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Abstract—Two kinds of cavity solitons, stable circular domain
walls (droplets) and dark-ring cavity solitons, are presented in
models of vectorial Kerr resonators and degenerate optical para-
metric oscillators. These structures are universal in systems with
two equivalent homogeneous states and are found for parameter
values close to those of a modulational instability of a flat front.
Stable droplets owe their existence to curvature effects and,
therefore, they are not present in one-dimensional systems. We
show that stable droplets nucleate out of dark-ring cavity solitons
and that in some systems there are regimes in which they coexist.

Index Terms—Cavity solitons, optical parametric oscillators,
vectorial Kerr resonators.

I. INTRODUCTION

SPATIALLY localized structures appearing in the transverse
plane of optical cavities filled with quadratic or cubic non-

linear media have attracted a lot of attention in recent years [1].
In particular, cavity solitons in regimes where a homogeneous
and a spatially modulated solution coexist and are stable have
been discovered and shown to be useful for optical coding
and memory applications [2], [3]. A related yet different class
of cavity solitons has been associated with the existence and
equal stability of two homogeneous solutions (also called
phases) which differ from each other by aphase shift in
the slowly varying amplitude of the electric field or by their
polarization state. Systems which satisfy the latter condition are
commonplace in optics due to either the polarization symmetry
or the quadratic nature of the nonlinearity. The cavity solitons
in these systems in two transverse dimensions are often formed
by shrinking domains of one phase embedded in the other.
The domain walls separating the two equivalent phases are
narrow spatial features [4] and present damped oscillations
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in their tails due to diffraction. When a domain of one phase
embedded in the other shrinks, these oscillatory tails interact
and may form stable localized states. The intensity profile of
these cavity solitons is characterized by a peak surrounded by a
dark ring and then by a homogeneous phase. Dark-ring cavity
solitons (DRCS) have been described first in the mathematical
context of the Swift–Hohenberg equation [5] and later in the
degenerate optical parametric oscillator (DOPO) both off [6]
and at resonance [7], [8], and in the vectorial Kerr resonator
[9]. These are the two nonlinear optical systems discussed here.

Recently, we have also described the existence of a novel
kind of stable localized structure in a generic model equation,
the parametrically driven Ginzburg–Landau equation: the stable
droplet [10]. In contrast with DRCS, stable droplets are large
stable circular domain walls separating the two homogeneous
solutions. Stable droplets have been shown to appear close to
the modulational instability of a flat domain wall and balance
the curvature-driven shrinking of a domain with the growth due
to the instability of tightly curved fronts [10]. There is a funda-
mental difference between the mechanism that allows for the
existence of previously reported localized structures, namely,
cavity solitons in regimes where a homogeneous and a spatially
modulated solution coexist, and cavity solitons associated with
the existence of two homogeneous solutions (DRCS), and the
stable droplet. While the first two types of cavity solitons exist
both in one- and two-dimensional systems, stable droplets do
not exist in one dimension because their stability is due to cur-
vature effects. Therefore, they only exist in systems whose di-
mensionality is at least two. It is the main aim of this paper to
show that stable droplets appear rather generally in nonlinear
optical devices. We study the details of stable droplets in a vec-
torial Kerr resonator and DOPO and we characterize the transi-
tion from DRCS to stable droplet in those systems.

II. GENERAL THEORY OFSTABLE DROPLETS

Before entering into the details of the models of the nonlinear
optical devices, we recall the main points of the theory behind
the existence and stability of stable droplets close to the modu-
lational instability of a flat front [10]. In particular, we consider
systems with two different homogeneous solutions which are
equivalent under symmetries of the system. For the systems we
consider, and for the case of transverse dimensionality ,
a front connecting the two states does not move since they are
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equivalent. However, for , these fronts may move due to
curvature effects. For simplicity, let us consider the movement
of a domain with circular symmetry. The radius of a circular do-
main of one solution embedded in the other evolves in time as

(1)

where is a control parameter of the system, typically, the
pump field in nonlinear optical cavities. The coefficientcan
be calculated from the profile of the one-dimensional ( )
front connecting the two equivalent states [10]. The profile of
the front depends on the control parameterand, therefore,
the coefficient depends also on through the profile of the
front. For a large variety of systems, the coefficientcan change
sign upon variations of the control parameter. We identify the
value of the control parameter for whichvanishes,
and we assume for .
When is positive and large, any circular phase domain with
arbitrary initial radius shrinks until it disappears. It is observed
that arbitrarily shaped domains also shrink and disappear and
the typical domain size decreases as in (1). Ifis negative, any
circular domain will grow due to curvature effects. In addition,
any perturbation of a wall grows so that in this regime a flat
wall is modulationally unstable and a generic initial condition
evolves into labyrinthine patterns. Therefore, signals the
place at which a flat wall connecting the two equivalent states
becomes modulationally unstable.

Close to , can be written as and non-
linear curvature corrections have to be taken into account. In
this case, an amplitude equation for the curvatureof gently
curved fronts can be derived rather generally [10]. In the case
of circular domains of radius , , and the following
equation for the radius is obtained [10]:

(2)

where the coefficients and can be calculated from the pro-
file of the front connecting the two equivalent solutions
at following the procedure indicated in [10]. Since
we are considering for , it follows that .
If is negative (supercritical bifurcation), our analysis predicts
just above the existence of stable stationary circular do-
mains (the stable droplet) with a radius given by

(3)

For larger than but close to , an initially small (very
large) domain grows (shrinks) until a stable droplet is formed.
Note that the radius of the stable droplet diverges at.

Finally, we demonstrated in [10] that domains of arbitrary
shape evolve first to circular domains and then to stable droplets,
making the stable droplet an attractor and the most relevant lo-
calized structure for values of the control parameter just above
the modulational instability of the flat domain wall.

Fig. 1. Profile of thed = 1 front connecting the two equivalent homogeneous
solutions of the vectorial Kerr resonator forE = 1:6.

III. V ECTORIAL KERR RESONATORS

The mean field equations for a self-defocusing vectorial Kerr
resonator are [11], [12]

(4)

where are the circularly polarized field components, is
the pump ( polarized), is the cavity detuning, is the trans-
verse Laplacian, and is related to the susceptibility tensor. In
this paper, we consider and . For

, the homogeneous symmetric solution (where
) is stable [12]. At this threshold value, a-polar-

ized stripe pattern is formed. For pump values above a second
threshold, , there is bistability between two homo-
geneous solutions, namely, and , which are asymmetric

and, therefore, elliptically polarized.
These two solutions are equivalent in the sense that ,
so that they have the same total intensity, polarization ellipticity,
and stability properties for all values of the control parameter.
They differ in the orientation and in the direction of rotation of
the polarization ellipse. A domain of one of these homogeneous
solutions embedded in the other can, therefore, be identified as
a polarization domain. The profile of a front connecting
these two solutions for is shown in Fig. 1. The shape of
these fronts has been obtained by solving numerically the
stationary form of (4), namely

(5)

and imposing a zero derivative as the left and right boundary
conditions: and , where

is the system size. From the front profile and following
the procedure indicated in [10], we determine the value of the
growth coefficient for a circular domain. It follows from (5)
that the front profile depends on the pump strength
and, therefore, the value ofwill also be dependent on as
shown in Fig. 2.

In the bistability region, depending on the value of, three
dynamical regimes can be identified when increasing the con-
trol parameter (Fig. 2) [9]. They are, respectively, a regime
of labyrinthine pattern formation for , a regime of
formation of localized structures for , and
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Fig. 2. Growth rate
 versus the pumpE for the vectorial Kerr resonator.
Vertical solid line indicates the modulational instability threshold for the flat
front E = 1:550. Vertical dashed line indicates the upper limit of existence
of localized structuresE = 1:703. Upper figures show, from left to right,
snapshots of typical configurations of the total intensityI + I in the
labyrinthine localized structures and coarsening regimes.

a regime of domain coarsening for (Fig. 2). These
three regimes have been experimentally observed in a four-wave
mixing resonator [13] and [14]. As indicated previously, is
the modulational instability threshold of a flat domain wall con-
necting the two asymmetric homogeneous states [9], [10].
is the limit of existence of localized structures, as will be ex-
plained below. In the regime of labyrinthine pattern formation

, a flat domain wall is modulationally un-
stable and a circular domain grows until its boundary breaks up
because of the modulational instability. This behavior indicates
that the system prefers to have the longest possible domain walls
or, equivalently, the largest possible curvature.

For , and very large circular domains pro-
gressively shrink. Away from the flat wall modulational insta-
bility threshold , however, but before , the
shrinking is halted by the formation of DRCS. These structures
owe their stability to the interaction of the oscillatory tails of the
domain walls, the interaction being stronger the larger the am-
plitude of the local oscillation. For a certain class of sys-
tems, and under some approximations, it has been shown that
the interaction of two distant domain walls can be described
by a potential with several wells which become progressively
deeper the shorter the distances between the domain walls [14].
The wells of the interaction potential are located at the distances
where the extrema of the oscillations of the tails overlap with
each other. Our nonlinear optical systems do not belong to this
class of systems, but equilibrium distances in and
are also found whenever the extrema of the local oscillations of
the domain walls overlap with each other [8]. For the vectorial
Kerr resonator, we found that only locking at the first maxima
of the oscillations is effective in counterbalancing the shrinking,
while for the DOPO, as will be shown in the next section, there

Fig. 3. DRCS of the vectorial Kerr resonator model forE = 1:6 and the
other parameters specified in the text. Vertical variable is the real part of theE

field. Dashed line represents the central section of the real part of theE field.

Fig. 4. Radius of the cavity solitons as a function of the pump parameterE for
the vectorial Kerr resonator. Solid (dotted) lines correspond to stable (unstable)
cavity solitons. Vertical solid line indicatesE . Vertical dashed line indicates
E . Vertical dotted line indicatesE , the transition from DRCS to stable
droplet (see text).

are several equilibrium distances. Fig. 3 shows a typical cross
section of a DRCS for . It has been calculated by nu-
merically solving the stationary radial equation [8]

(6)

with zero derivative at the boundaries: and
, where is the system size (which we take

much larger than the size of the soliton). The vertical variable in
Fig. 3 is the real part of the circularly polarized field. The
name DRCS refers, instead, to the form of the total intensity
( and circularly polarized fields) as shown, for example, in
the upper panels of Fig. 2. We note that, at difference with the
DOPO, the total intensity on the dark ring is not zero, but we use
the name DRCS because they are the same kind of structures
and the ring around the central peak takes the lowest value of
the total intensity.

There is an important difference between the and
cases. In , increasing the pump there is a threshold

( (Fig. 2 and 4) for the interaction of the local oscil-
lations to counterbalance the shrinking of the circular domains
due to the local curvature of the walls. Fig. 4 shows the size of
the cavity solitons in . It has been calculated by solving
(6). The solid line corresponds to the stable DRCS and stable
droplet while the dotted line corresponds to unstable localized
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Fig. 5. Stable droplet of the vectorial Kerr resonator model forE = 1:55238
and the other parameters specified in the text. Vertical variable is the real part
of theE field. Dashed line represents the central section of the real part of the
E field.

structures which have a shape similar to that of the stable DRCS.
The threshold for existence of DRCS is marked in the diagram
of Fig. 2 as . It may appear counterintuitive that DRCS lose
their stability for increasing pump intensities where one would
expect diffraction to be more effective on the local domain walls.
The amplitude of the local oscillations at the tails of the domain
walls, however, has a complex dependence on the parameters of
the system and decreases for increasing input energies. Further-
more, it is clear from Fig. 2 that the coefficientgrows with the
pump; therefore, the shrinking force due to front curvature be-
comes more important, overcoming the interaction of the tails at

. In terms of stationary solutions, this threshold cor-
responds to a saddle-node bifurcation where the stable and the
unstable branches of the DRCS collide (Fig. 4). No cavity soli-
tons are observed for pump values larger than , indicating
that this is the threshold for domain coarsening.

We focus now on the region close to the modulational insta-
bility of the flat domain wall but for . In agreement
with the theory of the previous section, close to the point
where vanishes, nonlinear corrections to (1) must be consid-
ered [10]. The derivation of the amplitude equation (2), car-
ried out for a general system in [10], yields and

for the case considered here. Sinceis neg-
ative, we expect a region of stability of stable droplet. These
are indeed found in numerical simulations as Fig. 4 and Fig. 5
clearly display. The stable droplets are found exactly in the same
way as the DRCS, namely, by solving (6) as indicated above.
As expected, the radius of the stable droplet quickly diverges to
infinity the closer we move to . In the vectorial Kerr res-
onator, the stable droplet is in fact an elliptically polarized do-
main embedded in a background with opposite elliptical polar-
ization and, therefore, it constitutes a cavity polarization soliton.

We have checked that the stable-droplet cavity soliton found
in the vectorial Kerr resonator model has the universal proper-
ties suggested in Section II. At the center of the stable droplet,
the field takes the value of one of the homogeneous solutions.
Depending on the value of the pump, the radius of the stable
droplet can be extremely large. In fact, the radius diverges at

as . Fig. 6 shows a comparison of
between the theory of (3) (dotted line in Fig. 6) and the

numerical simulations (crosses) in the vicinity of (vertical
solid line) where stable droplets are large. The agreement is ex-

Fig. 6. Linear dependence of1=R with the control parameterE for the
stable droplet in the vectorial Kerr resonator. Dotted line corresponds to (3) with
c = 0:591 andc = �0:393. Crosses are from the numerical determination
of the stable droplet as steady states of (4).

cellent, thus demonstrating that the stable droplet are a universal
feature of systems with modulational instability of the flat front.

Moving now in the direction of increasing , we find that
the stable-droplet stable branch has a change of behavior at

(Fig. 4). This particular point corresponds to the
value of the pump for which the interaction of the tails becomes
of the same order as the nonlinear correction of (2). We note
that the transition from DRCS to stable droplet is continuous
and that the stable droplet nucleates out of the DRCS. Such a
transition is, however, marked by a sudden change in the size of
the cavity soliton. While the radius of the DRCS changes very
little with decreasing control parameter , the radius of the
stable droplet changes rapidly with as shown in
(3). For , the interaction of the oscillatory
tails is dominant and the cavity soliton is a DRCS characterized
by a larger intensity at the center than in the surrounding back-
ground (Fig. 3). For , the nonlinear curvature
effects (including the growth which leads to the stable droplet)
dominate over the interaction of the oscillatory tails and a stable
stationary circular domain wall is formed. We note here that un-
like the DOPO case discussed in Section IV, the stable droplet
emerges directly from the single-peak DRCS and that there is
no bistability between any DRCS and stable droplet.

IV. DOPO

The second nonlinear optical device that we consider is the
phase-matched DOPO where both pumpand signal fields
are resonant. The mean field equations are [15]

(7)

where is the ratio between the pump and signal cavity decay
rates, is the amplitude of the external pump field (our con-
trol parameter), is the signal detuning andis the diffraction
parameter. In [7] and [8], DRCS have been found for
(resonant case) and for . In order to find a modula-
tional instability of the flat front, however, we need to turn our
attention to negative signal detunings and we choose .
Moreover, it is possible to show that the modulational instability
of the flat front approaches the signal generation threshold from
above in the limit of high in a way analogous to what is ob-
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Fig. 7. Profile of the 1-D front connecting the two equivalent homogeneous
solutions of the DOPO forE = 2:5.

Fig. 8. Growth rate
 for the DOPO equations (7). Vertical solid line indicates
E . Vertical dashed line indicatesE .

served for the thresholds of DRCS and pattern formation for
positive and zero signal detunings [8]. We then select
and , which allow for the analysis of the transition
from DRCS to stable droplet at parameter values which are ex-
perimentally accessible. For , the zero homo-
geneous solution is stable. Above the threshold, a
stripe intensity pattern is formed [15]. For pump values above
a second threshold, , there is multistability between
two nonzero homogeneous solutions and several (regular or ir-
regular) spatially modulated solutions. The latter cease to exist
at the threshold of labyrinthine patterns, i.e., the modulational
instability of the flat front connecting the two homogeneous so-
lutions, which occurs at . The two homogeneous
solutions have the same intensity and stability properties for all
values of the control parameter. They only differ by aphase
shift in the signal field . The profile of a front con-
necting these two homogeneous solutions is shown in Fig. 7.
As with the vectorial Kerr resonator, the front profile has been
calculated by solving numerically the stationary form of
(7)

(8)

Fig. 8 shows the behavior of the growth rate for a circular do-
main for the DOPO calculated as indicated in [10] from
the front profile. As for the vectorial Kerr resonator case,

Fig. 9. Radius of the cavity solitons as a function of the pump parameterE for
the DOPO. Solid (dotted) lines correspond to stable (unstable) cavity solitons.
Primary (secondary) DRCS are labeled as PDRCS (SDRCS). Vertical solid line
indicatesE . Vertical dashed line indicatesE . Vertical dotted line indicates
E , the transition from DRCS to stable droplet. Inset shows a closeup of this
transition.

three dynamical regimes can be identified. For , there
is a regime of domain coarsening and no cavity solitons. For

asymptotic cavity solitons exist, either DRCS
or stable droplet. Finally, for , labyrinthine patterns
appear. We note here a difference with the vectorial Kerr res-
onator case. In this region, the interaction of the tails of the do-
main walls between the stable homogeneous solutions is still
strong enough to stabilize a single peak (primary) DRCS cor-
responding to the locking of the first maxima of the oscillatory
tails. This is clearly visible in Fig. 9, where one branch of the
DRCS extends well below the modulational instability threshold
at where labyrinthine patterns exist. Note that the
cavity solitons (of the stable droplet or DRCS type) and their
stability have been calculated by solving the stationary radial
equations

(9)

with the numerical methods described in [8].
Since the stable droplets are always on the side opposite to the

labyrinths, stable droplets for the DOPO with these parameters
cannot nucleate out of the single-peak DRCS. It has been shown
in [8] that the single-peak DRCS, corresponding to the locking
of the first maxima, is just one of several solitons whose sta-
bility is due to the interactions of the tails of the domain walls.
For example, a secondary DRCS with a central trough, corre-
sponding to the locking of the first minima, is also stable at res-
onance. We have also located such secondary DRCS structures
in the vicinity of the modulational instability of the flat front.
The uppermost solid line on the right side of in Fig. 9 gives
the radius of the stable DRCS displayed in Fig. 10. Unlike the
DOPO at resonance ( ) considered in [7] and [8], the
unstable branch of the secondary (trough) DRCS merges with
the stable branch of the primary (single-peak) DRCS at around

. We explain this fact by noting that of (1)
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(a)

(b)

Fig. 10. (a) Real part of the pump and (b) signal fields of a secondary (trough)
DRCS for the DOPO atE = 2:21. Solid lines are the central sections of the
three-dimensional (3-D) plots.

Fig. 11. Linear dependence of1=R with the control parameterE for the
stable droplet in DOPO. Dotted line corresponds to (3) withc = 0:115 and
c = �0:244. Crosses are from the numerical determination of the stable
droplet as steady states of (7).

increases with in the case described here (Fig. 9) and instead
decreases with at resonance.

The secondary DRCS loses stability just after the line
of Fig. 9 when decreasing . The unstable branch of this
saddle-node bifurcation is then linked to the stable branch of
the stable droplet which start to inflate at . Again, one
observes a sudden change in the radius of the cavity solitons
when switching from DRCS to stable droplets. The radius
of the stable droplet then quickly grows with the parameter

approaching the modulation instability of the stable front,
as clearly displayed in Fig. 9. As shown in Fig. 11, stable
droplets in the DOPO again satisfy the general equation (3)
with and , where the value of these

(a)

(b)

Fig. 12. Primary (single-peak) DRCS at the center of a stable droplet for the
DOPO atE = 2:19015. Both cavity solitons taken separately are stable in
this parameter region. (a) Real part of the pump field. (b) Real part of the signal
field. Solid lines are the central sections of the 3-D plots.

coefficients is obtained from the derivation of the amplitude
equation (2) following the procedure indicated in [10]. One
important aspect of the stable droplet in the DOPO system is
that stable droplets are now bichromatic since they are visible
in both pump and signal fields. Interesting correlations of
fluctuations between spatial solitons at the fundamental and
second harmonic frequencies have recently been reported [16].
We are now extending these studies to parametric downconver-
sion in cavities where the DRCS and stable droplet are good
candidates for their observation.

In the entire regime of the existence of stable droplets in the
DOPO, we observe bistability of stable droplets and primary
(single-peak) DRCS (Fig. 9). We show in Fig. 12 an interesting
composite cavity soliton which is a natural consequence of this
bistability. A primary (single-peak) DRCS is stable at the center
of a large stable droplet at .

V. CONCLUSION

We have demonstrated within the context of a general theory
that in two different nonlinear optical systems there exist stable
circular domains. For the vectorial Kerr resonator, these do-
mains are in fact polarization domains, cavity polarization soli-
tons, while for the optical parametric oscillator, they are do-
mains of opposite phase. This offers two different possibilities
for addressing and manipulating cavity solitons.
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We have also shown that stable droplets nucleate out of DRCS
but can coexist with DRCS in the parameter space. This fact
may be exploited in increasing the information capacity of these
devices by using the stable droplet and DRCS to encode separate
information.
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