate

f̃(ω) =
∫∞
−∞ f(t)eiωtdt Fourier transform (direct)

f(t) = 1
2π

∫∞
−∞ f̃(ω)e−iωtdω Fourier transform (inverse)

ξ(t) Gaussian random number

ng Group refractive index
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Symbol Meaning

vg = c/ng Group velocity

∇2 = ∂2
x + ∂2

y + ∂2
z Laplacian

∇2
⊥ = ∂2

x + ∂2
y Laplacian (transverse)

α Linewidth enhancement factor

Ω Longitudinal mode frequency

P Material polarization

γ⊥ Material polarization decay rate

A Non-radiative recombination rate

E Optical electric field

χ Optical susceptibility

q Propagation constant

W Quantum well thickness

R Reflectivity (amplitude)

r Reflectivity (field)

E(t) Slowly varying electric field

βsp Spontaneous emission factor

e = 1.60 · 10−19 C Absolute electronic charge

kB = 1.38 · 10−23 J/K Boltzmann constant

~ = 1.05459 · 10−34 J·s Reduced Planck constant

c = 3 · 108 m/s Speed of light

µ0 = 4π · 10−7 T m/A Vacuum permeability

ε0 = 1/(µ0c
2) Vacuum permittivity
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2. T. Heil, J. Mulet, I. Fischer, W. Elsässer and C. R. Mirasso, Opt. Lett. 24, 1275

(1999).

3. J. Mulet, C. R. Mirasso, and M. San Miguel, Phys. Rev. A 64, 023817 (2001).
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