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Abstract

We study a spatially homogeneous model of a market where several agents or companies
compete for a wealth resource. In analogy with ecological systems, the simplest case of such
models shows a kind of “competitive exclusion” principle. However, the inclusion of terms
corresponding for instance to “company e6ciency” or to (ecological) “intracompetition” shows
that, if the associated parameter overcomes certain threshold values, the meaning of “strong”
and “weak” companies should be rede7ned. Also, by adequately adjusting such a parameter, a
company can induce the “extinction” of one or more of its competitors.
c© 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

During the last few years we have witnessed a wealth of work on the application of
methods of statistical physics to the study of economic problems con7guring what some
authors called econophysics [1–4]. Within this framework, a great deal of eBort was
dedicated to the analysis of economic data ranging from stock-exchange Ductuations
[1], production models, size distribution of companies, the appearance of money, eBects
of control on the market to market critical properties [5]. Another problem that attracted
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enormous interest was the origin of power (Paretto) laws, and lognormal distribution
with power-law tails, for the income of individuals, wealth distribution, debt of bankrupt
companies [6]. An interesting source of several mathematical descriptions and models
used in economical and sociological contexts can be found in Ref. [7].
Here, our interest is the study, in a deterministic way, of aspects of the competition

and coexistence of agents or companies in a common market. We present a simple
“toy” model describing, in analogy with some ecological problems, a situation of com-
petition among several companies. Within a “Malthusian-like” model we analyze the
eBect of a kind of intracompetitive contribution on the possibility of companies coex-
isting in a certain market, and the changing leadership role (measured through some
wealth-parameter) between, according to the standard ecological de7nition, “strong”
and “weak” companies.
According to ecological studies, starting with Volterra’s 7rst results on the mathe-

matical theory of competition [8], the problem of competition and coexistence between
species has been analyzed and resumed within the competitive exclusion principle (or
Ecological Theorem) that states: N species that compete for n(¡N ) food resources,
cannot coexist [9]. Several aspects of this problem have been analyzed by diBerent
authors, emphasizing, for instance, the conDict between the need to forage and the need
to avoid competition; eBects of diBusion-mediated persistence. Generally, the system
describing competition between species can be represented by a set of N diBerential
equations for the species and n for the resources. As an example, with only one food
resource we 7nd only two stable stationary solutions: the trivial one (extinction of all
the species), and that corresponding to the survival of only one species, the “strongest”
one. There are also studies of the problem related to the possibility of coexistence in
the form of wave-like solutions [10,11].
Here, we adapt the model used in Refs. [10,11] for the case of a homogeneous com-

petitive market with a unique wealth resource and several 7rms. In the next section,
we introduce the model and some particular, instructive, solutions. Due to the di6cul-
ties of 7nding analytical solutions for the general case, in Section 3 we focus on a
representative system with a small number (here 4) of 7rms, and analyze its behavior
by numerical methods. In the last section we draw some conclusions.

2. The model

We start describing the model we use, which is related to the one used in
Refs. [10,11] for the study of coexistence in an ecological framework in the form
of wave-like solutions. Such a model has been adapted to the problem of competition
of N agents or companies for a unique common wealth resource. We indicate with nj
the “size” or wealth-parameter representing the welfare of the j-company (j=1; : : : ; N )
and with M the total amount of “wealth”. The set of diBerential equations that we use to
describe the behavior (for the homogeneous case) of such a complex system includes
a “Malthusian-like” birth–death equation [12] for each company ((�jM (t)nj(t)) cor-
responding to bene7ts coming from the wealth’s share and −
jnj(t) for the “stan-
dard” losses—or costs—of the jth company). We also include a contribution that
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corresponds, in ecological language, to taking into account the existence of some
kind of intracompetition, that is, if the jth company is alone and can get all the
wealth M , it can only grow up to a maximum bounded size, a behavior that can
be modelled by a Verhulst-like term [9]. This takes into account the (in ecolog-
ical terms) so-called carrying capacity of the economic environment [13,14]. In
economic terms it could correspond to an increase of the company e6ciency, for in-
stance, through the reduction of operative internal costs, improved management, avoid-
ing competition between diBerent branches of the same 7rm, instrumentation of new
technologies, etc.
In addition, instead of assuming a constant 7nite wealth resource as in the so-called

“Total Wealth Conserved model” [15], we consider that M has its own dynamics.
For the equation for M (the economic wealth accessible to the companies that, in
order to simplify this initial analysis, we assume is unique), we also consider a
“Malthusian-like” behavior including: its production (new resources and technologies,
harvest and grain production, etc.) which we assume has a constant rate Q, and its
disappearance due to (a) natural degradation or rotting of crops, technologies becoming
old, some resources being exhausted, which we assume has a rate proportional to the
total wealth amount −GM (only a certain portion of M disappears), (b) the share of
each company given by −�knk(t)M (t).

The set of equations is (j = 1; : : : ; N )

d
dt
nj(t) = [�jM (t)− 
j]nj(t)− �j

n2j
M (t)

;

d
dt
M (t) = Q − [G +

∑
�knk(t)]M (t) : (1)

Similar to what was discussed in Ref. [11] for the case of only two species, we
can here de7ne a hierarchy from the “strongest” (largest ratio between wealth share
and standard losses, i.e., largest �i=
i) to the “weakest” (smallest ratio) companies.
Assuming the following hierarchical order

�1

1
¿
�2

2
¿ · · ·¿ �N


N
; (2)

we have that n1 is the strongest company while nN is the weakest one. It is worth
noting in passing that Eqs. (1) resembles the form of multimode laser systems [16],
making it possible to transfer some results from one system to the other.
The stationary solutions result from taking (d=dt)M=0 and (d=dt)nj=0 (j=1; : : : ; N ).

We found

Ms =
Q

G +
∑
�k nsk

; (3)

0 =
(
[�j Ms − 
j]− �j

nsj
Ms

)
nsj : (4)
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The last equation implies one of the two possibilities:

nsj = 0 or nsj =
[�jMs − 
j]Ms

�j
: (5)

It is clear that for large N , the solution of this system is not easy to 7nd. In order
to 7x ideas we consider the simpli7ed case where, instead of the above indicated
hierarchy, we have that all companies are equivalent, that is

�j = �; 
j = 
; �j = � ;

implying

nsj = ns ∀j :
In this case, we have

ns =
[�Q − (
=Q)(G + N�ns)]Q2

�(G + N�ns)2
; (6)

that can be rewritten as

− �N 2�
Q2 n3s −

2�GN�
Q2 n2s −

(

�N
Q

+
�G2

Q2

)
ns +

(
� − 
G

Q

)
= 0 : (7)

It is possible to 7nd under which conditions at least one solution of Eq. (7) is real.
However, it is more instructive to look for the behavior at small ns (ns ∼ 0) as all the
coe6cients of n�s with �¿ 0 are negative. Hence, we can easily obtain that a solution,
given by

ns ≈ �Q2 − 
GQ

�NQ + �G2

exists (is positive) if �Q¿
G. In this case, as one of the associated eigenvalues is
zero, a linear stability analysis does not give a clear information about the stability of
the solution and it is necessary to resort to a more re7ned analysis.
Another instructive case is to consider

�1

1
¿
�2

2

= · · ·= �N

N

:

Here we reduce to essentially the same situation studied in Refs. [10,11]. In particular,
it is coincident with the situation studied in Ref. [17], but now having an “eBective”
weak species given by (N − 1)nj, j=2; N . As in Ref. [17], and as discussed in detail
latter for the case of several 7rms, it is possible to 7nd a coexistence region when
�1 overcomes some threshold value. In this case, a linear stability analysis shows a
change in the stability of these solutions.
As a general analytical study of our system, even for N not too large is far beyond

our interest, in the next section we focus on a numerical approach for a case with a
small, however representative, value of N analyzing some relevant situations.
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3. Numerical results

As indicated before, here we focus on a case with N small (in fact N = 4) that
shows all the relevant aspects we can expect in the large N situation. Throughout all
the calculations Q = 1 and G = 0:7. We have used a semi-implicit 7nite diBerences
scheme to perform the numerical integration. De7ning the ratio �i = �i=
i we consider
several situations:

(a) when the diBerent companies are in hierarchical order, that is �1¿�2¿�3¿�4;
(b) when we have �1¿�2 = �3 = �4;
(c) when �1 = �2¿�3 = �4.

Among all the possible scenarios we have chosen those showing regions of coex-
istence of all the species, thus in case (a) we investigate the situation with 7xed �j,
with j = 2; 3; 4 and varying �1. That allows us to have a control parameter, but we
recall that the choice is arbitrary. In this case, the usual strong and weak concepts
make us consider the species 1 as the strongest and the 4 as the weakest. With the
inclusion of the new term we 7nd not only the possibility of coexistence but also that
the original hierarchical order can be permuted several times as the parameter values
are varied. Thus, we 7nd that the ranking of companies suBers many changes, with
companies interchanging roles several times. Some examples of this case are shown in
Fig. 1. Besides these new features, we observe the classical extinction of companies
as predicted by the exclusion theorem. In all the cases the extinction occurs by one
species at a time. Fig. 1 shows two typical results for the stationary values reached

100 101

10-2

10-1

100

(b)

γ 1-1

n 
i

10-2

10-1

100

100 101

(a)

Fig. 1. Asymptotic values of ni for diBerent values of �−1
1 . In both cases �1 = 5; �2 = 2:5; �3 = 1:5; �4 = 1

and 
i =0:1 ∀i. Full line: Species 1; Dash line: Species 2; Dotted line: Species 3; Dash–dotted line: Species
4. In (a) �2 = 1, �3 = 0:5 and �4 = 0:1, in (b) �2 = 1, �3 = 0:1 and �4 = 0:5.
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Fig. 2. As in Fig. 1 with varying �2. �1 =4; �2 =�3 =�4 =2; and (a) 
1 =0:1, 
2 =0:2, 
3 =0:1, 
4 =0:05;
�1 = :25, �3 =0:5 and �4 =0:1, in (b) 
1 =0:1, 
2 =0:1, 
3 =0:2, 
4 =0:05; and �1 =1, �3 =0:5 and �4 =0:1.

by nj as a function of �−1
1 . It is apparent that according to the diBerent values, the

relative status between companies can change and even reverse with several crossings
among them. In this 7gure, �1 varies continuously from 10 to 0. The ratios �i = �i=
i
are �1 =5, �2 =2:5, �3 =1:5, �4 =1. In Fig. 1(a) we have �2 =1, �3 =0:5 and �4 =0:1,
while in Fig. 1(b) �2 = 1, �3 = 0:1 and �4 = 0:5.
For case (b) above, we considered as our variable �2. In this case, we have one

strong species with �1 = 4, and three similar species, �2 = �3 = �4 = 2, that could
coexist if there was not a strongest one. We want to note that though �2 = �3 = �4
the same is not true for 
 and � values. Once again, we observe coexistence between
species and a reorganization of the company or agents ranking, not according to the
original concept of strength but depending on the values of �i. The coexistence is
achieved within a certain parameter region. The extinction is gradual and governed
mainly by the � values. The results are shown in Fig. 2, where again we depict the
stationary values of nj as functions of �−1

x . In Fig. 2(a), we have �1 = 0:25, �3 = 0:5,
�4 = 0:1, while in Fig. 2(b) �1 = 1, �3 = 0:5, �4 = 0:1. It is apparent that the most
relevant parameter when considering competition is the value of �i. When species are
equally strong or weak, we observe that diBerent stationary density levels are reached
according to �i. If �i’s are of the same order coexistence is granted. On the contrary,
a species with a high �i will not survive even if competing with similar species. As
an additional feature, we observe that a usual strong species j will not survive even if
competing with weaker species if �j is much higher than that of the other species.
In case (c), we considered two situations: a 7rst one varying �1; and a second varying

�3. The results are shown in Fig. 3, where again we depict the stationary values of nj
as functions of �−1

1 and �−1
3 , respectively. In both cases 3 �1 = �2 = 4, �3 = �4 = 2,

while in (a) �2 = 0:25, �3 = 0:001, �4 = 1:5 and in (b) �1 = 0:5, �2 = 1:5, �4 = 0:01. We
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Fig. 3. As in Fig. 1 with �1 =�2 =4, �3 =�4 =2 and (a) varying �1; 
1 =0:05, 
2 =0:1, 
3 =0:05, 
4 =0:1;
�2 = 0:25, �3 = 10−3 and �4 = 1:5; in (b) varying �3 and 
1 = 0:05, 
2 = 0:1, 
3 = 0:05, 
4 = 0:1; �1 = 0:5,
�2 = 0:5 and �4 = 0:01.

con7rm that the coexistence can be achieved for proper � values. At the same time,
we observe that the usual concept of strongest species cannot be applied as in both
previous cases: species 2, one of the strongest, if �i were zero remains as the weakest
species due to a high �2 value.

4. Conclusions

The results shown above indicate how the study of simpli7ed models could help in
the understanding of the role played by �, an internal company parameter, associated
to the company e6ciency, in situations where the complexity of the economic reality
makes it very hard to obtain a complete model. In our case, the model so far studied
could give some hints on the behavior of systems of companies in competition and
the possibility of coexistence and the method that one company can use to “eliminate”
the competing ones by adopting a policy tending to adequately change its �. Here, we
have analyzed the eBect of explicitly including the carrying capacity of the environ-
ment within our toy model for describing the coexistence of species in competition.
The results put in evidence the role played by the term associated to � in the possibility
of coexistence. We recall that in the absence of such a term the exclusion principle
is valid and only the species (one or more) with the highest � survive. It is also this
term that, within certain parameter region, governs the company or agents ranking. A
model written in the same terms can, clearly, also be applicable to ecological situations.
But in this case, rather than a deterministic control of �, some Ductuations or cyclic



M. Kuperman, H.S. Wio / Physica A 316 (2002) 592–600 599

changes in this parameter should be considered. This is the subject of our work in
progress.
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