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Experimental study of imperfect phase synchronization in the forced
Lorenz system
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In this work we demonstrate for an experimental system, that exhibits the Lorenz butterfly attractor
behavior, that perfect chaotic phase synchronization cannot be achieved in systems with an
unbounded distribution of intrinsic time scales. Instead, imperfect phase synchronization is
characterized by the occurrence of phase slips, associated to epochs of time during which the chaotic
oscillator exhibits a slower time scale. Interestingly, during phase slips the chaotic oscillator keeps
in sync with the drive, but with a different locking ratio. ©2003 American Institute of Physics.
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A class of „so-called phase coherent… chaotic oscillators,
namely Rössler oscillator, has been shown to exhibit
phase synchronization in the case that the oscillator is
driven by a sinusoidal generator„and also in the case of
two, slightly detuned, chaotic oscillators…. This behavior
is characterized by an approximately constant relation-
ship between a suitably defined phase for the chaotic os
cillator and the phase of the sinusoidal generator. Inter-
estingly, the oscillator remains chaotic, and so does the
amplitude, while its rhythm is dictated by the external
sinusoidal generator, and, thus, is much more regular.
Quite different is the case of chaotic oscillators for which
a saddle equilibrium belongs to the attractor, as is the
case of the Lorenz oscillator. The most relevant feature of
this type of systems is that a typical trajectory in phase
space has some probability of passing close enough to th
stable manifold of the saddle point„in the Lorenz system
this happens whenever a trajectory changes lobe…. The
closer the trajectory approaches the stable manifold of
the saddle point, the longer is the return time, i.e., the
time needed to perform a turn. Ultimately, these extra
long return times „compared to thetypical return times of
the system, and also to the period of the external sinu-
soidal generator… make it difficult to achieve the state of
„perfect… phase synchronization, leading to the behavior
known as imperfect phase synchronization. Here we shal
demonstrate how this behavior is typical, in the sense that
it can be easily reproduced in an experimental implemen-
tation of the Lorenz oscillator.

a!URL; http://www.imedea.uib.es/PhysDept/
b!Electronic mail: oscar@galiota.uib.es
c!Electronic mail: manuel@imedea.uib.es
d!Electronic mail: juergen@agnld.uni-potsdam.de
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I. INTRODUCTION

Recently, there has been a lot of interest in the study
manifestations of synchronization in several physical, che
cal, biological, and technological systems.1 Probably the
simplest~and most studied! situation corresponds to a~dy-
namical! system forced by a sinusoidal generator. In th
context, synchronization is understood as the readjustme
the rhythm of the forced system under the influence of
driving signal. In the periodic case this was already stud
by Arnold, and then by many others~see, e.g., Ref. 2!, and
the main features of this behavior have been uncovered
particular, as the coupling becomes different from zero o
expects regions of parameters for which synchronization~or
phase locking! occurs. If one represents the amplitude vers
the frequency, both corresponding to the sinusoidal forci
one obtains the well-known Arnold tongues, namely wed
like regions of synchronized behavior.

The situation is somehow more complex if one consid
systems with chaotic behavior. For relatively strong co
pling, it was already shown3,4 that one may have complet
synchronization between identical, uni- or bi-directiona
coupled chaotic oscillators. Generalized synchronizatio5

implying a functional relationship between drive and r
sponse, has been also found for uni-directionally coup
chaotic systems. More recently a type of partial synchro
zation was shown for bi-directionally~slightly detuned!
coupled oscillators: phase synchronization.6 The chaotic sys-
tems that have been shown to exhibit this behavior~e.g.,
Rössler system7! can be considered as true oscillators, in t
sense that the systems exhibit oscillations in phase sp
~around some center of oscillation!. This implies also that a
phase variable can be suitably defined,8,9 and the observed
behavior is that there is some regime in which the two s
tems share the phase~apart from a constant, smaller tha
© 2003 American Institute of Physics
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2p), while the amplitudes vary chaotically and are prac
cally uncorrelated.6 The concept of phase synchronizatio
has shown to be useful, although it cannot be applied
general for an arbitrary dynamical system, and, in particu
allows to study synchronization behaviors where not mu
information can be obtained by looking at correlations b
tween the coupled systems.

Phase synchronization has also been found in the cas
sinusoidally forced chaotic oscillators, and this will be t
focus of our study. The chaotic oscillator and the drive
not homologous, but it can be shown that one may get ph
synchronization,9 in the sense that a suitably defined pha
for the chaotic oscillator minus the phase of the drive
bounded by 2p. Chaotic systems with low phase diffusion10

~e.g., the Ro¨ssler system! exhibit, in principle, perfect phas
synchronization behavior under sinusoidal forcing. Quite d
ferent is the situation if one works with the Lorenz11 system
~at the parameter values for which it exhibits the well kno
butterfly attractor!. For the butterfly Lorenz system th
saddle equilibrium point at the origin is part of the closure
the attractor, and makes the attractor nonhyperbolic by
ducing singularities for the return maps. In particular, t
return times to a suitably defined Poincare´ cross section will
exhibit a singularity, corresponding to the crossing of t
return map with the stable manifold of the saddle equil
rium, that happens sometimes when the Lorenz sys
changes lobe.

Thus, it is normal to expect that phase synchronizat
will not be perfectfor a driven Lorenz system, in the sens
that the system will not be able to follow the pace of t
drive at all time, namely when passing close to the sad
equilibrium. This has been, indeed, recently shown throu
numerical simulation and theoretical arguments by Z
et al.12–14 This imperfect phase synchronization manifest
among other effects, in the presence of phase slips, tha
jumps by 2p in the phase. It must be pointed out that pha
slips may also be obtained in, at least, two other differ
circumstances, namely in the presence of noise, and for
rameter values close to the onset of phase synchroniza
In the first case the stochastic~high-dimensional! degrees of
freedom may induce occasional kicks out of thesynchro-
nized stateleading to some kind of higher-dimensional b
havior, while in the second the phase locked stable and
stable solutions, respectively, will collide leading to a s
called eyelet intermittency.15 Instead, imperfect phas
synchronization is a behavior in which a purely determinis
system also exhibits a nonuniform phase dynamics, not
sociated to external influences or the proximity to the on
of phase synchronization.

An alternative way of understanding phase synchron
tion is in terms of unstable periodic orbits~UPOs!.16 In the
case of phase coherent systems~systems with a relatively
narrow distribution of return times, i.e., of frequencie!,
phase synchronization is attained when all the UPOs bec
entrained with the forcing~around thenatural frequency of
the system!, and this is possible for all the UPOs simult
neously as they have similar frequencies. In the case of
Lorenz butterfly system~and in general systems with a broa
distribution of return times!, and due to the influence of th
Downloaded 26 Feb 2003 to 130.206.133.111. Redistribution subject to A
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saddle equilibrium point at the origin, it is not possible
find conditions in which all the UPOs become simult
neously entrained with the forcing~even for the natural fre-
quency! at a fixed, established locking ratio~e.g., 1:1!, but
epochs of synchronized behavior~sometimes long! are inter-
spersed with periods of time for which remains out of syn

One of the findings of Refs. 12 and 13 is that the syst
actually exhibits synchronization at almost all time, but w
time epochs characterized by different~alternating! locking
ratios ~that correspond to the number of turns of the chao
oscillator with respect to the sinusoidal oscillator!. Thus,
phase slips due to imperfect phase synchronization exh
distinctive features when compared to phase slips due
noise or eyelet intermittent behavior. This property of imp
fect phase synchronization is very important when consid
ing an experimental system~as is our case! subject to many
sources of unavoidable experimental noise, like therm
noise, channel noise, etc. In this sense, we will show that
observed phase slips have a clear deterministic structure,
responding to alternate locking ratios, quite different to t
effect of external noise or proximity to the onset of the tra
sition to phase synchronization.

Another point of interest in our study concerns the ab
ity to model deterministic chaotic systems as it has be
found that in some circumstances17,18 these systems may ex
hibit obstructions to deterministic modeling. Thus, in Ref.
the authors state that . . . in laboratory experiments (•••) it
might only make sense to work directly with measured t
series instead of a mathematical model when attempting
understand the long-term behavior of the system. These dif-
ficulties are a manifestation of nonhyperbolicity, and, fro
the reasoning above, they cannot be completely exclude
our system, namely when a system trajectory approaches
saddle equilibrium. In this sense, studying the phenome
of imperfect phase synchronization in a real physical sys
is the only way of proving unambiguously its existence.

The goal of this paper is to present the first experimen
study of imperfect phase synchronization for a circuit, th
represents the Lorenz system subject to sinusoidal forc
Section II discusses the Lorenz circuit and the experime
methodology. Section III discusses the main results of t
work, and their comparison with the theoretical study. An
finally, Sec. IV contains the main conclusions of the pres
work.

II. EXPERIMENTAL SYSTEM AND METHOD

The analog circuit representing the Lorenz system11 is
the one described in Refs. 19 and 20. Starting with the
ferential equations representing the Lorenz system plu
sinusoidal forcing term in theż term12,13 ~forcing is intro-
duced in this term in order to preserve the symmetry of
equations!,

ẋ5s~y2x!.

ẏ5R x2y2x z,

ż5x y2b z1E8 sin~V8t !. ~1!
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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FIG. 1. Schematic representation o
the circuit representing the Lorenz os
cillator in rescaled variables, Eq.~3!,
including the sinusoidal forcing term.
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The circuit consists of three integrators, one for each v
able, and the nonlinear terms are represented using an
multipliers. The first step in designing the circuit is to resc
both the three state variablesx, y, andz in order to fit within
the dynamical range of the source@215 V,15 V#, and such
that the circuit operates in the frequency range of a few
lohertz. The transformation applied to the variables is
following:

u5x/5, v5y/5, w5z/10, t5t/A, A5103. ~2!

This rescaling of variables leads to the following set of d
ferential equations, in which the variables,u, v, w, are volt-
ages across the three capacitors of the circuit, and in w
the time is expressed in seconds,

u̇5A s~v2u!,

v̇5A ~R u2v210u w!,

ẇ5A [ ~2.5u v2b w!1E sin~V t!], ~3!
Downloaded 26 Feb 2003 to 130.206.133.111. Redistribution subject to A
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whereE5E8/10 andV5A V85103 V8. In Eq. ~3! the de-
rivatives are with respect tot, while in Eq.~1! they are with
respect to the original timet.

These equations have been implemented in an electr
circuit as shown in Fig. 1. The analog multipliers~AD633!
have a noticeable offset at the output that may alter the
namical behavior of the system, and this has been comp
sated using a compensation array. The tolerances of the
sistors and capacitors are of 1% or less. In particular,
parameters for the Lorenz oscillator~3! recalculated from the
actual values of the electronic components are as follo
s510.19,b52.664, andR528.17~to be compared with the
intended values:s510, b58/3, andR528). All the experi-
mental results have been measured with a sampling rat
80 kHz using a data acquisition card with 12 bits of reso
tion, sufficient for the dynamic range of the Lorenz circu
In all the studies presented here the amplitude of the forc
has been fixed~through a resistance! to be E51 V @corre-
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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sponding toE8510 for the Lorenz system~1! before the
rescaling#. Another important information concerning th
system is the natural frequency of the unforced Lorenz s
tem, that has been found to bev051311 Hz58241 rad/s. It
has been estimated by using Eq.~2! in Ref. 13. The above
quoted values ofs, b, R, andE have been kept fixed in al
the results presented in this paper.

III. RESULTS

As already mentioned in the introduction, the key featu
of the Lorenz system for the parameter values considere
the present work is that the saddle point at the origin,u5v
5w50 is part of the attractor. This single point is determ
nant in the dynamics of the system due to the fact that
dynamics of the Lorenz system for the parameter val
studied in the present work consists basically in spiral
around one lobe followed by jumping to the other lob
where the system exhibits the same spiraling dynamics,
jumping again. While the system is rotating in a given lo
these rotations are quite regular~and fast!. Instead, jumping
to the other~symmetric! lobe implies that the system be
comes under the influence of the stable manifold of
saddle point at the origin, what leads to a slow down in
dynamics.

This behavior can be adequately characterized by tak
a suitable Poincare´ plane 10w5z5R21, or w5(R
21)/10. The~high! rate of contraction along the transver
direction will lead to an approximately one-dimensional d
namics in this Poincare´ section. An interesting characteriza
tion of this behavior can be obtained by representing
return times at the Poincare´ cross section, i.e., the times th
a trajectory spends between crosses with the Poincare´ cross
section. As explained, these times are not bounded f
above, and this can be also seen from Fig. 2, in which
time necessary to arrive to the Poincare´ cross section is rep
resented versus the value of variable~voltage! u at the cross-
ing. From this representation it can be clearly seen that
return times diverge logarithmically when approaching
singularity.

FIG. 2. Return time of the free running Lorenz oscillator at the Poinc´
surfacew5(R21)/10 versus variableu. The two branches correspond t
the two lobes of the attractor.
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As the dynamics at the Poincare´ cross-section is approxi
mately one dimensional, one could consider also a desc
tion based on iterated maps, namely by plotting variableu at
a crossing with the Poincare´ section versusu at the preceding
cross section~see Fig. 3!. This representation will also ex
hibit a singularity, namely at the intersection of the Poinca´
cross section with the stable manifold of the saddle equi
rium.

As explained above the system studied in this work c
sists of an oscillator, that due to its chaotic dynamics exhib
a strong variation in the rotation period, forced by an osc
lator rotating at a fixed pace. The most interesting dynam
of this system corresponds to those parameter values
which the system exhibits some kind of synchronization
tween these two different behaviors. The type of synchro
zation found can never be complete~due to the dissimilar
nature of the systems involved!, and it is rather phase syn
chronization. Thus, both types of oscillations~chaotic and
regular! are different in detail, but beat at the same pa
what implies that they exhibit approximately the same f
quency~this frequency is the average frequency in the c
of the chaotic oscillator!. This can be seen from Fig. 4, wher
the difference between the mean frequency of the Lor
oscillator and the driving frequency is represented. Fo
fixed value of the forcing amplitude,E51 V, and by varying
the forcing frequencyV, a region in which the difference o
frequencies is quite small~close to zero! can be found~cf.
Fig. 4!. A closer inspection~see the inset of Fig. 4! shows
that the plateau is not exactly zero. The oscillations in
inset ~compared to Fig. 11 in Ref. 13! should be ascribed to
the larger number of turns used in the latter study, and als
experimental uncertainties. Anyhow, the frequency diff
ence tends to be positive in all the synchronization range
it should ~cf. with Fig. 11 in Ref. 13!.

Another quite interesting way of characterizing the im
perfect phase synchronization behavior exhibited by
electronic sinusoidally excited Lorenz oscillator is by loo

e

FIG. 3. Return map for the free running Lorenz oscillator at the Poinc´
surfacew5(R21)/10. Variableu at a given intersection with the Poincar´
surface,un11 , is plotted versus the same variable at the previous inters
tion, un . The two parts of the figure correspond to the two lobes of
attractor.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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323Chaos, Vol. 13, No. 1, 2003 Experimental imperfect phase synchronization
ing at the attractor stroboscopically sampled at a suita
chosen Poincare´ section~the result will be a snapshot attra
tor!. In our case we consider theusual Poincare´ sectionz
5R21, that in rescaled units becomesw5(R21)/10, as
explained above. The evolution of this snapshot attracto
the forcing frequency is varied can be seen in Fig. 5. T
snapshot attractor exhibits a transformation from a diffu
cloud for frequencies of the sinusoidal oscillator outside
synchronization plateau of Fig. 4 to a well defined patte
inside this synchronization plateau, and, again, a diff
cloud when increasing the forcing frequency outside the p

FIG. 4. Difference between mean frequencyv and driving frequency
V, in rad/s, estimated from a time series of 200 s for each value of
frequency, corresponding, approximately, to 2.63105 turns of the chaotic
oscillator.
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teau@see Figs. 5~a!–5~f!#. However,~cf. also Ref. 13! even
inside thewell synchronizedregion the snapshot attracto
never resembles a~more or less narrow! stripe as expected
for the case of perfect phase synchronization~e.g., for the
case of a phase coherent oscillator!. As explained in Ref. 13
the well defined pattern obtained inside the synchroniza
plateau can be explained noticing that the system appea
spend most of the time in the central region~the figure is
symmetric through the changex→2x due to the two lobes
exhibited by the attractor!, with occasional excursions tha
form thewhiskersof the pattern.

Another demonstration of imperfect phase synchroni
tion can be obtained by plotting the temporal developm
between the phases of the driven Lorenz system and
sinusoidal driving force~see Figs. 6 and 7!. As explained
above, imperfect phase synchronization is characterized
the unbounded character of return times, that leads to
driven system losing the pace of the sinusoidal genera
Thus, at first sight it can be surprising~e.g., from Fig. 7! that
the phase slips~i.e., errors of synchronization! are quite often
positive, as with the definition used this implies that t
driven system actually performs more rotations than
sinusoidal driving~although in Fig. 6 one can find example
of both positive and negative jumps!. The existence of these
jumps ~far from the transition to nonsynchronization! is one
of the well known signatures of imperfect pha
synchronization.12,13 It is also interesting to mention that a
though jumps by one turn, 2p jumps in terms of phase, ar
the most common, 4p can also be found~as in Fig. 7 fort
P@8,9#).

e

FIG. 5. Snapshot attractors of the Poincare´ mapping for
different values ofV: ~a! 7350 rad/s;~b! 7900 rad/s;~c!
8150 rad/s;~d! 8250 rad/s;~e! 8350 rad/s;~f! 8400
rad/s. The phaseF of the sinusoidal oscillator at the
Poincare´ cross sectionw5(R21)/10 is represented
versus variableu.
IP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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The above mentionedparadoxicalfact that typically the
driven Lorenz system performs more turns than the si
soidal generator can be understood better by looking at s
time traces of one of the three state space variables, e.gw,
and also at some state space projections~this is shown in Fig.
8!. Considering variablew has the advantage that it can b
compared more cleanly with thesinusoidal pacemakerthat is
below in all the time traces~asw remains always positive!.
Anyhow, one has to keep in mind that the oscillations with
large period are associated with changing lobe~moment
where the dynamics is more influenced by the saddle e
librium!. The results in Fig. 8 correspond to three differe
phase jump events, that are the same presented in the
insets of Figs. 6 and 7: a positive and a negative, resp
tively, phase jump by 2p in Fig. 6 and a positive 4p jump in
Fig. 7. As explained above, the three phase jumps hav
common that they are preceded by a change of lobe in

FIG. 6. Temporal development of the difference between the numbe
turns ~rotations! of the Lorenz and sinusoidal oscillator, respectively, in t
state of imperfect phase synchronization.V58100 rad/s, and crosses deno
intersections with the Poincare´ cross sectionw5(R21)/10.

FIG. 7. Temporal development of the difference between the numbe
turns ~rotations! of the Lorenz and sinusoidal oscillator, respectively, in t
state of imperfect phase synchronization.V58250 rad/s, and crosses deno
intersections with the Poincare´ cross sectionw5(R21)/10.
Downloaded 26 Feb 2003 to 130.206.133.111. Redistribution subject to A
-
e

a

i-
t
ree
c-

in
e

Lorenz system~the slow turn in the left panels of Fig. 8!, and
so the driven Lorenz oscillator loses almost one turn wh
compared with the sinusoidal generator~this can also be see
clearly in the three insets in Figs. 6 and 7!. Although the time
from peak to peak~or, in other words, between two crossing
through the Poincare´ plane! is not the same~it varies chaoti-
cally!, the variation happens in a relatively narrow ran
outside of these changes of lobe, and the Lorenz syste
able to keep the pace with the drive. However, when one
these changes of lobe~and, thus, slow turns! occurs, the Lo-
renz system almost performs one turn less than the sinuso
generator. These events are relatively common as can be
from the cloud of points going down below the plateaus
Figs. 6 and 7, and that almost go down to the level of o
turn less~with respect to the level at the plateau!.

However, the absence of phase slips for many change
lobe is due to the fact that the Lorenz system is able
perform an extra rotation, with respect to the sinusoidal g
erator. When this does not happen, a negative phase j
occurs, while sometimes the Lorenz system is, quite surp
ingly, capable of performing two~or even three! extra turns.
These fast rotations@some of them could even be calle
pseudo-rotations, as they are characterized by a very sm
rotation radius, see panels~a,2! and ~c,2! in Fig. 8# may
happen immediately after the change of lobe@panel~a,2!#, or
slightly after@panel~c,2!#. Quite curiously, during these fas
rotations the variablew exhibits an interesting modulationa
or beating, transient periodic behavior~resembling amplitude
modulation!. This behavior is probably associated to the
terference between theanomalousfast rotations and the fre
quency of the sinusoidal generator~of course, as negative
phase jumps do not have associated fast rotations, the sy
does not exhibit modulational behavior in this instance!.

On the other hand, if one looks carefully at the behav
of the system in the intervals of time in which the syste
goes from an almost negative phase jump to a positive
~left inset of Fig. 6 and inset of Fig. 7! one can see that th
driven Lorenz system performs more turns than the si
soidal drive. Following Refs. 12 and 13 one can interpret t
behavior by a change in the locking ratio between the dr
and the Lorenz systems, that is no longer 1:1, but rat
n:n12 in a 2p phase jump, orn:n13 in a 4p phase jump
~the locking ratio will ben:n11 in the frequent events in
which the system does not exhibit a phase jump, altho
there is an almost negative phase jump, that occurs at alm
all changes of lobe!. In this sense, synchronization is not los
but the system exhibits an alternation between different lo
ing rates, in the periods of type in which the dynamics
more strongly nonhyperbolic~those in which the Lorenz sys
tem is under the effect of the saddle equilibrium point at
origin!.

IV. DISCUSSION

In the present study we have been able to characte
unambiguously imperfect phase synchronization in a sinu
dally forced representation of the Lorenz oscillator as
electronic~analog! circuit. The results presented in this co
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FIG. 8. Study of the behavior of the Lorenz system
three different phase jumps, namely those represen
in three insets of Figs. 6 and 7. The three left pan
contain the evolution of variablew for the three phase
jumps, respectively, while in the three right panels t
phase portraitw vs u is represented for a subset of th
time interval. Panel~b,2! represents the whole time
snapshot in panel~b,1!, i.e., @8.934, 8.945# while panels
~a,2! and~c,2! detail the fast turns happening in the tim
intervals@3.0135, 3.01525# for ~a,1! and@8.565, 8.570#
for ~c,1!, respectively.
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tribution are so clear and clean that sometimes are alm
identical to the equivalent results obtained from the dir
numerical simulation of the dynamical system~cf. Refs. 12
and 13!, even though in our case the system is subjec
sources of noise~thermal, channel, tolerances in the comp
nents, etc.!. This precise correspondence between experim
and numerical simulation makes us firmly believe that
imperfections observed in the phase synchronized state
not due to the presence of noise, proximity to the onse
phase synchronization or the like. In addition, the ph
jumps have a clearly defined deterministic structure: durin
transient period of time the system appears to be descr
by a different locking ratio~one would not expect this be
havior in systems subject to noise or exhibiting intermitte
bursts!. The close correspondence between theory and
periment clearly confirms the reality of the phenomenon, a
the possibility of modeling it theoretically.

Chaotic~perfect! phase synchronization was first demo
strated from the analysis of theoretical models,6 and later has
been demonstrated through analog simulation of two coup
Rössler oscillators,21 and in some experimental physical sy
tems: a plasma system22 and a chaotic laser array.23 Imper-
fect phase synchronization may be relatively common in
namical systems with more degrees of freedom, and, in f
in Ref. 13 it was argued that it could be the mechani
behind observations in some experimental data descri
human cardiorespiratory activity.24,25
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The outlook of the present experimental demonstrat
is that imperfect phase synchronization should be relativ
common in a number of fields. The reason for this is th
unstable fixed points being part of the closure of a chao
attractor are relatively common in a number of fields, li
fluid mechanics~e.g., in the transition to turbulence!, nonlin-
ear optics~e.g., semiconductor lasers!, etc. However, the be-
havior of these systems can be more complex than the
presented here, as the unstable fixed point at the origin of
Lorenz system is a saddle, while higher-dimensional syste
will typically have saddle-focus unstable fixed points.
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