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ABSTRACT

We report the observation of synchrony in two unidirectionally coupled (master-slave) model neurons (imple-
mented by electronic circuits) in a noisy environment. Both neurons are subjected to the same random stimulus,
and there is a recurrent inhibitory delayed connection in the slave neuron. We observe that synchrony occurs
shifted in time, such that the slave neuron anticipates, i.e., forecasts, the response of the master neuron. By in-
corporating the e�ects of unidirectional coupling, delayed feedback and common noise into models of two spiking
neurons, we are able to simulate successfully the experimental observations.

Keywords: Synchronization, time delay dynamics, excitability, noise.

1. INTRODUCTION

Neurons, as well as cardiac tissue, are classical prototypes of excitable systems: their response to an external
perturbation is highly non-linear and depends on its magnitude and timing: if the perturbation is small, the
system evolves back to the steady state; but if the perturbation exceeds a certain threshold, the system �res a
pulse-like spike (action potential). Following the onset of the excitation, there is an interval (refractory period)
during which another perturbation does not induce a new pulse. Sensory neurons transform environmental
stimuli into trains of action potentials, usually referred to as 'spikes'. The response of a sensory neuron to
di�erent stimuli can cause the �ring of such a spike. The information about the external stimuli is transmitted
into the brain using a code based on the time intervals between spikes. Di�erent regions of the brain must
communicate with each other in order to integrate the information into a global picture. This global process
may lead to a production of simultaneous spikes yielding a synchronized state between neurons. In the last years,
it has been proposed that synchronous neuronal oscillations underlie many cortical processes,1{4 and it has been
postulated that some cortical structures are able to predict the most likely input several milliseconds ahead.5{7

Real neurons, as well as the heart, are complicated non-linear systems involving a large number of variables.
Nevertheless, the essential features of their excitable behavior can be captured with a much-reduced description.
The FitzHugh-Nagumo (FHN) and the Hodgkin-Huxley (HH) models provide two of the simplest representation
of �ring dynamics and they have been widely used as a prototypic models for both, spiking neurons and cardiac
cells.8, 9 Here we study the synchronization of two identical FitzHugh-Nagumo and Hudgkin-Huxley neurons,
unidirectionally coupled, in the presence of a common noisy environment, and when the slave neuron has its own
delayed feedback mechanism (see the schematic diagram shown in Fig. 1).
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Figure 1. Schematic diagram of two neurons coupled in a unidirectional con�guration, subjected to the same external
stimulus and with a time delayed feedback in the slave neuron.

2. EXPERIMENTAL RESULTS

We have built an electronic circuit that emulates two FN neurons driven with Gaussian white noise and coupled
as shown in Fig. 1. The circuit was constructed from standard electronic components (operational ampli�ers
and analog multipliers). Two identical (within components tolerance) neurons were implemented (see Fig. 2).
The neurons were built using operational ampli�ers and the cubic non-linearity described by x(x�a)(x� b) (see
eq. (1) below) was implemented using analog multipliers (AD633) in a circuit not shown for simplicity.10 The
resistance RC controls the strength of the unidirectional coupling between the master and the slave neurons.
The resistance RD (RD = RC in our case) controls the strength of the delayed feedback into the slave neuron.
The coupling and the delayed feedback have opposite signs: while the master signal was obtained at point B of
Fig. 2, where the voltage is �Vm, the slave signal that goes into the delay line was obtained at point C of Fig. 2,
where the voltage is +Vs. The di�erent signs are due to the inverters that are located in between points A and
B and C and D. The threshold on both neurons was controlled by a potentiometer represented by its equivalent
circuit: o�set and R0. The analog delay line for the delayed feedback in the slave neuron was built using bucket
brigade circuits (MN3004). A function generator with white noise output capabilities (HP33120A) was used
to excite both neurons. The signals were acquired using LabView and National Instruments DAQ 6025E data
acquisition board. Similar variants of this circuit have been previously used to model the response of various
types of neurons.11

We show the existence of an anticipated synchronization mechanism12 by which a neuron might be able to
predict the future response of another neuron. The mechanism responsible for the anticipation is interesting for
two main reasons: (i) the master neuron is unaware of the presence of the slave neuron and its own dynamics is
not altered; (ii) due to the random stimulus the master neuron produces a train of spikes that is unpredictable.

For an appropriate value of the coupling, represented in the circuit by a resistance RC (see also Fig. 1), we
observe that, after a transient, the master and slave neurons synchronize in such a way that the slave neuron
anticipates the �res of the master neuron by a time interval approximately equal to the delay time � of the
synaptic feedback mechanism. Fig. 3 (a) shows a typical spike train while Fig. 3 (b) displays in detail a
single spike.13 We observe that the �rings of the master and the slave neurons start at about the same time:
anticipation begins during the rising of the peak and it vanishes when the neurons are in the unexcited state. In
other words, anticipation is a local process triggered during the �ring of the spikes. The anticipation is due to
the combined e�ect of unidirectional coupling (the synaptic connection controlled by RC in Fig. 1) and negative
delayed feedback (the synaptic delayed connection controlled by a resistance RD in Fig. 1). Without coupling
and feedback (RC = RD = 0) the neurons �re pulses which are, in general, desynchronized (due to the small
mismatch between the circuits).



Figure 2. Figure 2. Circuit implementation of two coupled neurons. R1 = 125 k
, R2=50 k
, R3=10 k
, RC=RD=100
k
, RF=10 k
, RN=10 k
, RO= 10 k
, C1=100 nF, C2=1 mF.

We observe that the slave neuron occasionally makes an error in anticipating the master �rings (notice that
in Fig. 3 there is such an error at the end of the spike train of the slave neuron). The longer the anticipation
time � , the larger the number of errors, and for � long enough synchrony is lost. Even though occasionally the
slave neuron �res a pulse without a �ring of the master, the opposite behavior never occurs: for each pulse �red
by the master neuron there is a corresponding anticipated pulse �red by the slave neuron.

Anticipation in the synchronization of chaotic systems is a subject that has received a lot of attention
recently.11, 14{16 While the anticipated behavior in the case of a master system with its own delayed feedback is
well understood, the mechanism underlying the anticipation remains elusive when the master system is memory-
less (i.e., without a feedback loop). The present paper reports the �rst experimental observation of anticipation
in one-way coupled systems in which the master system does not have a delayed feedback mechanism, and it is
unaware of the presence of the slave system.



3. NUMERICAL RESULTS

To further investigate the synchronization behavior observed in our experiments, we numerically simulate an
extension of the FitzHugh-Nagumo model8, 9 that takes into account unidirectional coupling, common external
stimulus, and delayed negative feedback in the slave neuron. The model equations are

dxm

dt
= �xm(xm � a)(xm � 1)� ym + fo + �(t) (1)

dym

dt
= �(xm � bym) (2)

dxs

dt
= �xs(xs � a)(xs � 1)� ys +K[xm(t)� xs(t� �)]

+ fo + �(t) (3)

dys

dt
= �(xs � bys) ; (4)

where xm, ym (xs, ys) are the fast and slow variables of the master (slave) neuron, �(t) is the common external
stimulus, a, b, � and fo are constants. K is the strength of the synaptic connection and � is the delay of the
synaptic feedback mechanism of the slave neuron. Notice that the dynamics of the master neuron is independent
of that of the slave neuron, i.e., it is a one-way coupling. Notice also that the synaptic feedback term, xs(t� �),
has the opposite sign to the synaptic coupling term, xm(t).

The results of our simulations, when using the Fitzhugh-Nagumo model are shown in Figs. 4a, 4b. The
parameters we use are a = 0:139, b = 2:54, � = 0:008, fo = 0:03, K = 0:03, � = 10. The external stimulus � is
a Gaussian white noise with zero mean and correlation < �(t)�(t0) >= 2DÆ(t� t0) with D = 2:45� 10�5. The
numerical results mimic those of the experiments.

We have also performed simulations with a more realistic model, namely the model of electro-receptors
proposed by Braun et. al.17{19 This model is a modi�cation of the Hodgkin-Huxley (HH) neuron model:

CM
dV

dt
= �INa � IK � Isd � Isr � Il + �(t) ; (5)

where V is the potential voltage across the membrane and CM is the capacitance; INa and IK are the fast
sodium and potassium currents that generate the action potential (de- and repolarizing currents), Isd and Isr
are additional slow currents, Il is a passive leak current and �(t) is the external stimulus. The voltage dependent
currents are modelled as17{19:

Ix = �gxax(V � Vx) (6)

Il = gl(V � Vl) ; (7)

where subindex x refers to Na, K, sr and sd; � is a temperature dependent factor; gx, gl the maximum
conductance and Vx, Vl the reverse potentials. The activation variable ax are described by the dynamical
equations

dax

dt
=

�(ax;1 � ax)

�x
; (8)

where x refers to K and sd; � is a temperature like factor, �x are the time constants, ax;1 are steady state
activations, while

dasr

dt
=

��(�Isd + �asr)

�sr
; (9)

with � and � constant. For more details and parameter values see Refs..17{19



We extend the model to account for unidirectional coupling, delayed feedback and common noise, in the same
way as in the FHN model, in eq. 5. The new equations are:

CM
dVm

dt
= �ImNa � ImK � Imsd � Imsr � Iml + �(t) (10)

CM
dVs

dt
= �IsNa � IsK � Issd � Issr � Isl + �(t)

+ K[Vm(t)� Vs(t� �)] : (11)

Figure 3. (a) Experimental train of spikes that shows anticipation in the spikes �red by the slave neuron (upper trace)
with respect to the spikes �red by the master neuron (lower trace). (b) Spike �red by the master neuron and anticipated
spike �red by the slave neuron. The delay � is 13 ms.

We have chosen parameters such that in the absence of external stimulus there are no spikes (T = 6 C,
To = 10 C, Vl = �75 mV, and all other parameters are taken from Refs.17{19). The strength of the synaptic
connection is K = 0:03 ms�1, the delay time is � = 50 ms, and the common external stimulus is a Gaussian
white noise which has zero mean and correlation < �(t)�(t0) >= 2DÆ(t � t0) with D = 0:5 (�A)2 ms/cm2.
Qualitatively the same results are obtained with this model (see Figs. 4c, 4d), indicating that the anticipation



phenomenon is robust and model independent. In this case anticipated synchrony is also observed in the absence
of external stimulus, for parameters such that there is spontaneous regular or irregular spike activity (as in
Refs.17{19). The slave neuron produces pulses that anticipate those of the master neuron. As in the experiments,
the simulations show that the slave system occasionally �res an extra pulse which does not correspond to a
pulse �red by the master, and all the pulses �red by the master have the corresponding anticipated pulse �red
by the slave. Furthermore, we have also considered di�erent types of random external stimuli (colored noise
and a periodic signal with random amplitude) �nding the same anticipating behavior. Notice that in the FHN
model (Fig. 4b) the anticipation time is less than the duration of the pulse, while in the HH model (Fig. 4 d)
the anticipation time is much larger than the duration of the pulse. This might be explained by the di�erent
location of the �xed points in parameter space. In the FHN model, when the master and the slave neurons are
in the unexcited state the coupling is very small because the values of the master and slave fast variables, xm
and xs, are nearly zero. On the contrary in the HH model in the unexcited state the coupling is strong (since
the membrane potentials of the master and the slave neurons, Vm and Vs, are di�erent from zero). Both, in the
FHN and HH models the number of errors increases with the anticipation time (and the larger the value of � ,
the larger the strength of the synaptic connection needed to observe synchrony). We have also found that by
considering a chain of cascaded slave neurons, the number of errors for a given anticipation time can be reduced.
The quanti�cation of the synchronization as well as a detailed study of the parameter region where it occurs will
be reported elsewhere.

4. CONCLUSIONS

We hope that our �ndings will stimulate the search for anticipated synchrony in biological systems. Our results
show that non-linearity, noise and delayed feedback might conspire to produce new interesting phenomena. We
believe that the current work may have applications, for example, by o�ering an alternative technique to study
irregular pulsing behavior in excitable systems such as sensory neurons or cardiac tissue. Furthermore, there are
many neural structures, including the thalamus and the visual cortex, where the conditions we have simulated,
namely inhibitory delayed feedback, are present. Experiments based on arti�cial electrical synapses speci�cally
designed to search for anticipated synchrony can be performed. Only the identi�cation and the recording of
voltage signals at two points in the neural circuitry are needed (as in the experiments presented in Ref.20).
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