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Abstract—Two kinds of cavity solitons, stable circular domain in their tails due to diffraction. When a domain of one phase
walls (droplets) and dark-ring cavity solitons, are presented in  embedded in the other shrinks, these oscillatory tails interact
models of vectorial Kerr resonators and degenerate optical para- and may form stable localized states. The intensity profile of

metric oscillators. These structures are universal in systems with th it lit is ch terized b K ded b
two equivalent homogeneous states and are found for parameter €S€ Cavity' Solitons IS characierized Dy a peax Suffounded by a

values close to those of a modulational instability of a flat front. dark ring and then by a homogeneous phase. Dark-ring cavity
Stable droplets owe their existence to curvature effects and, solitons (DRCS) have been described first in the mathematical
therefore, they are not present in one-dimensional systems. We context of the Swift-Hohenberg equation [5] and later in the
show that stable droplets nucleate out of dark-ring cavity solitons degenerate optical parametric oscillator (DOPO) both off [6]
and that in some systems there are regimes in which they coexist. ) -
) ] _ i _ and at resonance [7], [8], and in the vectorial Kerr resonator
Index Terms—Cavity solitons, optical parametric oscillators, 91 These are the two nonlinear optical systems discussed here.
vectorial Kerr resonators. ; )
Recently, we have also described the existence of a novel
kind of stable localized structure in a generic model equation,
I. INTRODUCTION the parametrically driven Ginzburg—Landau equation: the stable
PATIALLY localized structures appearing in the transvers%tmglIet [_10]'| n dcontr_ast W;;[h DRCS;{.Stazl]e (tzlroplr?ts are large
lane of optical cavities filled with quadratic or cubic nonStavl€ circular domain wap's separafing the two homogeneous
lutions. Stable droplets have been shown to appear close to

linear media have attracted a lot of attention in recent years [I}. dulational instability of a flat d . Il and bal
In particular, cavity solitons in regimes where a homogeneo & moduational instability ot a Tlat domain wall and barance

and a spatially modulated solution coexist and are stable hd gcurvatur(.ajdriver? shrinking of a domain with the'grovvth due
been discovered and shown to be useful for optical codilt the instability of tightly curved fronts [10]. There is a funda-

and memory applications [2], [3]. A related yet different clas gntal dlfference_ between the mechqnlsm that allows for the
of cavity solitons has been associated with the existence a tence of prewou_sly reported localized structures, namgly,
equal stability of two homogeneous solutions (also calle vity solitons In regimes whereahqmoge_neous and_aspa'uglly
phases) which differ from each other byraphase shift in modulated solution coexist, and cavity solitons associated with

the slowly varying amplitude of the electric field or by theirIhe existence of two homogeneous solutions (DRCS), and the

polarization state. Systems which satisfy the latter condition @;ﬁle droplet. V(\j”:”e tz_e first FWO tlypes; of caw:ybsloh(tjonsleiqs(tj
commonplace in optics due to either the polarization symme In one- and two-dimensional systems, stable aroplets do

or the quadratic nature of the nonlinearity. The cavity solitorl&t emstf;n ?neT(ﬂme?smntEecausl,e th?'; §tab|lltty IS duito Clg.'
in these systems in two transverse dimensions are often formyGYf!re tects. Tneretore, they only exist in systems whose di-
by shrinking domains of one phase embedded in the Othg}gnsmnallty is at least two. It is the main aim of th|.s paper to

The domain walls separating the two equivalent phases Show that stable droplets appear rather generally in nonlinear

narrow spatial features [4] and present damped oscillatio?]BF'Cal devices. We study the details of stable droplets Inavec-
torial Kerr resonator and DOPO and we characterize the transi-

tion from DRCS to stable droplet in those systems.
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equivalent. However, fod = 2, these fronts may move due to
curvature effects. For simplicity, let us consider the movement
of a domain with circular symmetry. The radius of a circular do-
main of one solution embedded in the other evolves in time as

R(t) = —(Eo)/R (1)
where E is a control parameter of the system, typically, the -1 . , . . . .
pump field in nonlinear optical cavities. The coefficientan 0O 5 10 15 20 25 30
be calculated from the profile of the one-dimensionaK 1) N ,

front connecting the two equivalent states [10]. The profile of

the front depends on the control parameﬁarand therefore, Fig-1. Profile ofthel = 1 front connecting the two equivalent homogeneous
- P ' solut f th torial Ki t = 1.6.

the coefficienty depends also oR, through the profile of the solutions of the vectorial Kerr resonator

front. For a large variety of systems, the coefficigisan change

sign upon variations of the control parameter. We identify the

valueE, = Ej ; of the control parameter for whichvanishes, The mean field equations for a self-defocusing vectorial Kerr

and we assume > 0(y < 0) for By > Eo1(Ey < Epy). resonator are [11], [12]

Wh_enw is p_osmve_ and Ia_rge, any _cwc_:ular phase d_omaln W|t5 Er=—(1—i0)Ey +iv® Ex + Ey

arbitrary initial radius shrinks until it disappears. It is observed 1

that arbitrarily shaped domains also shrink and disappear and _Zi“Ei'z + BlE£Y1E+  (4)

the typical domain size decreases as in (1. i negative, any . ) ! _
circular domain will grow due to curvature effects. In additionWherGEjE are the circularly polarized field components, is

: . . Lo
any perturbation of a wall grows so that in this regime a fleﬁ]e pump ¢ polarized) is the cavity detunindy* is the trans-

wall is modulationally unstable and a generic initial conditioPLerse Laplacian, and is related to the susceptibility tensor. In

evolves into labyrinthine patterns. Therefofg, ; signals the this paper, we considét = 1 and = 7. ForEo < By, ~

< i i =
place at which a flat wall connecting the two equivalent stat 5, the homogeneous symmetric solutiép = I_ (where

becomes modulationally unstable. + = |EL|?) is stable [12]. At this threshold value yapolar-
ized stripe pattern is formed. For pump values above a second

Close toEy,y, 7 can be written a8, (£o — Eo,1) and non- gﬁreshold,Eo ~ 1.5, there is bistability between two homo-

!{lhn_iacrazlérvg\:]u;?nc?_;re(jcél(;ns ;ﬁ;’ﬁ ftgr ?ﬁetik?na;:t& azcr?trnt. neous solutions, namel4 and £, which are asymmetric
: ’ pitude equat urv gently I # I 15 # I') and, therefore, elliptically polarized.

curved fronts can be derived rather generally [10]. In the ca Rese two solutions are equivalent in the sensefifat £
:Fl

of C|rgular domains .Of r.adluR,.n i 1/}_%’ and the following so that they have the same total intensity, polarization ellipticity,

equation for the radius is obtained [10]: and stability properties for all values of the control parameter.
They differ in the orientation and in the direction of rotation of

R= —c1(Ey — Eo,1)% _ 03% ) the pplarization eIIips_e. A domain of one of these hor_noge_neous

solutions embedded in the other can, therefore, be identified as
a polarization domain. The profile of&= 1 front connecting

where the coefficients; andc; can be calculated from the pro-these two solutions faE, = 1.6 is shown in Fig. 1. The shape of

file of the d = 1 front connecting the two equivalent solutionghese fronts has been obtained by solving numericallyi thel

atEy = Fy following the procedure indicated in [10]. Sincestationary form of (4), namely

we are considering > 0 for Ey > Ey 1, it follows thate; > 0. ) o

If ¢ is negative (supercritical bifurcation), our analysis predicts= —(1 =) Ex(2) + id, Ex(w) + Eo

just aboveF ; the existence of stable stationary circular do- —li[|Ei(x)|2 + BlEx ()2 Ex(z) (5)

mains (the stable droplet) with a radiig given by 4

Il. V ECTORIAL KERR RESONATORS

and imposing a zero derivative as the left and right boundary
1 conditions:d, F1(z = 0) = 0 andd, F+(x = L) = 0, where
=/ (3) L isthe system size. From tlle= 1 front profile and following

VEo—Eo1 V & the procedure indicated in [10], we determine the value of the

growth coefficient for a circular domain. It follows from (5)
For Ey larger than but close td) 1, an initially small (very thatthed = 1 front profile depends on the pump strendih
large) domain grows (shrinks) until a stable droplet is formednd, therefore, the value efwill also be dependent of, as
Note that the radius of the stable droplet divergeB@. shown in Fig. 2.

Finally, we demonstrated in [10] that domains of arbitrary In the bistability region, depending on the valueygfthree
shape evolve first to circular domains and then to stable dropledgnamical regimes can be identified when increasing the con-
making the stable droplet an attractor and the most relevant iml paramete, (Fig. 2) [9]. They are, respectively, a regime
calized structure for values of the control parameter just abowklabyrinthine pattern formation foE, < Ej 1, a regime of
the modulational instability of the flat domain wall. formation of localized structures fdty ; < Fy < Ep2, and

—c3

Ry
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Labyrinthine Localized Domain 2.0
Patterns Structures Coarsening

F E Fig. 3. DRCS of the vectorial Kerr resonator model fos = 1.6 and the
~ Lk E other parameters specified in the text. Vertical variable is the real part &f the
E 3 field. Dashed line represents the central section of the real part & thieeld.
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Fig. 2. Growth ratey versus the pumgE, for the vectorial Kerr resonator. [ ]
Vertical solid line indicates the modulational instability threshold for the flat 5F 3
front £, 1 = 1.550. Vertical dashed line indicates the upper limit of existence F
of localized structure€, » = 1.703. Upper figures show, from left to right, (O] SEEERE kvt .
snapshots of typical configurations of the total intensfty + 7_ in the 1.55 1.60 1.65 1.70
labyrinthine localized structures and coarsening regimes. E,

. . . . Fig.4. Radius of the cavity solitons as a function of the pump paranigtéor
aregime of domain coarsening fék > E0»2 (Flg' 2)' These the vectorial Kerr resonator. Solid (dotted) lines correspond to stable (unstable)

three regimes have been experimentally observed in a four-waygty solitons. Vertical solid line indicates, , . Vertical dashed line indicates
mixing resonator []_3] and []_4] As indicated previou%,l is Eo,. Vertical dotted line indicate&l, 3, the transition from DRCS to stable
the modulational instability threshold of a flat domain wall condroplet (see texy.
necting the two asymmetric homogeneous states [9], [EQ}.
is the limit of existence of localized structures, as will be exare several equilibrium distances. Fig. 3 shows a typical cross
plained below. In the regime of labyrinthine pattern formatiofection of a DRCS foF, = 1.6. It has been calculated by nu-
(Ey < Eg1)v < 0, a flat domain wall is modulationally un- merically solving the stationary radial equation [8]
stable and a circular domain grows until its boundary breaks up 1
because of the modulational instability. This behavior indicatés= —(1 — i6)Ex(r) + i <df + —dr> Ei(r)+ Ep
that the system prefers to have the longest possible domain walls "
or, equivalently, the largest possible curvature. —iiHEi(T)P + BIE+(r)|*|Ex(r) (6)

For £y > Ey1,v > 0 and very large circular domains pro-
gressively shrink. Away from the flat wall modulational instawith zero derivative at the boundaries:EL(r = 0) = 0 and
bility threshold (E, > 1.57), however, but beford, », the d,.E4(r = L) = 0, whereL is the system size (which we take
shrinking is halted by the formation of DRCS. These structure@such larger than the size of the soliton). The vertical variable in
owe their stability to the interaction of the oscillatory tails of th&ig. 3 is the real part of the circularly polarizéd, field. The
domain walls, the interaction being stronger the larger the amame DRCS refers, instead, to the form of the total intensity
plitude of the local oscillation. For a certain classiof 1 sys- (4 and— circularly polarized fields) as shown, for example, in
tems, and under some approximations, it has been shown tingt upper panels of Fig. 2. We note that, at difference with the
the interaction of two distant domain walls can be describ&OPO, the total intensity on the dark ring is not zero, but we use
by a potential with several wells which become progressivetlie name DRCS because they are the same kind of structures
deeper the shorter the distances between the domain walls [Bid the ring around the central peak takes the lowest value of
The wells of the interaction potential are located at the distandbe total intensity.
where the extrema of the oscillations of the tails overlap with There is an important difference between the= 1 and
each other. Our nonlinear optical systems do not belong to thlis= 2 cases. Inl = 2, increasing the pump there is a threshold
class of systems, but equilibrium distancegis 1 andd =2 (Ko = Fyp 2 (Fig. 2 and 4) for the interaction of the local oscil-
are also found whenever the extrema of the local oscillationslafions to counterbalance the shrinking of the circular domains
the domain walls overlap with each other [8]. For the vectoridue to the local curvature of the walls. Fig. 4 shows the size of
Kerr resonator, we found that only locking at the first maximthe cavity solitons inl = 2. It has been calculated by solving
of the oscillations is effective in counterbalancing the shrinking6). The solid line corresponds to the stable DRCS and stable
while for the DOPO, as will be shown in the next section, thedroplet while the dotted line corresponds to unstable localized



GOMILA et al: STABLE DROPLETS AND DARK-RING CAVITY SOLITONS IN NONLINEAR OPTICAL DEVICES 241

z.er 0012 F T ! + ]
; 0.010F Yoy ]

0.008 F +F E
0.006 F ; ]
L _Fl- ]
0.004 & E
0.002F no“PL E
0.000t . L7, | ! ]
1548 1552 1.556 1.560

Eo

1/Re
T
i
1

Fig. 6. Linear dependence af 22 with the control parameteE, for the

and the other parameters specified in the text. Vertical variable is the real p%{ﬂble dropletin the vectorial Kerr resonator. Dotted line corresponds to (3) with

. . : .= 0.591 andcz = —0.393. Crosses are from the numerical determination
fthe £ field. Dashed | ts th tral sect f th | part of t 3
OE f(ieelc;r ie ashed line represents the central section of the real part o g?the stable droplet as steady states of (4).

Fig.5. Stable droplet of the vectorial Kerr resonator modeHgpr= 1.55238

truct hich h h imilar to that of the stabl DR¢§IIent,thus demonstrating that the stable droplet are a universal
structures which have a shape simiiarto that otthe stable ature of systems with modulational instability of the flat front.

The threshold for existence of DRCS is marked in the diagramMoving now in the direction of increasing,, we find that

of F_|g. Za.stO’Q' IFmay appear coupterlnt'u.ltwe that DRCS los?he stable-droplet stable branch has a change of behavior at
their stability for increasing pump intensities where one wou , = Eys (Fig. 4). This particular point corresponds to the
expectdiffraction to be more effective on the local domain Wall§alue of the pump for which the interaction of the tails becomes

The amplitude of the local oscillations at the tails of the domag];t e same order as the nonlinear correction of (2). We note
walls, however, has a complex dependence on the parameter grthe transition from DRCS to stable droplet is continuous

the system and decreases for increasing input energies. Furt 85 that the stable droplet nucleates out of the DRCS. Such a

more, itis clear from Fig. 2 that the coefficiepgrows with the transition is, however, marked by a sudden change in the size of

pump; therefore, the shrinking force due to front curvature bﬁie cavity soliton. While the radius of the DRCS changes very

comes more important, overcoming the interaction ofthetailslﬁl{Ie with decreasing control parameté, the radius of the
Ey = Ey . In terms of stationary solutions, this threshold cor. o

Stabl let ch idly witltyg — E h i
responds to a saddle-node bifurcation where the stable andgiglb e droplet changes rapidly wiftto 0.1) @S shown in

e ) . \
. . . -ForEys < Ey < Ey,», the interaction of the oscillatory
;Jnstable btr)anchej fOf the DRCSI CO"'Ide (F'?' 4). I\.lod_cavt{ty SO%ils is dominant and the cavity soliton is a DRCS characterized
tﬁntstﬁ.re 0 tﬁer;/he ﬁr lp()jufmpdva ues larger Iﬁ:m indicating by a larger intensity at the center than in the surrounding back-
atthis1s the thresho or_ omain coarsening. ) _ground (Fig. 3). FoF, 1 < Ey < Ey 3, the nonlinear curvature
“We focus now on the region close to the modulational instgysects (including the growth which leads to the stable droplet)
bility of the flat domain wall but forEy > Fy,,. In agreement yominate over the interaction of the oscillatory tails and a stable
with the theory of the previous section, close to the péint  siationary circular domain wall is formed. We note here that un-
where~ vanishes, nonlinear corrections to (1) must be consigke the DOPO case discussed in Section IV, the stable droplet
ered [10]. The derivation of the amplitude equation (2), cagmerges directly from the single-peak DRCS and that there is

ried out for a general system in [10], yields = 0.591 and 4 pistability between any DRCS and stable droplet.
cs = —0.393 for the case considered here. Singeis neg-

ative, we expect a region of stability of stable droplet. These V. DOPO

are indeed found in numerical simulations as Fig. 4 and Fig. 5

clearly display. The stable droplets are found exactly in the samelhe second nonlinear optical device that we consider is the
way as the DRCS, namely, by solving (6) as indicated abow1ase-matched DOPO where both puaand signal4, fields

As expected, the radius of the stable droplet quickly diverges@ée resonant. The mean field equations are [15]

infinity the closer we move td ;. In the vectorial Kerr res- o i,

onator, the stable droplet is in fact an elliptically polarized do- O Ao =T[-Ag + Eo—1] + 5V Ag

mai_n embedded in a b'ackgro.und with opposite (.allip'tical pc_)Iar— BiAy = — Ay — iA AL + AgAT +iav? A, @
ization and, therefore, it constitutes a cavity polarization soliton.

We have checked that the stable-droplet cavity soliton foumeherel is the ratio between the pump and signal cavity decay
in the vectorial Kerr resonator model has the universal propeates,F is the amplitude of the external pump field (our con-
ties suggested in Section Il. At the center of the stable droplal parameter))\; is the signal detuning andis the diffraction
the field takes the value of one of the homogeneous solutiopsrameter. In [7] and [8], DRCS have been found4ar = 0
Depending on the value of the pump, the radius of the stalftesonant case) and fax; > 0. In order to find a modula-
droplet can be extremely large. In fact, the radius divergestainal instability of the flat front, however, we need to turn our
Ey1 asRy ~ 1/\/Ey — Ey . Fig. 6 shows a comparison ofattention to negative signal detunings and we chabge- —1.
1/R2 between the theory of (3) (dotted line in Fig. 6) and thMoreover, itis possible to show that the modulational instability
numerical simulations (crosses) in the vicinitylgf ; (vertical of the flat front approaches the signal generation threshold from
solid line) where stable droplets are large. The agreement is akove in the limit of high" in a way analogous to what is ob-
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Fig. 7. Profile of the 1-D front connecting the two equivalent homogeneous 20 2.2 24 26 28 3.0 3.2
solutions of the DOPO foE, = 2.5. Eo
0.20F e Fig.9. Radius of the cavity solitons as a function of the pump paranfigtéar
: » E the DOPO. Solid (dotted) lines correspond to stable (unstable) cavity solitons.
0.15F O Primary (secondary) DRCS are labeled as PDRCS (SDRCS). Vertical solid line
F indicatesE ;. Vertical dashed line indicatds, .. Vertical dotted line indicates
0.10F E, 3, the transition from DRCS to stable droplet. Inset shows a closeup of this
3 F transition.
\L; 0.05F
0.00F------- three dynamical regimes can be identified. Fgr> Ej o, there
E is a regime of domain coarsening and no cavity solitons. For
—0.05¢ Eyp 1 < E < Ey 2 asymptotic cavity solitons exist, either DRCS
—0.10 E...21890. . I
. or stable droplet. Finally, foEy < Ejy 1, labyrinthine patterns
1 2 3 4 ) appear. We note here a difference with the vectorial Kerr res-

Eo onator case. In this region, the interaction of the tails of the do-
main walls between the stable homogeneous solutions is still
Fig.8. Growth rate for the DOPO equations (7). Vertical solid line indicatesstrong enough to stabilize a single peak (primary) DRCS cor-
Eo 1. Vertical dashed line indicates . responding to the locking of the first maxima of the oscillatory
tails. This is clearly visible in Fig. 9, where one branch of the
served for the thresholds of DRCS and pattern formation fBIRCS extends well below the modulational instability threshold
positive and zero signal detunings [8]. We then select 6 at Ey; where labyrinthine patterns exist. Note that the= 2
anda = 0.5, which allow for the analysis of the transitioncavity solitons (of the stable droplet or DRCS type) and their
from DRCS to stable droplet at parameter values which are etability have been calculated by solving the stationary radial
perimentally accessible. Fér < E, < 1, the zero homo- equations
geneous solution is stable. Above tiig = 1 threshold, a ia 1
stripe intensity pattern is formed [15]. For pump values above 0 =I[-Ay(z) + Ey — A}(2)] + —(d2 + —d,.) Ao(w)
a second thresholdy, =~ 1.56, there is multistability between . 2 iy
0 ! . . 0= - Al(.’li) — ’LAlAl((L') + Ao(ﬂ?)Al(x)
two nonzero homogeneous solutions and several (regular or ir- 1
regular) spatially modulated solutions. The latter cease to exist +ia(d? 4+ —d,) A () 9)
at the threshold of labyrinthine patterns, i.e., the modulational "
instability of the flat front connecting the two homogeneous stith the numerical methods described in [8].
lutions, which occurs ak ; = 2.189. The two homogeneous ~ Since the stable droplets are always on the side opposite to the
solutions have the same intensity and stability properties for lbyrinths, stable droplets for the DOPO with these parameters
values of the control parameter. They only differ by @hase cannotnucleate out of the single-peak DRCS. It has been shown
shift in the signal field4;. The profile of ad = 1 front con- N [8] that the single-peak DRCS, corresponding to the locking
necting these two homogeneous solutions is shown in Fig.of.the first maxima, is just one of several solitons whose sta-
As with the vectorial Kerr resonator, the front profile has bedgility is due to the interactions of the tails of the domain walls.
calculated by solving numerically the= 1 stationary form of For example, a secondary DRCS with a central trough, corre-

(7) sponding to the locking of the first minima, is also stable at res-
onance. We have also located such secondary DRCS structures
0 =Tl—Ar(2) + En — A2 1y in the vicinity of the modulational instability of the flat front.
[=Ao(w) + Eo = Ai(w)] + 7 dz Ao() The uppermost solid line on the right sidel&f 5 in Fig. 9 gives

0= — Ay(x) —iA1 Ay (x) + Ag(x) A} (2)+iad? Ay (x). (8) the radius of the stable DRCS displayed in Fig. 10. Unlike the
DOPO at resonance\; = 0) considered in [7] and [8], the
Fig. 8 shows the behavior of the growth rate for a circular damnstable branch of the secondary (trough) DRCS merges with
main~(Ey) for the DOPO calculated as indicated in [10] fronthe stable branch of the primary (single-peak) DRCS at around
thed = 1 front profile. As for the vectorial Kerr resonator caseF, ~ 2.126. We explain this fact by noting that( Ey) of (1)



GOMILA et al: STABLE DROPLETS AND DARK-RING CAVITY SOLITONS IN NONLINEAR OPTICAL DEVICES 243

1.5
1.9
0.5
O-O
—=
=3 =)
= o
o=
—1-©
—1-2
_z-°

(b)
(b)

DRCS for the DOPO aF, = 2.21. Solid lines are the central sections of theFig. 12. Primary (single-peak) DRCS at the center of a stable droplet for the

Fig. 10. (a) Real part of the pump and (b) signal fields of a secondary (trough)

three-dimensional (3-D) plots. DOPO atE, = 2.19015. Both cavity solitons taken separately are stable in
this parameter region. (a) Real part of the pump field. (b) Real part of the signal
0.0030F ; — . field. Solid lines are the central sections of the 3-D plots.
0.0025 F A
0.0020 E oy 3 coefficients is obtained from the derivation of the amplitude
P : g ; equation (2) following the procedure indicated in [10]. One
~ 0.0015¢ o E important aspect of the stable droplet in the DOPO system is
0.0010F +++ E that stable droplets are now bichromatic since they are visible
0.0005 f A+ E in both pump and signal fields. Interesting correlations of
0.0000E o , ] fluctuations between spatial solitons at the fundamental and
21870 2.1903 2.1937 2.1970 second harmonic frequencies have recently been reported [16].
E, We are now extending these studies to parametric downconver-

sion in cavities where the DRCS and stable droplet are good
Fig. 11. Linear dependence df R2 with the control parameteE, for the candidates for their observation.
T D B &1 Sy I he enire regime of the existence of stable droplets in the
droplet as steady states of (7). DOPO, we observe bistability of stable droplets and primary

(single-peak) DRCS (Fig. 9). We show in Fig. 12 an interesting
increases withZ, in the case described here (Fig. 9) and inste&@Mposite cavity soliton which is a natural consequence of this
decreases witlk, at resonance. bistability. A primary (single-peak) DRCS is stable at the center

The secondary DRCS loses stability just after fiyg; line  ©f @ large stable droplet @, = 2.19015.

of Fig. 9 when decreasing’,. The unstable branch of this
saddle-node bifurcation is then linked to the stable branch of
the stable droplet which start to inflate &% ;. Again, one
observes a sudden change in the radius of the cavity soliton$Ve have demonstrated within the context of a general theory
when switching from DRCS to stable droplets. The radiubat in two different nonlinear optical systems there exist stable
of the stable droplet then quickly grows with the parameteircular domains. For the vectorial Kerr resonator, these do-
FEy approaching the modulation instability of the stable frontnains are in fact polarization domains, cavity polarization soli-
as clearly displayed in Fig. 9. As shown in Fig. 11, stabl®ns, while for the optical parametric oscillator, they are do-
droplets in the DOPO again satisfy the general equation (®gins of opposite phase. This offers two different possibilities
with ¢; = 0.115 andcz = —0.244, where the value of thesefor addressing and manipulating cavity solitons.

V. CONCLUSION
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We have also shown that stable droplets nucleate out of DR&®
but can coexist with DRCS in the parameter space. This fz\
may be exploited in increasing the information capacity of the
devices by using the stable droplet and DRCS to encode sep
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