PHYSICAL REVIEW E 67, 026120 (2003
Nonequilibrium transitions in complex networks: A model of social interaction
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We analyze the nonequilibrium order-disorder transition of Axelrod’s model of social interaction in several
complex networks. In a small-world network, we find a transition between an ordered homogeneous state and
a disordered state. The transition point is shifted by the degrepaifal disorder of the underlying network,
the network disorder favoring ordered configurations. In random scale-free networks the transition is only
observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered
configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in
structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.
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[. INTRODUCTION cuts” connecting otherwise distant points, drastically reduces
the average shortest distance between any pair of nodes in

Lattice models are a powerful basic instrument in thenetwork, keeping the clustering high. The small-world net-
study of phase transitions in equilibrium statistical mechanworks generated by rewiring links have degree distributions
ics, as well as in nonequilibrium systers]. Traditionally,  with exponential tails. In contrast, scale-free netwd&sare
equilibrium phase transitions have been studied in regulacharacterized by a fat-taildghower law degree distribution.
lattices, with the critical temperature being a nonuniversallhey are usually modelled by growing networks and prefer-
quantity that depends on the particular lattice under considential attachment of links.
eration, while critical exponents and some amplitude ratios The Ising model in small-world topologies shows a
are universal quantities depending only on spatial dimensioshange of behavior from the regular case to the mean-field
and some symmetries of the order parameter. The detailetharacteristics. In Ref11] it is shown analytically that for a
structure of the regular network connections is, in mostsmall world lattice, obtained from rewiring with probability
cases, irrelevant in the sense of the renormalization groug the links of a(one-dimensionallD ring lattice with X
However, recent research in the structure and topology ofiearest neighbors interactions, the crossover temperature to
complex networkq2,3] has shown that social interactions the mean-field critical behavior varies fprl asT.y(p) =
and, more generally, biological and technological networks—k(k+1)/In(p), whereas the critical temperature scales as
are far from being regular as well as being also far from &l .(p) < — 2k/In(p), so that a ferromagnetic ordered phase ex-
random network or from a mean-field network linking all to ists for any finite value ofp. The crossover to mean-field
all. This has triggered the study of standard models of statissehavior in small-world ring lattices has been further dis-
tical mechanics in these complex networks. In particular, reecussed in Refd.12,13, whereas numerical results in 2D and
cent studies of the Ising model in the so-calkdall world 3D lattices have been reported in REE4]. Interestingly, if
[4] and thescale-free[5] networks have shown that the be- directed links are considered, not only the critical tempera-
havior of the model differs from that observed in a regularture changes but the nature of the transition also switches
network. from second order to first ord¢i5].

The statistical properties of real-world social networks A much different behavior is observed in scale-free net-
vary strongly. The degree distribution can be single-scaleworks. This can be related to the influence of the presence of
broad-scale or scale-fréé,7]. See also three recent studies so-called hubs, i.e., units whose degree is much larger than
on networks of individual electronic mail communication average. This is well illustrated by the behavior of the Ising
[8—10. Due to the lack of a single model encompassing themodel in scale-free networks with degree distributi®fk)
topological features of social networks, we consider a fewxk~?, y>1. The results of Ref§16,17] show that equilib-
established network models aiming to unveil the effect ofrium systems exhibit a phase diagram that is qualitatively
different aspects of the topology. different from the mean-field case. In particular, the Ising

A small-world networl{4] is generated by rewiring with a model in a random scale-free networks shows an infinite
probability p the links of a regular lattice by long-distance critical temperature in the thermodynamic limit of an infinite
random links. The presence of a small fraction of “shortnumber of nodes. In fact, an analytical theory has been de-

veloped connecting the exponent of the degree distribution
and the critical behavior of the Ising modél8—20.

*Electronic address: kliemm@nbi.dk In this paper, we address the question of the role played
"Electronic  address:  victor@imedea.uib.es; URL: http:// by the topology of complex networks in nonequilibrium tran-
www.imedea.uib.est victor sitions of models in which there is interaction between the
*Electronic address: raul@imedea.uib.es variables associated with the nodes connected by links in the
$Electronic address: maxi@imedea.uib.es network. This is a natural next step beyond the analysis of
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equilibrium, Ising-type models in these complex networks. lg— ! T é é . .
Simple nonequilibrium models closely related to percolation r ! 4 7
have been already considerggll—23. Here, and given the 08— ° ° =
social motivation and relevance of these complex networks, i o) o T
we have chosen to analyze the model proposed by Axelro& 06 ° -
for the dissemination of cultur24]. The spreading process "y r o °© o 1
in this model cannot be reduced to a percolation process. Th& 0.4 — o ° -
model rather describes a competition between dominanct - ° ° 8 .
and spatial coexistence of different states in a nonequilibrium 02 o —
dynamics of coupled Potts-type models. The model was - ° 8 E E 8
originally considered by Axelrod in a square lattice. The sta- 050 . 5'2 L 1 7 . 558 ' 2)
tistical mechanics analysis of the model in this regular two-

dimensional network identifies a nonequilibrium order- q

disorder phase transitig25]. However, it is interesting to ] )
notice that, in his original paper, Axelrod already discussed F'C- 1. The order paramet&,.,/N as a function ofy in regu-
the relevance of the topology, speculating that “with randorml@" attices withN=10C nodes forF = 10. For each value af the
long-distance interactions, the heterogeneity sustained by |é)_utcome of 32 mdepe_ndent realizations is shown. The transition
: ; : B . occurs forq~55 (see Fig. 2
cal interaction cannot be sustained.” In particular, we con-
sider here this question.

In the following section, we introduce the original model homogeneous domaig,,,,/N, beingN the number of sites
proposed in Refl24] and summarize briefly the main results i the network.

in regular 2D networks. The model in small-world and scale-  preyigus results have been obtained in square lattices with

free networks is presented in Secs. Ill and 1V, respectively,qarest neighbor interaction. A variation of the model with
The nonequilibrium transition is shown to disappear in the;

S initial distribution of traits according to a Poisson rather than
thermodynamic limit of a scale-free network. We then con-

S . a uniform distribution shows a nonequilibrium order-disorder
sider in Sec. V, a ;trpctured scale-free netwi@,27 which Phase transition where the number of trajfslays the role of
shares characteristics of small-world and scale-free net-

works. A nonequilibrium transition is shown to persist for gcontrol parametde5]. The system reaches ordered absorb-

large systems in this network. Our conclusions are summald states forg< e Smax= O(N)] and d|sordered_§tates for
rized in Sec. VI. 0>0c(Snax<N). The same type of phase transition occurs

in the original model with a uniform initial distribution of
traits [28].
When comparing the effect of complex networks in this
phase transition with the equilibrium Ising transition one
The model we study is definef4] by considering should notice several conceptual differences. First, this is a
N agents as the sites of a network. The state of agent sort of zero-temperature transition in which ordered or dis-
is a vector of F components (cultural features ordered states exists with no reference to thermal fluctua-

Il. THE MODEL

(01,012, . .. ,oiF). Eachoys can take any of the integer  tions. In fact, the effect of small noise in this system is es-
values(cultural traitg 1, ... q, initially assigned indepen- sential, revealing the presence of metastable states and
dently and with equal probability 4/ The time-discrete dy- changing the phase diagram in a nontrivial Wag]. A sec-
namics is defined as iterating the following steps: ond related point is that the control parameter of the transi-
(1) Select at random a pair of sites of the network con+tjon q, is here not a collective property of the system as
nected by a bondi(j). temperature, but rather an ingredient of the definition of the
(2) Calculate theoverlap (number of shared features system itself. In a way, the transition occurs going from one
1(i,))=2F_18,,, o system to another agis changed. Finally, and in reference

(3) If0<I(i,j)<F, the bond is said to bactiveand sites to critical properties and exponents, we note that the transi-
i andj interact with probabilityl (i,j)/F. In case of interac- tion (except forF=2) is of first-order type. In Fig. 1, we
tion, chooseg randomly such thatrj# ojy and setojq plot the final values for the order parameter, obtained for 32
=0jg - different realizations of the dynamics. Notice that for

In any finite network the dynamics settles intoasorb- <50 all the systems end up in a homogenous state that ba-
ing state, characterized by the absence of active bonds. Olsically fills up the entire lattice §,,,,/N~1), whereas for
viously all theqF completely homogeneous configurations g>60 the maximum homogenous regions obtained are very
are absorbing. Homogeneous means here that all the sitemall. This is the order-disorder phase transition discussed
have the same value of the cultural trait for each culturabefore. For 56:q<<60, we observe bistability in the sense
feature. Inhomogeneous states consisting of two or more hdhat the system settles around any of two mean values for the
mogeneous domains interconnected by bonds with zero oveorder parameter. This bistability, which is usually associated
lap are absorbing as well. A domain is a set of contiguousvith first-order phase transitions, is clearly made explicit in
sites with identical cultural traits. We define an order paramthe corresponding histogram shown in Fig. 2 where the two
eter in this systenfi25,28 as the relative size of the largest preferred values appear as maxima of the histogram. The

026120-2



NONEQUILIBRIUM TRANSITIONS IN COMPLEX . .. PHYSICAL REVIEW E67, 026120 (2003

0.4 T T T T T T T

e
W
I
|

relative frequency
=)
[\®]

i . p=0.0
l_|_| l_|_| ,_'_l—l_ 1 -

0 0.4 0.6 0.8 1
0.2
<S_>/N i
max -
FIG. 2. Distribution of the order parameterggt 55, F=10in a 050 750 8

square lattice of siz&=10(. The distribution is based on 100
independent realizations.

FIG. 3. The average order parame{&,.,»/N as a function of
transition point corresponds tp=gq. for which these two q_for three different values of the small-wo_rld paramgieBSystem
values are equally probable. sizes areN=500 (square}‘,andN=_1OOG (diamond$; number of _

featured==10. Each plotted value is an average over 100 runs with
independent rewiring>0) and independent initial conditions.
Ill. SMALL-WORLD NETWORK

Social networks are far from being regular or completelyFor any fixed valuep>0, we find a nonequilibrium phase
random. However, they also share some features with thenff@nsition which becomes sharp and well defined as the sys-
On the one hand, social networks are known teimall[30], tem size increases. There is a critical vatjdeof the control
i.e., any pair of nodes in the network can be connected folP@rameter which separates the ordered and the disordered
lowing a number of links much smaller than the size of theState, just as in regular lattices. Howevey,increases with
network. This is also observed in random networks, wherdh® amount of spatial disorder. This is clearly shown in the
the average shortest distance between pair of ntitiesso-  (P.d)-phase diagram, Fig. 4. The filled area above the
called path lengti) increases logarithmically with the size [P.Gc(P)] curve represents the disordered states, the area
of the networké ~In N, while in regular lattice ind dimen- below the curve represents the ordered states. Consequently,
sions¢~N. On the other hand, social networks are also
known to form cliques[31], i.e., groups of nodes highly 200 [T T T
connected between them. “Cliquishness” can be character-
ized by the so-called clustering coefficie@t which is de-
fined as the relative number of closed triangles in the net- B
work. Regular lattices can show large clustering, while in
random network<C~N~1. High clustering and short path
length define a small-world network.

The first model encompassing the small-world effect was
introduced in Ref[4] proposing an algorithm that interpo- o 4 310
lates between a random and a regular lattice. First one gen- T T T,
erates a two-dimensional regular lattice with bonds between 10° 102 10! 10°
nearest neighbors and open boundary conditions. Then for 100~ P
each bond ij), with probability p detach the bond from
nodej and attach it to a nodeinstead. Nodé is chosen at
random with the restriction that duplicate and self-

150 =

connections are excluded. The paramgtenterpolates be- d

tween the original regular latticep& 0, no rewiring and a spl—e w ool o v eewl v el 44y
network very similar to a random grapp€1). Thus, in the 10* 10° 102 10" 10°
limiting casep=0, we have a network with high clustering P

but alsollarge path length; in the limg=1, we have_ net- FIG. 4. Phase diagram for the Axelrod model in a small-world
works with small path length but also small clustering. FOreqyork. The curve separates parameter valyes)(which pro-
intermediate values op the algorithm generates networks e a disordered statehaded aréarom those with ordered out-
with high clustering and small path length. come(white ared. For a givenp the plotted valug, is the one for

We now study the behavior of Axelrod’s model in depen-which the value of the order parameter is closest to the, somewhat
dence ofp. A small-world network is used from the begin- arbitrary but small, value 0.1 for system sikle= 500? and F = 10.
ning of each simulation run. Figure 3 shows the dependenceset: After subtraction of a biag.(p=0)=57, q.(p) follows a
of the order parameter ag for three different values gb. power lawo p®2° (dashed ling
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FIG. 6. Rescaled plot of the data shown in Fig. 5 for different

system sizes.
FIG. 5. The average order paramet8,,,0/N in random scale-

free networks folF = 10. Averages are taken over 1000 independent  The well established BarasiaAlbert model is based in
realizations. Different curves are for different system sizes: 1OOQhese two mechanisnf§]. At each time step a new node is
(circles, 2000(square 5000 (diamond, and 10 00Qtriangles. added to the network and attachedinks to an existing node

for valuesq<q.(p) the outcome of the dynamics is always with degreek with probability IT(k) «<k. This algorithm gen-

complete order, whereas fqe>q.(p) only disordered frozen erate§ Pgetworks whose degree distribution follofk)
states are encountered. The denpityf rewired bonds deter- =2m°k™", the path length increases &s-InN, and the
mines the nature Of these frozen States’ but qm’qc(p Clustering decreases @N(In N)ZIN We have studied the
= ]_) the system orders by increasip’ghat is, the number of dynamics of Axelrod’s model for the diffusion of culture in
long-distance links. We find a dependenqgg(p)—d.(p scale-free networks following this algorithm. In Fig. 5, we
=0)op® with «=0.4 obtained from a best fit. This result is show our results for the order parameter for different system
displayed in the inset of Fig. 4. Therefore, we find the samesizes. For a given sizN, we find a transition at|.(N). We
qualitative result as for the equilibrium Ising model, in the can define the critical valug.(N) as the value where the
sense that the small-world connectivity favors ordered statestandard deviation of the distribution 8f,,,/N reaches the
The robustness of the phase diagram is shown by pefaximum value. We find that,(N)~N%%° Using this re-
forming a different dynamical scenario. First, a run of thesylt, we observe data collapse with a rescalifg #, see
dynamics in a regular lattice is performed. Only after anrig. 6. The best result is obtained f@=0.39 in excellent
absorbing configuration has been reached the lattice is reggreement with the scaling obtained previously. This indi-
wired according to the above rewiring procedure with thecates that in the thermodynamic limit the transition disap-
parametep. After the rewiring, the configuration is not nec- nears and the ordered monocultural state establishes in the
essarily frozen because the rewiring can introduce aCt'Véystem. This behavior is similar to the Ising model in regular

bonds connecting cqmpatible cuItures that. have been discon,q gcale-free networks: While in a two-dimensional lattice
nected before. Starting the dynamics again, the system may

relax to a different absorbing configuration, which, in gen-
eral, is more ordered than the configuration reached beforc T
the rewiring. After this second phase of relaxation, the order .
parameter is measured in the absorbing state. We find thattr .|
results of this alternative scenarisee Fig. 4 are in good
agreement with the ones of the above original scenario, start

ing with a small-world network in the initial condition. 0.6

g
g

IV. SCALE-FREE NETWORKS « 04

One important ingredient missing in the small-world net-
works considered so far is that the degree distribution doe:
not show a fat tail. Although it is not clear whether social
networks present a power law distribution of degree, the evi-
dence indicates that they are ubiquitous in biological and
artificial networks[6]. Scale-free networks are characterized
by a power law tail in the degree distribution of the form
P(k)e<k™7, where the exponent lies in the range between FIG. 7. Order parameter in random scale-free networks of size
2 and 3. Two ingredients have been shown to be sufficient th=5000 with F=10. For each value of the outcomes of 100
generate such feature: growing number of nodes and prefeirdependent realizations and the mean va(gelid curve are
ential attachment of links. shown.

600
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FIG. 8. The average order paramet{8f,.,»/N as a function of
g for F=10 in structured scale-free networks. The networks con-
tainedN=1000(circles, N=2000(squares N=5000(diamond$,
and N=10000 (triangles nodes withF=10 features. Each data
point is an average over 32 independent realizations.

FIG. 9. Relation between the size of the largest cultural cluster
and the largest degree in the network fgpe=20 (triangles, g
=100 (squarel andq=500 (circles. Each data point is the out-

. . i - ... _rome of one realization run in a structured scale-free network of
the Ising model displays a phase transition at a finite Crltlcagize N=1000. Solid lines are running averages over 10 adjacent

temperature, in random scale-free networks an effective trang,,, points folg=20,100,50Qtop to bottom. For each value of

sition is observed f_or finite syste_ms \_Nhere the effective C_"“'loo independent networks and initial conditions were generated.
cal temperature diverges logarithmically with system size.

This can be explained by the role of the huibsdes with a

large number of linksin these networks. They are highly . o
instrumental in establishing ferromagnetic order in the sys;[he model displays a behavior different to what we observed

tem. The same prominent role is played by the hubs in thdD random scale-free networks in the preceding section. For

case of the dissemination of culture. The hubs help th@sm the system settles into an ordered state. For increasing

spreading of cultural traits as can be inferred from the ob_values ofg, the order parameter undergoes a decay whose

served dependence with system size. Note, however, that tﬁ(l,ppe grows with system size. This suggests a phase transi-

effective transition of Axelrod’s model for a finite system in tion atq.~10, in contrast to the absence of a transition point

a scale-free network displays the characteristics of a firsttOund for the randomly wired scale-free networks in the ther-

order transition: We show in Fig. 7 the same type of behaviofmdyr“"lmiC limit. As on Iarg'e scales the strgctured scale-free
as observed in Fig. 1 for the regular network. For a range of€Morks have one-dimensional topold@y] it seems natu-

values ofg aroundq, a realization ends either in an ordered ral that this transition atje=~F coques with the b(_ahawor
monocultural state or in a disordered frozen conﬁguration,Of the ‘T‘Ode' founq In one-dlmenSIOQaI regular latti2s].
the two preferred values of the order parameter. At difference with the regular lattices, in the structured
scale-free networks foq>q. the order parameter does not
tend to zero. For the system sizes considered, the order pa-
rameter reaches a finite plateau value, indicating partial or-
The scale-free networks considered in the preceding seélering of the system. Only for valugs>q. the order param-
tion, underestimate the clustering observed in real networkster drops below the plateau value and tends to zero. This
[32]. A question that merits being addressed is if scale-fre®ehavior may be understood by relating the sizg, of the
networks with high clustering present an absence of théargest cultural cluster with the largest degkgg,, present in
phase transition in the thermodynamic limit. In order to re-the network, as shown in Fig. 9. In the intermediate range
produce a high clustering along with a scale-free distributiorb0<q<200, where the plateau of the order parameter is
of the degree, we employ the networks generated by thebserved, we findS,,~kmnax for almost all realizations.
algorithm proposed in Ref26]: Again at each time step we This suggests that the largest hub, the node with the largest
add a new node to the network. The node is attached tmthe degree, and its neighbors order such that they form the larg-
active nodes in the network. The new node becomes activest cluster in the absorbing state. Asis reduced and its
and one of then+1 active nodes is deactivated with prob- value approacheg, from above, the ordering goes beyond
ability TI(k)ck %, Starting fromm fully interconnected ac- the largest hub and an increasing part of the network forms
tive nodes, this algorithm generates scale-free networks witthe largest cluster. On the other hand, for large valges
a clustering coefficien€C~5/6 independent of system size. >200, the neighborhood of the largest hub does no longer
In the following, we call these networlssructuredscale-free  reach complete ordering arffl,,x<kmax. The g value for
networks because of the large clustering coefficient, théhe onset of the decay &, ., belowk, ., iS expected to be
strong negative correlation between degrees of connectetependent on system size: as Fig. 8 shows, for increasing
nodes[ 23], and the modular structuf@2]. These properties system size, the plateau in the order parameter extends to
are not found in theandomscale-free networks of the pre- larger values ofj. With increasing system size, the value of
ceding section. the plateau is expected to decreasekas,/N=N?"1 with

As shown in Fig. 8, in the structured scale-free networks

V. STRUCTURED SCALE-FREE NETWORKS
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B=(y—1)"1, wherey is the exponent of the degree distri- from disorder to order is obtained increasipdor a fixed
bution. These results suggest that in the lilit>c, the  value of the control parameter<q.(p=1). We have also
dynamics of the social interaction model in structured netfound that, for a fixed finite system size, the scale-free con-
works experiences a transition similar to the one observed inectivity is more efficient than the limiting random connec-

a one-dimensional lattice. tivity of the small-world network in promoting the ordered
state of cultural globalization. However, there is a system
VI. CONCLUSIONS size scaling in the transition observed for a free scale net-

o N work, so that the transition disappears in the thermodynamic

We have found that the nonequilibrium transition betweenimit: In the presence of scale-free interactions the order state
order and disorder that exists in a reguliar 2 network for  prevails due to the presence of hubs. The consideration of

Axelrod’s model of cultural influenc¢24] is modified by  structured scale free-networks restores the order-disorder
underlying complex networks with similar qualitative fea- ransitions in spite of the hubs, but the value of the order

tures that an equilibrium thermal Ising-type transition. Weparameter for the disordered state reveals the existence of
have shown that the transition pertains also in the presencgidered clusters.

of random long-distance connections: with increasing den-
sity of long-distance connections in a small-world network,
the critical pointg.(p) increases. Therefore, the small-world
connectivity favors cultural globalization as described by the We acknowledge funding from MCyT(Spain and
ordered state. The value gf, reaches a maximum for the FEDER (EU) through Project Nos. BFM2000-1108 and
random network obtained with =1 probability of rewir- BFM2001-0341-C02-01. K.K. acknowledges a grant from
ing in the small-world network construction. A transition CORE a/s, Denmark.
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