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On the Role of Non-Gaussian Noises on
Noise-Induced Phenomena

Horacio Wio

Most of the studies of noise-induced phenomena assume that the noise
source is Gaussian (either white or colored). Here we present recent
results of some of those noise-induced phenomena when driven by a noise
source taken as colored and non-Gaussian, generated by a nonextensive
q-distribution. In all the cases analyzed we have found that the response
of the system is strongly affected by a departure of the noise source
from the Gaussian behavior, showing an enhancement and/or a marked
broadening of the corresponding system’s response. The general result
is that the value of the parameter q, optimizing the system’s response,
results in q 6= 1 (where q = 1 corresponds to a Gaussian distribution).
These results are of great relevance for many technological applications
as well as for some situations of medical interest, like the noisy control
of Wenckebach rhythms.
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edited by Murray Gell-Mann and Constantino Tsallis, Oxford University Press 1



Santa Fe Institute. January 30, 2003 8:31 a.m. Wio page 2

2 On the Role of Non-Gaussian Noises on Noise-Induced Phenomena

1 INTRODUCTION

Fluctuations (or noise) have had a changing role in the history of science. We can
identify three different stages. During the a first one, which lasted until the end of
nineteenth century, noise was considered a nuisance to be avoided or eliminated.
In the second stage, which started at the beginning of the twentieth century,
it was possible to extract more information from a physical system through
the study of fluctuations via Onsager, fluctuation-dissipation, and other related
relations. The third stage corresponds to the last few decades of the twentieth
century, with the recognition that in many situations noise can actually play
a driving role that induces new phenomena. Some examples are noise-induced
phase transitions [18, 27, 28], noise-induced transport [2, 29, 34, 35], stochastic
resonance [17], and noise-sustained patterns [18].

Most of the studies on the noise-induced phenomena indicated above assume
that the noise source is Gaussian (either white or colored). In addition to the
intrinsic interest in the study of non-Gaussian noises, there is some experimental
evidence, particularly in sensory and biological systems [3, 16, 20, 30, 32, 39],
indicating that in at least some of these phenomena the noise sources could be
non-Gaussian. The use of non-Gaussian noises in such studies is rare, mainly
due to the difficulties of handling them and to the possibility of obtaining some
analytical results when working with Gaussian (particularly white) noises.

Here we present recent results on some of those noise-induced phenomena
when driven by a noise source taken as colored and non-Gaussian, generated by
a Tsallis nonextensive q-distribution [10]. The phenomena we discuss here corre-
spond to: stochastic resonance, gated trapping processes, Brownian motors, and,
finally, the possibility of noisy control and elimination of Wenckebach rhythms
[13].

In all the cases that were analyzed we have found that the response of the
system is strongly affected by a departure of the noise source from the Gaussian
behavior. For instance, in stochastic resonance we found an enhancement of the
response (that is a larger maximum in the curve for the signal-to-noise ratio
[SNR]) and a marked broadening of the SNR curve indicating a larger degree
of independence on the precise value of the noise intensity needed to tune the
external signal. The general result is that the value of the parameter q optimizing
the system’s response is q 6= 1 (q = 1 corresponding to a Gaussian distribution).
These results have strong implications for technological and medical (cardiology)
applications as well as for explaining some experimental and theoretical analyses
on sensory systems.

In the next section we briefly discuss the form and properties of the non-
Gaussian noise source. After that we present the results for the different noise-
induced phenomena we have analyzed. In the last section we draw some
conclusions.
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2 NON-GAUSSIAN NOISE AND ITS PROPERTIES

We start considering the following general form of a Langevin equation

ẋ = −∂U

∂x
+ η(t) . (1)

However, at variance with other studies, we assume that the noise term η(t)
has a non-Gaussian distribution. Although we believe that our results are quite
general, for concreteness and motivated by the work in Borland [4] based on a
nonextensive thermostatistics distribution [10], we consider that the noise term is
a Markovian process generated as the solution of the following Langevin equation

η̇ = −1
τ

d

dη
Vq(η) +

1
τ

ξ(t) , (2)

where ξ(t) is a standard Gaussian white noise of zero mean and correlation
〈ξ(t)ξ(t′)〉
= Dδ(t− t′), and

Vq(η) =
D

τ(q − 1)
ln

[
1 +

τ

D
(q − 1)

η2

2

]
. (3)

The stationary properties of the noise η, including the time correlation function,
have been studied in Fuestes et al. [15]. The stationary probability distribution
is given by

P st
q (η) =

1
Zq

[
1 +

τ

D
(q − 1)η2

] −1
q−1

, (4)

where Zq is the normalization factor. This distribution can be normalized only for
q < 3. The first moment, 〈η〉 = 0, is always equal to zero, and the second moment,
〈η2〉 = 2D/τ(5− 3q) ≡ Dq, is finite only for q < 5/3. Clearly, when q → 1 we
recover the limit of η being a Gaussian colored noise (Ornstein-Uhlenbeck or OU
process). Furthermore, for q < 1, the distribution has a cut off and it is only
defined for |η| <

√
2D/τ(1− q). Finally, the correlation time τq of the process η

diverges near q = 5/3 and it can be approximated over the whole range of values
of q as τq ≈ 2τ/(5− 3q).

In Fuentes et al. [15], the above-indicated stochastic processes were ana-
lyzed in detail. Also, an effective Markovian approximation via a path integral
procedure was obtained, making it possible to get quasi-analytical results for the
mean-first-passage time or transition rate. Such results and their dependence on
the different parameters in the case of a double-well potential were compared
with extensive numerical simulations with excellent agreement.

In order to have an idea of the form of the stationary pdf [NEED TO
DEFINE pdf] for η, in figure 1 we show it for different values of q, with
β = τ/D.
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FIGURE 1 The stationary pdf given by eq. (4) with β = 1. Solid line: Gaussian
case (q = 1); dashed line: bounded distribution (q = 0.5); dashed-dotted line, wide
distribution (q = 2).

3 SOME APPLICATIONS

3.1 STOCHASTIC RESONANCE

Stochastic resonance (SR) has attracted considerable interest due, among other
aspects, to its potential technological applications for optimizing the output
signal-to-noise ratio (SNR) in nonlinear dynamical systems, as well as to its
connection with some biological mechanisms. The phenomenon shows the coun-
terintuitive role played by noise in nonlinear systems as it enhances the response
of a system subject to a weak external signal [17]. A tendency shown in re-
cent papers, and determined by the possible technological applications, points
toward achieving an enhancement of the system response (that is, obtaining a
larger output SNR) by means of the coupling of several SR units in what forms
an extended medium [5, 7, 8, 22, 23, 41].

A majority of studies on SR have been made analyzing a paradigmatic sys-
tem: a bistable, one-dimensional, double-well potential. In almost all descrip-
tions, and particularly within the two-state model (TST) [31], the transition rates
between the two wells are estimated as the inverse of the mean first-passage time
[31], which is evaluated using standard techniques, and most specifically through
the Kramers approximation [14, 15]. In all cases the noises are assumed to be
Gaussian.
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Here we present the results of analyzing SR when the noise source is non-
Gaussian. We consider the following problem

ẋ = f(x, t) + η(t) , (5)

η̇ = −1
τ

d

dη
Vq(η) +

1
τ

ξ(t) , (6)

where ξ(t) is a Gaussian white noise as in eq. (2), and Vq(η) is given as in eq. (3).
The function f(x, t) is derived from a potential U(x, t), consisting of a double well
potential and a linear term modulated by S(t) ∼ F cos(ωt) (f(x, t) = −dU/dx =
−U ′0 + S(t)). This problem corresponds (for ω = 0) to the case of diffusion in a
potential U0(x), induced by η, a colored non-Gaussian noise.

The details about the form of the effective Markovian Fokker-Planck equa-
tion can be found in Fuentes et al. [14, 15]. There we calculated the stationary
probability density, and derived the expression for the first passage time. We also
exploited the TST approach [31] in order to obtain the power spectral density
(psd) and the SNR.

In figure 2 we depict R vs. D, for a fixed value of the time correlation τ
(τ = 0.1) and various q. The general trend is that the maximum of the SNR
curve increases when q < 1, this is when the system departs from the Gaussian
behavior. Figure 3 again shows R vs. D, but for a fixed value of q (q = 0.75) and
several values of τ . The general trend agrees with the results for colored Gaussian
noises [17], where it was shown that the increase of the correlation time induces
a decrease of the maximum of SNR as well as its shift toward larger values
of the noise intensity. The latter fact is a consequence of the suppression of the
switching rate with increasing τ . Both qualitative trends are confirmed by Monte
Carlo simulations of eq. (5). We have integrated eqs. (5) and (6) numerically
using the Heun method. In all cases the results were obtained averaging over
2000 trajectories (5000 trajectories for τ = 0).

Figure 4 shows the simulation results for the same situation and parameters
indicated in figure 2. Here, in addition to the increase of the maximum of the
SNR curve for values of q < 1, we see also an aspect that is not well reproduced
or predicted by the effective Markovian approximation. It is the fact that the
maximum of the SNR curve flattens for lower values of q, indicating that the
system, when departing from Gaussian behavior, does not require a fine tuning
of the noise intensity in order to maximize its response to a weak external signal.
Figure 4 shows the simulation results for the same situation and parameters
indicated in figure 2. Again, we found an agreement with the behavior found for
colored Gaussian noises [17].

Our numerical and theoretical results indicate that:

1. for a fixed value of τ , the maximum value of the SNR increases with decreasing
q;

2. for a given value of q, the optimal noise intensity (the one that maximizes
SNR) decreases with q and its value is approximately independent of τ ; and
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FIGURE 2 Theoretical value of SNR vs. D, for τ = 0.1 and the following values of
q = 0.25, 0.75, 1.0, 1.25 (from top to bottom).

FIGURE 3 Theoretical value of SNR vs. D, for q = 0.75 and the following values of
τ = 0.25, 0.75, 1.5 (from top to bottom).

3. for a fixed value of the noise intensity, the optimal value of q is independent
of τ and, in general, it turns out that qop 6= 1.

In Castro et al. [9] we analyzed the case of SR when the noise source is non-
Gaussian, but from an experimental point of view. We studied an experimental
setup similar to the one used in Fauve and Heslot [12], but we used a non-
Gaussian noise source that was built to exploit the form of noise introduced
above, particularly white noise. Those results confirmed the predictions indicated
above.
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FIGURE 4 Simulation results of SNR vs. D, for τ = 0.1 and the following values of
q = 0.25, 0.75, 1.0, 1.25 (from top to bottom).

3.2 GATED TRAPS

As indicated above, stochastic resonance has been found to play a relevant role
in several problems in biology. In particular, there is an experiment related to the
measurement of the current through voltage-sensitive ion channels in a cell mem-
brane [3]. These channels switch (randomly) between open and closed states, thus
controlling the ion current. This and other related phenomena have stimulated
several theoretical studies of the problem of ionic transport through biomem-
branes, using different approaches, as well as different ways of characterizing
stochastic resonance in such systems [16, 20, 32].

In Sánchez et al. [37] we have studied a toy model, prompted by the work
in Bezrukov and Vodyanoy [3], sketching the behavior of an ion channel. Among
other factors, the ion transport depends on the membrane electric potential
(which plays the role of the barrier height) and can be stimulated by both dc
and ac external fields. This included the simultaneous action of a deterministic
and a stochastic external field on the trapping rate of a gated imperfect trap.
Rather than attempting a precise modeling of the behavior of an ionic channel, we
proposed a simple model of dynamical trap behavior. Our main result was that
even such a simple model of a gated trapping process shows SR-like behavior. In
that initial study we assumed that the stochastic external field was a Gaussian
white noise. Here, we sketch the main results, obtained analyzing the same model,
but using a correlated non-Gaussian noise source, as detailed in Wio et al. [40].

In Sánchez et al. [37], the study was based on the so-called stochastic model
for reactions [1, 36], generalized in order to include the internal dynamics of
traps. The dynamical process consists of the opening or closing of the traps
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FIGURE 5 Simulation results of SNR vs. D, for q = 0.75 and the following values of
τ = 0.25, 0.75, 1.5 (from top to bottom).

according to an external field. Such a field has two contributions, one that is
periodic with a small amplitude, and the other that is stochastic, the intensity
of which will be (as usual) the tuning parameter. Here, to be consistent with the
work in Sánchez et al. [37, 40], we change notation and use the same one as in
those works. The starting model equation was

∂tρ(x, t) = D∂2
xρ(x, t)− γ(t)δ(x)ρ(x, t) + nu , (7)

where γ is a stochastic process that represents the absorption probability of the
trap, ρ is the particle density (particles that have not yet been trapped). For a
given realization of γ, here D is the diffusion coefficient, x is the coordinate over
the one-dimensional system, and nu is a source term that represents a constant
flux of ions. The injection of ions can be at a trap position or at any other
position. In this last case the ion can diffuse to the trap position. This diffusion
coefficient represents an effective diffusion through the volume rather than a
diffusion over the membrane surface.

The absorption is modeled as γ(t) = γ∗θ[B sin(ωt)+ ξ− ξc], where θ(x), the
Heaviside function, determines when the trap is open or closed. The trap works
as follows: if the signal, composed of the harmonic part plus ξ (the noise contri-
bution), reaches a threshold ξc, then the trap opens; otherwise, it is closed. We
are interested in the case where ξc > B; that is, without noise the trap is always
closed. When the trap is open the particles are trapped with a given frequency
(probability per unit time) γ∗. In other words the open trap is represented by an
“imperfect trap.” Finally, in order to complete the model, we must give the statis-
tical properties of the noise ξ. In Sánchez et al. [37] we assumed that ξ is an uncor-



Santa Fe Institute. January 30, 2003 8:31 a.m. Wio page 9

Horacio Wio 9

related Gaussian noise of intensity ξ0. In [40] we used a “colored” non-Gaussian
noise given by the same eq. (6), where ξ(t) is the non-Gaussian noise, ξw is the
white noise intensity and Vq is given by Vq(ξ) = 1/β(q − 1) ln[1 + β(q − 1)ξ2/2],
where β = τ/ξw.

We defined the current through the trap as J (t) = 〈γj(t)ρ(jl, t)〉. The brack-
ets mean averages over all realizations of the noise. In Sánchez et al. [37], that is,
in the case of ξ(t) being a Gaussian white noise, we have obtained some analyt-
ical results and solved the equation numerically. However, for the non-Gaussian
case [40] we should resort only to Monte Carlo simulations.

As in Sánchez et al. [37], we choose to quantify the SR-like phenomenon by
computing the amplitude of the oscillating part of the absorption current given
by ∆J = J |sin(ωt)=1 − J |sin(ωt)=−1. The qualitative behavior of the system can
be explained as follows. For small noise intensities the current is low (remember
that ξc > B); hence, ∆J is small, too. For a large noise intensity, the determin-
istic (harmonic) part of the signal becomes irrelevant and the ∆J is also small.
Therefore, there must be a maximum at some intermediate value of the noise.

The details of the way the simulations were done can be found in Sánchez
et al. [37] and Wio et al. [40]. All simulations shown in the figures correspond to
averages over 1000 realizations. We have plotted all results as functions of the
non-Gaussian noise intensity ξ0. It is related to ξw by ξ0 = 2ξw/(5− 3q) [36].

In figure 6 we show the amplitude of the absorption current ∆J (t) as a
function of the noise intensity ξ0 for: (a) different values of q and fixed τ and
observational time (t), and (b) for three different τ and fixed values of q and
t. The results are in agreement with those found in the case of Gaussian white
noise. In the first case we see that the system response increases when q < 1, and
there is a shift of the maximum of ∆J (t) to larger noise values for increasing q.
In the second case, the curves also show a shift of the maximum to larger noise
intensities as τ increases. The shift of the ∆J (t) maximum with τ to larger values
of ξ0 is in agreement with a similar effect in “usual” SR [14, 15]. In that case, it
was associated with the suppression of the switching rate with increasing τ . In
figure 7 we depict the maximum of ∆J (t) (which are averaged over the τ values
for each q) for two different observational times as a function of the parameter q.
For each observational time, the values are scaled with the corresponding maxi-
mum. We observe the existence of a new resonant-like maximum as a function of
the parameter q. This implies that we can find a region of q where the maximum
∆J reach optimal values (corresponding to a bounded and non-Gaussian pdf ),
yielding the largest system response.

The present results show that the use of non-Gaussian noises in the simple
trapping process defined by eq. (7) produces significant changes in the system
response when compared with the Gaussian case. In particular, we want to em-
phasize that we have found a double resonance-like phenomenon indicating that,
in addition to an optimal noise intensity, there is an optimal q value which yields
the larger enhancement of the system response. The remarkable fact is that it
corresponds to q < 1 indicating that this enhancement occurs for a non-Gaussian
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FIGURE 6 Value of ∆J (amplitude of the oscillating part of the absorption current)
as a function of ξ0 for a given observational time (t = 1140). (a) different values of q
(triangles q = 0.5, crosses q = 1.0, squares q = 1.5) and a fixed value of τ (τ = 0.1).
(b) different values of τ (triangles τ = 0.01, circles τ = 0.1, squares τ = 1.0) and a
fixed value of q (q = 0.5).

FIGURE 7 Dependence of ∆Jmax, the value of ∆J at the maximum, as a function of
q and different observational times: circles t = 633, crosses t = 1140.
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and bounded distribution. The increase in the system response (here of ∆J (t))
and the reduction in the need to tune the noise of ξ0, can be understood as
similar to the case of the usual SR [14, 15]. The bounded character of the pdf
for q < 1 contributes positively to the rate of overcoming the threshold ξc, and
such a rate remains of the same order for a larger range of values of ξ0.

3.3 BROWNIAN MOTORS

The study of noise-induced transport by “ratchets” has attracted the attention
of an increasing number of researchers due to its biological interest and also to its
potential technological applications [2, 34]. A recent new aspect has been to re-
lax the requirement of a built-in bias: a system of periodically coupled nonlinear
phase oscillators in a symmetric “pulsating” environment has been shown to un-
dergo a noise-induced nonequilibrium phase transition, wherein the spontaneous
symmetry breakdown of the stationary probability distribution function gives
rise to an effective ratchetlike potential. Some of the striking consequences of
this fact are the appearance of negative (absolute) zero-bias conductance in the
disordered phase, but near the phase-transition line (for small values of the bias
force F, the particle current 〈Ẋ〉 opposes F ), and anomalous hysteresis in the
strong-coupling region of the ordered phase (the 〈Ẋ〉 vs. F cycle runs clockwise,
as opposed, for instance, to the B vs. H cycle of a ferromagnet) [29, 35].

Here, in line with the work in Bouzat and Wio [6], we analyze the effect
of the class of colored non-Gaussian noise introduced before on the transport
properties of Brownian motors. We start considering the general system

m
d2x

dt2
= −γ

dx

dt
− V ′(x)− F + ξ(t) + η(t) , (8)

where m is the mass of the particle, γ the friction constant, V (x) the ratchet
potential, F is a constant “load” force, and ξ(t) the thermal noise satisfying
〈ξ(t)ξ(t′)〉 = 2γTδ(t − t′). Finally, η(t) is the time-correlated forcing (with zero
mean) that keeps the system out of thermal equilibrium by allowing rectifica-
tion of the motion. For this type of ratchet model several different kinds of
time-correlated forcing have been considered in the literature [2, 34]. The main
characteristic introduced by the non-Gaussian form of the forcing we consider
here is the appearance of arbitrary strong “kicks” with relatively high probabil-
ity when compared, for example, with the Gaussian OU process. As we shall see,
in a general situation (without fine tuning of the parameters), this leads to the
above-indicated enhancement effects.

We will consider the dynamics of η(t) as described by the Langevin equation
(2). As discussed before, for 1 < q < 3, the probability distribution decays more
slowly than a Gaussian, as a power law. Hence, keeping D constant, the width
or dispersion of the distribution increases with q, meaning that, the higher the
q, the stronger the “kicks” that the particle will receive.
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(a)

(b)

FIGURE 8 Current (a) and efficiency (b) as functions of q. The solid line corresponds
to an adiabatic approximation, the line with squares shows results from simulations.
All calculations are for m = 0, γ = 1, T = 0.5, F = 0.1, D = 1, and τ = 100/(2π).

For the ratchet potential we will first consider the same form as in Magnasco
[26] (with period 2π) V (x) = V1(x) = −

∫
dx(exp[α cos(x)]/J0(iα) − 1), with

α = 16. The integrand in V (x) is the ratchet force (−V ′(x)) appearing in eq.
(8).

First, we have analyzed the overdamped regime setting m = 0 and γ = 1. Our
intention was to analyze the dependence of the mean current J = 〈dx/dt〉 and
the efficiency ε on the different parameters, in particular, their dependence on
the parameter q. As defined, ε is the ratio of the work (per unit time) done by the
particle “against” the load force F (1/Tf

∫ x=x(Tf )

x=x(0)
Fdx(t)), to the mean power

injected into the system through the external forcing η (1/Tf

∫ x=x(Tf )

x=x(0)
η(t)dx(t)).

For the numerator we got F 〈dx/dt〉 = FJ , while, for the denominator, we ob-
tained 1/Tf

∫ Tf

0
η(t)dx/dtdt = 1/γTf

∫ Tf

0
η(t)2dt = 2D[γTfτ(5−3q)]−1. Interest-

ing and complete discussions on the thermodynamics and energetics of ratchet
systems can be found in Parrondo et al. [33] and Sekimoto [38].

In figure 8, we show typical analytical results for the current and the effi-
ciency as functions of q, together with results coming from numerical simulations.
Calculations have been done in a region of parameters similar to the one studied
in Magnasco [26], but they consider (apart from the difference provided by the
non-Gaussian noise) a non-zero load force that leads to a nonvanishing efficiency.
As can be seen, although there is not a quantitative agreement between theory
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and simulations, the adiabatic approximation predicts qualitatively very well the
behavior of J (and ε) as q is varied. As shown in the figure, the current grows
monotonously with q (at least for q < 5/3), while there is an optimal value of
q (> 1) which gives the maximum efficiency. This fact is interpreted as follows:
when q is increased, the width of the Pq(η) distribution grows and high values of
the non-Gaussian noise become more frequent, which leads to an improvement
of the current. Although the mean value of J increases monotonously with q, the
grow of the width of Pq(η) leads to an enhancement of the fluctuations around
this mean value. This is the origin of the efficiency’s decay that occurs for high
values of q: in this region, in spite of having a large (positive) mean value of
the current, for a given realization of the process, the transport of the particle
toward the desired direction is far from being assured. Hence, our results show
that the transport mechanism becomes more efficient when the stochastic forcing
has a non-Gaussian distribution with q > 1.

Now we turn to the m 6= 0 case, that is, the situations in which the inertia
effects are relevant. The results that we found [6] imply that separation of masses
(particles with different masses moving in opposite directions) occurs, and that
this happens in the absence of load force. In view of the results discussed above,
it is reasonable to expect that non-Gaussian noises may improve the capability
of mass separation in ratchets. Lindner et al. [24] was one of the primary works
discussing mass separation by ratchets. There, the authors analyzed a ratchet
system like the one described by eq. (8), considering OU noise as external forcing
(in our case it corresponds to q = 1). They studied (both numerically and ana-
lytically) the dynamics for different values of the correlation time of the forcing
τ , finding that there is a region of parameters where mass separation occurs.
This means that the direction of the current is found to be mass dependent: the
“heavy” species moves in the negative sense while the “light” one does so in the
positive sense.

In order to compare results, we analyzed the same system studied in Lindner
et al. [24, 25], but consider the non-Gaussian forcing. Hence, we studied eq. (8)
with V (x) = V2(x) = −[sin(2πx) + 0.25 sin(4πx)]/(2π) as the ratchet potential.
We focused on the region of parameters where, in Lindner et al. [24] (for q = 1),
separation of masses was found. We fixed γ = 2, T = 0.1, τ = 0.75, and D =
0.1875 and considered the values of the masses m = m1 = 0.5 and m = m2 = 1.5
as in Lindner et al. [24]. Our main result was that the separation of masses is
enhanced when a non-Gaussian noise with q > 1 is considered. In figure 9(a)
we show J as function of q for m1 = 0.5 and m2 = 1.5. It can be seen that
there is an optimum value of q that maximizes the difference of currents. This
value, which is close to q = 1.25, is indicated with a vertical double arrow.
Another double arrow indicates the separation of masses occurring for q = 1
(Gaussian OU forcing). We have observed that, when the value of the load force
is varied, the difference between the curves remains approximately constant, but
both are shifted together to positive or negative values (depending on the sign
of the variation of the loading). By controlling this parameter it is possible to
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(a) (b) (c)

FIGURE 9 Separation of masses: results from simulations for the current as a function
of q for particles of masses m = 0.5 (hollow circles) and m = 1.5 (solid squares).
Calculations for three different values of the load force: (a) F = 0.025, (b) F = 0.02,
and (c) F = 0.03.

achieve, for example, the situation shown in figure 9(b), where, for the value of
q at which the difference of currents is maximal, the heavy “species” remains
static on average (has J = 0), while the light one has J > 0. Also, the situation
shown in figure 9(c), occurs when, for the optimal q, the two species move in the
opposite direction with equal absolute velocity.

4 FINAL REMARKS

We have presented the results of a series of studies on noise-induced phenomena
in which the noise source was non-Gaussian. In all cases, we have found that
the system’s response leads to enhancement of values of the parameter q, which
indicates a departure from Gaussian behavior; that is, the optimum response
happens for q 6= 1.

For the case of SR in a bistable system, we observed that the SNR, as we
depart from Gaussian behavior (with q < 1), shows two main aspects: first, its
maximum as a function of the noise intensity increases; and second, it becomes
less dependent on the precise value of the noise intensity. Both aspects are of
great relevance for technological applications [17]. In addition to the increase in
the response (SNR), the reduction in the need of tuning a precise value of the
noise intensity is of particular relevance in order to understand how a biological
system can exploit this phenomenon. The present results indicate that the noise
model used here offers an adequate framework for analyzing such a problem.
An analogous result occurs for the case of SR in the trap model. Finally, for
the Brownian motor, what we have found is that a departure from Gaussian
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behavior, given now by a value of q > 1, induces a remarkable increase in the
current together with an enhancement of the motor efficiency. The latter shows,
in addition, an optimum value for a given degree of non-Gaussianity. When
inertia is taken into account, we also find a considerable increment in the mass
separation capability.

Let us conclude by commenting on some related, although still preliminary,
results. The problem that we want to address is associated with the so-called
Wenckebach rhythms [19, 21]. In its classical manifestation, the Wenckebach
phenomenon is characterized by a succession of electrocardiographic complexes
in which atrioventricular (AV) conduction time (or P-R interval) increases pro-
gressively in decreasing increments until transmission failure occurs [19, 21]. In
a recent contribution we analyzed the way Wenckebach rhythms arise in an ex-
citable system due to the presence of defects (necrotic tissue) [13]. Afterward,
we studied the possibility of eliminating or controlling the appearance of such
rhythms through the injection of noise after or at the defect. Our intention was
to determine the dependence of such rhythms on q, the parameter that controls
the non-Gaussianity, and to analyze the optimum form of the noise to reach the
control indicated above.

We used the simple FitzHugh model which involves only the membrane
potential u and a recovery variable v. The variable v lumps together the time-
dependent activation of the potassium current with the time-dependent inac-
tivation of the sodium current, in other words, the two slow variables of the
Hodgkin-Huxley equation. In order to simulate the propagation of a wave train
through the medium, induced by a periodic forcing, we have imposed a time-
dependent boundary condition for the variable u at x = 0, and have used initial
conditions as discussed in Fuentes and Wio [13].

Even though our results are, so far, only preliminary and further studies
are required, it is worth remarking here on what we have found: for a fixed (and
low) noise intensity, the optimal form of noise for controlling Wenckebach rhythm
production apepars to be results to be non-Gaussian (i.e., q 6= 1).
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