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Nonequilibrium transitions in complex networks: A model of social interaction

Konstantin Klemm,* Vı́ctor M. Eguı́luz,† Raúl Toral,‡ and Maxi San Miguel§

Instituto Mediterráneo de Estudios Avanzados IMEDEA (CSIC-UIB), E07122 Palma de Mallorca, Spain
~Received 1 November 2002; published 26 February 2003!

We analyze the nonequilibrium order-disorder transition of Axelrod’s model of social interaction in several
complex networks. In a small-world network, we find a transition between an ordered homogeneous state and
a disordered state. The transition point is shifted by the degree ofspatial disorder of the underlying network,
the network disorder favoring ordered configurations. In random scale-free networks the transition is only
observed for finite size systems, showing system size scaling, while in the thermodynamic limit only ordered
configurations are always obtained. Thus, in the thermodynamic limit the transition disappears. However, in
structured scale-free networks, the phase transition between an ordered and a disordered phase is restored.

DOI: 10.1103/PhysRevE.67.026120 PACS number~s!: 89.75.Fb, 05.50.1q, 87.23.Ge
he
an

ul
sa
si
tio
io
il

os
u

s
ks

to
ti
re

e-
la

ks
al
es
n
th
ew
o

e
r

ces
s in

et-
ns

er-

a
eld

y

re to

as
x-

d
is-
d

ra-
hes

et-
e of
than
ng

ely
ng
ite

te
de-
tion

yed
n-
the
the
of

:/
I. INTRODUCTION

Lattice models are a powerful basic instrument in t
study of phase transitions in equilibrium statistical mech
ics, as well as in nonequilibrium systems@1#. Traditionally,
equilibrium phase transitions have been studied in reg
lattices, with the critical temperature being a nonuniver
quantity that depends on the particular lattice under con
eration, while critical exponents and some amplitude ra
are universal quantities depending only on spatial dimens
and some symmetries of the order parameter. The deta
structure of the regular network connections is, in m
cases, irrelevant in the sense of the renormalization gro
However, recent research in the structure and topology
complex networks@2,3# has shown that social interaction
and, more generally, biological and technological networ
are far from being regular as well as being also far from
random network or from a mean-field network linking all
all. This has triggered the study of standard models of sta
tical mechanics in these complex networks. In particular,
cent studies of the Ising model in the so-calledsmall world
@4# and thescale-free@5# networks have shown that the b
havior of the model differs from that observed in a regu
network.

The statistical properties of real-world social networ
vary strongly. The degree distribution can be single-sc
broad-scale or scale-free@6,7#. See also three recent studi
on networks of individual electronic mail communicatio
@8–10#. Due to the lack of a single model encompassing
topological features of social networks, we consider a f
established network models aiming to unveil the effect
different aspects of the topology.

A small-world network@4# is generated by rewiring with a
probability p the links of a regular lattice by long-distanc
random links. The presence of a small fraction of ‘‘sho
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cuts’’ connecting otherwise distant points, drastically redu
the average shortest distance between any pair of node
network, keeping the clustering high. The small-world n
works generated by rewiring links have degree distributio
with exponential tails. In contrast, scale-free networks@5# are
characterized by a fat-tailed~power law! degree distribution.
They are usually modelled by growing networks and pref
ential attachment of links.

The Ising model in small-world topologies shows
change of behavior from the regular case to the mean-fi
characteristics. In Ref.@11# it is shown analytically that for a
small world lattice, obtained from rewiring with probabilit
p the links of a~one-dimensional! 1D ring lattice with 2k
nearest neighbors interactions, the crossover temperatu
the mean-field critical behavior varies forp!1 asTco(p)}
2k(k11)/ln(p), whereas the critical temperature scales
Tc(p)}22k/ ln(p), so that a ferromagnetic ordered phase e
ists for any finite value ofp. The crossover to mean-fiel
behavior in small-world ring lattices has been further d
cussed in Refs.@12,13#, whereas numerical results in 2D an
3D lattices have been reported in Ref.@14#. Interestingly, if
directed links are considered, not only the critical tempe
ture changes but the nature of the transition also switc
from second order to first order@15#.

A much different behavior is observed in scale-free n
works. This can be related to the influence of the presenc
so-called hubs, i.e., units whose degree is much larger
average. This is well illustrated by the behavior of the Isi
model in scale-free networks with degree distributionP(k)
}k2g, g.1. The results of Refs.@16,17# show that equilib-
rium systems exhibit a phase diagram that is qualitativ
different from the mean-field case. In particular, the Isi
model in a random scale-free networks shows an infin
critical temperature in the thermodynamic limit of an infini
number of nodes. In fact, an analytical theory has been
veloped connecting the exponent of the degree distribu
and the critical behavior of the Ising model@18–20#.

In this paper, we address the question of the role pla
by the topology of complex networks in nonequilibrium tra
sitions of models in which there is interaction between
variables associated with the nodes connected by links in
network. This is a natural next step beyond the analysis
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KLEMM et al. PHYSICAL REVIEW E 67, 026120 ~2003!
equilibrium, Ising-type models in these complex networ
Simple nonequilibrium models closely related to percolat
have been already considered@21–23#. Here, and given the
social motivation and relevance of these complex netwo
we have chosen to analyze the model proposed by Axe
for the dissemination of culture@24#. The spreading proces
in this model cannot be reduced to a percolation process.
model rather describes a competition between domina
and spatial coexistence of different states in a nonequilibr
dynamics of coupled Potts-type models. The model w
originally considered by Axelrod in a square lattice. The s
tistical mechanics analysis of the model in this regular tw
dimensional network identifies a nonequilibrium orde
disorder phase transition@25#. However, it is interesting to
notice that, in his original paper, Axelrod already discuss
the relevance of the topology, speculating that ‘‘with rando
long-distance interactions, the heterogeneity sustained b
cal interaction cannot be sustained.’’ In particular, we co
sider here this question.

In the following section, we introduce the original mod
proposed in Ref.@24# and summarize briefly the main resul
in regular 2D networks. The model in small-world and sca
free networks is presented in Secs. III and IV, respectiv
The nonequilibrium transition is shown to disappear in
thermodynamic limit of a scale-free network. We then co
sider in Sec. V, a structured scale-free network@26,27# which
shares characteristics of small-world and scale-free
works. A nonequilibrium transition is shown to persist f
large systems in this network. Our conclusions are sum
rized in Sec. VI.

II. THE MODEL

The model we study is defined@24# by considering
N agents as the sites of a network. The state of agei
is a vector of F components ~cultural features!
(s i1 ,s i2 , . . . ,s iF). Eachs i f can take any of theq integer
values~cultural traits! 1, . . . ,q, initially assigned indepen
dently and with equal probability 1/q. The time-discrete dy-
namics is defined as iterating the following steps:

~1! Select at random a pair of sites of the network co
nected by a bond (i , j ).

~2! Calculate theoverlap ~number of shared features!
l ( i , j )5( f 51

F ds i f ,s j f
.

~3! If 0 , l ( i , j ),F, the bond is said to beactiveand sites
i and j interact with probabilityl ( i , j )/F. In case of interac-
tion, chooseg randomly such thats igÞs jg and sets ig
5s jg .

In any finite network the dynamics settles into anabsorb-
ing state, characterized by the absence of active bonds.
viously all the qF completely homogeneous configuratio
are absorbing. Homogeneous means here that all the
have the same value of the cultural trait for each cultu
feature. Inhomogeneous states consisting of two or more
mogeneous domains interconnected by bonds with zero o
lap are absorbing as well. A domain is a set of contiguo
sites with identical cultural traits. We define an order para
eter in this system@25,28# as the relative size of the large
02612
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homogeneous domainSmax/N, beingN the number of sites
in the network.

Previous results have been obtained in square lattices
nearest neighbor interaction. A variation of the model w
initial distribution of traits according to a Poisson rather th
a uniform distribution shows a nonequilibrium order-disord
phase transition where the number of traitsq plays the role of
a control parameter@25#. The system reaches ordered abso
ing states forq,qc@Smax5O(N)# and disordered states fo
q.qc(Smax!N). The same type of phase transition occu
in the original model with a uniform initial distribution o
traits @28#.

When comparing the effect of complex networks in th
phase transition with the equilibrium Ising transition o
should notice several conceptual differences. First, this
sort of zero-temperature transition in which ordered or d
ordered states exists with no reference to thermal fluc
tions. In fact, the effect of small noise in this system is e
sential, revealing the presence of metastable states
changing the phase diagram in a nontrivial way@28#. A sec-
ond related point is that the control parameter of the tran
tion q, is here not a collective property of the system
temperature, but rather an ingredient of the definition of
system itself. In a way, the transition occurs going from o
system to another asq is changed. Finally, and in referenc
to critical properties and exponents, we note that the tra
tion ~except forF52) is of first-order type. In Fig. 1, we
plot the final values for the order parameter, obtained for
different realizations of the dynamics. Notice that forq
,50 all the systems end up in a homogenous state that
sically fills up the entire lattice (Smax/N'1), whereas for
q.60 the maximum homogenous regions obtained are v
small. This is the order-disorder phase transition discus
before. For 50,q,60, we observe bistability in the sens
that the system settles around any of two mean values for
order parameter. This bistability, which is usually associa
with first-order phase transitions, is clearly made explicit
the corresponding histogram shown in Fig. 2 where the t
preferred values appear as maxima of the histogram.

FIG. 1. The order parameterSmax/N as a function ofq in regu-
lar lattices withN51002 nodes forF510. For each value ofq the
outcome of 32 independent realizations is shown. The transi
occurs forq'55 ~see Fig. 2!.
0-2
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transition point corresponds toq5qc for which these two
values are equally probable.

III. SMALL-WORLD NETWORK

Social networks are far from being regular or complet
random. However, they also share some features with th
On the one hand, social networks are known to besmall@30#,
i.e., any pair of nodes in the network can be connected
lowing a number of links much smaller than the size of t
network. This is also observed in random networks, wh
the average shortest distance between pair of nodes~the so-
called path length,) increases logarithmically with the siz
of the network,; ln N, while in regular lattice ind dimen-
sions,;N1/d. On the other hand, social networks are a
known to form cliques@31#, i.e., groups of nodes highly
connected between them. ‘‘Cliquishness’’ can be charac
ized by the so-called clustering coefficientC, which is de-
fined as the relative number of closed triangles in the n
work. Regular lattices can show large clustering, while
random networksC;N21. High clustering and short pat
length define a small-world network.

The first model encompassing the small-world effect w
introduced in Ref.@4# proposing an algorithm that interpo
lates between a random and a regular lattice. First one
erates a two-dimensional regular lattice with bonds betw
nearest neighbors and open boundary conditions. Then
each bond (i j ), with probability p detach the bond from
nodej and attach it to a nodel instead. Nodel is chosen at
random with the restriction that duplicate and se
connections are excluded. The parameterp interpolates be-
tween the original regular lattice (p50, no rewiring! and a
network very similar to a random graph (p51). Thus, in the
limiting casep50, we have a network with high clusterin
but also large path length; in the limitp51, we have net-
works with small path length but also small clustering. F
intermediate values ofp the algorithm generates network
with high clustering and small path length.

We now study the behavior of Axelrod’s model in depe
dence ofp. A small-world network is used from the begin
ning of each simulation run. Figure 3 shows the depende
of the order parameter onq, for three different values ofp.

FIG. 2. Distribution of the order parameter atq555, F510 in a
square lattice of sizeN51002. The distribution is based on 10
independent realizations.
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For any fixed valuep.0, we find a nonequilibrium phas
transition which becomes sharp and well defined as the
tem size increases. There is a critical valueqc of the control
parameter which separates the ordered and the disord
state, just as in regular lattices. However,qc increases with
the amount of spatial disorder. This is clearly shown in t
(p,q)-phase diagram, Fig. 4. The filled area above
@p,qc(p)# curve represents the disordered states, the a
below the curve represents the ordered states. Consequ

FIG. 3. The average order parameter^Smax&/N as a function of
q for three different values of the small-world parameterp. System
sizes areN55002 ~squares! andN510002 ~diamonds!; number of
featuresF510. Each plotted value is an average over 100 runs w
independent rewiring (p.0) and independent initial conditions.

FIG. 4. Phase diagram for the Axelrod model in a small-wo
network. The curve separates parameter values (p,q) which pro-
duce a disordered state~shaded area! from those with ordered out-
come~white area!. For a givenp the plotted valueqc is the one for
which the value of the order parameter is closest to the, somew
arbitrary but small, value 0.1 for system sizeN55002 andF510.
Inset: After subtraction of a biasqc(p50)557, qc(p) follows a
power law}p0.39 ~dashed line!.
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KLEMM et al. PHYSICAL REVIEW E 67, 026120 ~2003!
for valuesq,qc(p) the outcome of the dynamics is alway
complete order, whereas forq.qc(p) only disordered frozen
states are encountered. The densityp of rewired bonds deter
mines the nature of these frozen states, but forq,qc(p
51) the system orders by increasingp, that is, the number o
long-distance links. We find a dependenceqc(p)2qc(p
50)}pa with a50.4 obtained from a best fit. This result
displayed in the inset of Fig. 4. Therefore, we find the sa
qualitative result as for the equilibrium Ising model, in th
sense that the small-world connectivity favors ordered sta

The robustness of the phase diagram is shown by
forming a different dynamical scenario. First, a run of t
dynamics in a regular lattice is performed. Only after
absorbing configuration has been reached the lattice is
wired according to the above rewiring procedure with t
parameterp. After the rewiring, the configuration is not nec
essarily frozen because the rewiring can introduce ac
bonds connecting compatible cultures that have been dis
nected before. Starting the dynamics again, the system
relax to a different absorbing configuration, which, in ge
eral, is more ordered than the configuration reached be
the rewiring. After this second phase of relaxation, the or
parameter is measured in the absorbing state. We find tha
results of this alternative scenario~see Fig. 4! are in good
agreement with the ones of the above original scenario, s
ing with a small-world network in the initial condition.

IV. SCALE-FREE NETWORKS

One important ingredient missing in the small-world n
works considered so far is that the degree distribution d
not show a fat tail. Although it is not clear whether soc
networks present a power law distribution of degree, the e
dence indicates that they are ubiquitous in biological a
artificial networks@6#. Scale-free networks are characteriz
by a power law tail in the degree distribution of the for
P(k)}k2g, where the exponentg lies in the range betwee
2 and 3. Two ingredients have been shown to be sufficien
generate such feature: growing number of nodes and pre
ential attachment of links.

FIG. 5. The average order parameter^Smax&/N in random scale-
free networks forF510. Averages are taken over 1000 independ
realizations. Different curves are for different system sizes: 1
~circles!, 2000~squares!, 5000~diamonds!, and 10 000~triangles!.
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The well established Baraba´si-Albert model is based in
these two mechanisms@5#. At each time step a new node
added to the network and attachesm links to an existing node
with degreek with probabilityP(k)}k. This algorithm gen-
erates networks whose degree distribution followsP(k)
52m2k23, the path length increases as,; ln N, and the
clustering decreases asC;(ln N)2/N. We have studied the
dynamics of Axelrod’s model for the diffusion of culture i
scale-free networks following this algorithm. In Fig. 5, w
show our results for the order parameter for different syst
sizes. For a given sizeN, we find a transition atqc(N). We
can define the critical valueqc(N) as the value where the
standard deviation of the distribution ofSmax/N reaches the
maximum value. We find thatqc(N);N0.39. Using this re-
sult, we observe data collapse with a rescalingqN2b, see
Fig. 6. The best result is obtained forb50.39 in excellent
agreement with the scaling obtained previously. This in
cates that in the thermodynamic limit the transition disa
pears and the ordered monocultural state establishes in
system. This behavior is similar to the Ising model in regu
and scale-free networks: While in a two-dimensional latt

t
0

FIG. 6. Rescaled plot of the data shown in Fig. 5 for differe
system sizes.

FIG. 7. Order parameter in random scale-free networks of s
N55000 with F510. For each value ofq the outcomes of 100
independent realizations and the mean value~solid curve! are
shown.
0-4
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the Ising model displays a phase transition at a finite crit
temperature, in random scale-free networks an effective t
sition is observed for finite systems where the effective cr
cal temperature diverges logarithmically with system si
This can be explained by the role of the hubs~nodes with a
large number of links! in these networks. They are highl
instrumental in establishing ferromagnetic order in the s
tem. The same prominent role is played by the hubs in
case of the dissemination of culture. The hubs help
spreading of cultural traits as can be inferred from the
served dependence with system size. Note, however, tha
effective transition of Axelrod’s model for a finite system
a scale-free network displays the characteristics of a fi
order transition: We show in Fig. 7 the same type of behav
as observed in Fig. 1 for the regular network. For a range
values ofq aroundqc a realization ends either in an ordere
monocultural state or in a disordered frozen configurati
the two preferred values of the order parameter.

V. STRUCTURED SCALE-FREE NETWORKS

The scale-free networks considered in the preceding
tion, underestimate the clustering observed in real netwo
@32#. A question that merits being addressed is if scale-f
networks with high clustering present an absence of
phase transition in the thermodynamic limit. In order to
produce a high clustering along with a scale-free distribut
of the degree, we employ the networks generated by
algorithm proposed in Ref.@26#: Again at each time step w
add a new node to the network. The node is attached to thm
active nodes in the network. The new node becomes ac
and one of them11 active nodes is deactivated with pro
ability P(k)}k21. Starting fromm fully interconnected ac-
tive nodes, this algorithm generates scale-free networks
a clustering coefficientC'5/6 independent of system siz
In the following, we call these networksstructuredscale-free
networks because of the large clustering coefficient,
strong negative correlation between degrees of conne
nodes@23#, and the modular structure@32#. These properties
are not found in therandomscale-free networks of the pre
ceding section.

FIG. 8. The average order parameter^Smax&/N as a function of
q for F510 in structured scale-free networks. The networks c
tainedN51000~circles!, N52000~squares!, N55000~diamonds!,
and N510000 ~triangles! nodes withF510 features. Each dat
point is an average over 32 independent realizations.
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As shown in Fig. 8, in the structured scale-free netwo
the model displays a behavior different to what we obser
in random scale-free networks in the preceding section.
q&10 the system settles into an ordered state. For increa
values ofq, the order parameter undergoes a decay wh
slope grows with system size. This suggests a phase tra
tion atqc'10, in contrast to the absence of a transition po
found for the randomly wired scale-free networks in the th
modynamic limit. As on large scales the structured scale-f
networks have one-dimensional topology@27# it seems natu-
ral that this transition atqc'F coincides with the behavio
of the model found in one-dimensional regular lattices@29#.

At difference with the regular lattices, in the structure
scale-free networks forq.qc the order parameter does n
tend to zero. For the system sizes considered, the order
rameter reaches a finite plateau value, indicating partial
dering of the system. Only for valuesq@qc the order param-
eter drops below the plateau value and tends to zero. T
behavior may be understood by relating the sizeSmax of the
largest cultural cluster with the largest degreekmax present in
the network, as shown in Fig. 9. In the intermediate ran
50,q,200, where the plateau of the order parameter
observed, we findSmax'kmax for almost all realizations.
This suggests that the largest hub, the node with the lar
degree, and its neighbors order such that they form the l
est cluster in the absorbing state. Asq is reduced and its
value approachesqc from above, the ordering goes beyon
the largest hub and an increasing part of the network fo
the largest cluster. On the other hand, for large valueq
.200, the neighborhood of the largest hub does no lon
reach complete ordering andSmax,kmax. The q value for
the onset of the decay ofSmax below kmax is expected to be
dependent on system size: as Fig. 8 shows, for increa
system size, the plateau in the order parameter extend
larger values ofq. With increasing system size, the value
the plateau is expected to decrease askmax/N5Nb21 with

-

FIG. 9. Relation between the size of the largest cultural clus
and the largest degree in the network forq520 ~triangles!, q
5100 ~squares!, andq5500 ~circles!. Each data point is the out
come of one realization run in a structured scale-free network
size N51000. Solid lines are running averages over 10 adjac
data points forq520,100,500~top to bottom!. For each value ofq,
100 independent networks and initial conditions were generate
0-5
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b5(g21)21, whereg is the exponent of the degree distr
bution. These results suggest that in the limitN→`, the
dynamics of the social interaction model in structured n
works experiences a transition similar to the one observe
a one-dimensional lattice.

VI. CONCLUSIONS

We have found that the nonequilibrium transition betwe
order and disorder that exists in a regulard52 network for
Axelrod’s model of cultural influence@24# is modified by
underlying complex networks with similar qualitative fe
tures that an equilibrium thermal Ising-type transition. W
have shown that the transition pertains also in the prese
of random long-distance connections: with increasing d
sity of long-distance connections in a small-world netwo
the critical pointqc(p) increases. Therefore, the small-wor
connectivity favors cultural globalization as described by
ordered state. The value ofqc reaches a maximum for th
random network obtained with ap51 probability of rewir-
ing in the small-world network construction. A transitio
s
e,

.

e-
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from disorder to order is obtained increasingp for a fixed
value of the control parameterq,qc(p51). We have also
found that, for a fixed finite system size, the scale-free c
nectivity is more efficient than the limiting random conne
tivity of the small-world network in promoting the ordere
state of cultural globalization. However, there is a syst
size scaling in the transition observed for a free scale n
work, so that the transition disappears in the thermodyna
limit: In the presence of scale-free interactions the order s
prevails due to the presence of hubs. The consideratio
structured scale free-networks restores the order-diso
transitions in spite of the hubs, but the value of the ord
parameter for the disordered state reveals the existenc
ordered clusters.
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