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In this work we demonstrate for an experimental system, that exhibits the Lorenz butterfly attractor
behavior, that perfect chaotic phase synchronization cannot be achieved in systems with an
unbounded distribution of intrinsic time scales. Instead, imperfect phase synchronization is
characterized by the occurrence of phase slips, associated to epochs of time during which the chaotic
oscillator exhibits a slower time scale. Interestingly, during phase slips the chaotic oscillator keeps
in sync with the drive, but with a different locking ratio. @003 American Institute of Physics.
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A class of (so-called phase coherentchaotic oscillators, 1. INTRODUCTION
namely Rcssler oscillator, has been shown to exhibit _ _
phase synchronization in the case that the oscillator is Recently, there has been a lot of interest in the study of

driven by a sinusoidal generator(and also in the case of ~Manifestations of synchronization in several physical, chemi-
two, slightly detuned, chaotic oscillator3. This behavior ~ €@l biological, and technological systefn®robably the
is characterized by an approximately constant relation- simplest(and most studiedsituation corresponds to (y-

ship between a suitably defined phase for the chaotic os- namica) system fprcgd py a sinusoidal generatqr. n th|s_
. . . context, synchronization is understood as the readjustment in
cillator and the phase of the sinusoidal generator. Inter-

. . . . the rhythm of the forced system under the influence of the
estingly, the oscillator remains chaotic, and so does the y y

. o o driving signal. In the periodic case this was already studied
amplitude, while its rhythm is dictated by the external by Arnold, and then by many othetsee, e.g., Ref.)2 and

sinusoidal generator, and, thus, is much more regular.  he main features of this behavior have been uncovered. In
Quite different is the case of chaotic oscillators for which particular, as the coupling becomes different from zero one
a saddle equilibrium belongs to the attractor, as is the expects regions of parameters for which synchronization
case of the Lorenz oscillator. The most relevant feature of phase lockingoccurs. If one represents the amplitude versus
this type of systems is that a typical trajectory in phase the frequency, both corresponding to the sinusoidal forcing,
space has some probability of passing close enough to the one obtains the well-known Arnold tongues, namely wedge-
stable manifold of the saddle point(in the Lorenz system like regions of synchronized behavior.

this happens whenever a trajectory changes lobe The The situation is somehow more complex if one considers
closer the trajectory approaches the stable manifold of Systems with chaotic behavior. For relatively strong cou-
the saddle point, the longer is the return time, i.e., the Pling, it was already showrf that one may have complete
time needed to perform a turn. U|t|mate|y, these extra SynChronization between identical, uni- or bi'direCtiona”y
long return times (compared to thetypical return times of ~ coupled chaotic oscillators. Generalized sync_hronizaction,
the system, and also to the period of the external sinu- MPlying & functional relationship between drive and re-
soidal generato) make it difficult to achieve the state of SPONSE, has been also found for unl-dlrecno_nally couplgd
(perfect) phase synchronization, leading to the behavior chaotic systems. More recently a type of partial synchroni-

: R zation was shown for bi-directionallyslightly detunegl
known as imperfect phase synchronization. Here we shall : } . :
. o . : coupled oscillators: phase synchronizaticrhe chaotic sys-
demonstrate how this behavior is typical, in the sense that

) b i duced i . Limpl tems that have been shown to exhibit this behaveg.,
It can be easily reproduced in an experimental implemen- Rossler systerf) can be considered as true oscillators, in the

tation of the Lorenz oscillator. sense that the systems exhibit oscillations in phase space

5 _ _ (around some center of oscillatiprThis implies also that a

o ORL; http:/www.imedea.uib.es/PhysDept/ phase variable can be suitably defifédand the observed
Electronic mail: oscar@galiota.uib.es .. . . . .

9Electronic mail: manuel@imedea.uib.es behavior is that there is some regime in which the two sys-

9Electronic mail: juergen@agnld.uni-potsdam.de tems share the phagapart from a constant, smaller than
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21), while the amplitudes vary chaotically and are practi-saddle equilibrium point at the origin, it is not possible to
cally uncorrelated. The concept of phase synchronization find conditions in which all the UPOs become simulta-
has shown to be useful, although it cannot be applied imeously entrained with the forcingven for the natural fre-
general for an arbitrary dynamical system, and, in particulargquency at a fixed, established locking ratie.g., 1:2, but
allows to study synchronization behaviors where not muctepochs of synchronized behavisometimes lonpare inter-
information can be obtained by looking at correlations be-spersed with periods of time for which remains out of sync.
tween the coupled systems. One of the findings of Refs. 12 and 13 is that the system
Phase synchronization has also been found in the case aftually exhibits synchronization at almost all time, but with
sinusoidally forced chaotic oscillators, and this will be thetime epochs characterized by differgatternating locking
focus of our study. The chaotic oscillator and the drive argatios(that correspond to the number of turns of the chaotic
not homologous, but it can be shown that one may get phaggscillator with respect to the sinusoidal oscillatohus,
synchronizatior?, in the sense that a suitably defined phasephase slips due to imperfect phase synchronization exhibit
for the chaotic oscillator minus the phase of the drive aredistinctive features when compared to phase slips due to
bounded by 2. Chaotic systems with low phase diffust@n  noise or eyelet intermittent behavior. This property of imper-
(e.g., the Resler systemexhibit, in principle, perfect phase fect phase synchronization is very important when consider-
synchronization behavior under sinusoidal forcing. Quite dif-ing an experimental systefas is our casesubject to many
ferent is the situation if one works with the Loréhsystem sources of unavoidable experimental noise, like thermal
(at the parameter values for which it exhibits the well knownnoise, channel noise, etc. In this sense, we will show that the
butterfly attractor. For the butterfly Lorenz system the observed phase slips have a clear deterministic structure, cor-
saddle equilibrium point at the origin is part of the closure offesponding to alternate locking ratios, quite different to the
the attractor, and makes the attractor nonhyperbolic by ineffect of external noise or proximity to the onset of the tran-
ducing singularities for the return maps. In particular, thesition to phase synchronization.
return times to a suitably defined Poincaress section will Another point of interest in our study concerns the abil-
exhibit a singularity, corresponding to the crossing of theity to model deterministic chaotic systems as it has been
return map with the stable manifold of the saddle equilib-found that in some circumstancés®these systems may ex-
rium, that happens sometimes when the Lorenz Syste,ﬁibit obstructions to deterministic modeling. Thus, in Ref. 18
changes lobe. the authors state tha. . in laboratory experiments-{-) it
Thus, it is normal to expect that phase synchronizatiorMight only make sense to work directly with measured time
will not be perfectfor a driven Lorenz system, in the sense, series instead of a mathematical model when attempting to
that the system will not be able to follow the pace of theunderstand the long-term behavior of the syst&mese dif-
drive at all time, namely when passing close to the saddidiculties are a manifestation of nonhyperbolicity, and, from
equilibrium. This has been, indeed, recently shown throughh€ reasoning above, they cannot be completely excluded in
numerical simulation and theoretical arguments by Zak£Ur System, namely when a system trajectory approaches the
et al12~14 This imperfectphase synchronization manifests, Saddle equilibrium. In this sense, studying the phenomenon
among other effects, in the presence of phase slips, that aff Imperfect phase synchronization in a real physical system
jumps by 2r in the phase. It must be pointed out that phasdS the only way of proving unambiguously its existence.
slips may also be obtained in, at least, two other different "€ goal of this paper is to present the first experimental
circumstances, namely in the presence of noise, and for p&iudy of imperfect phase synchronization for a circuit, that
rameter values close to the onset of phase synchronizatiofEPresents the Lorenz system subject to sinusoidal forcing.

In the first case the stochastisigh-dimensionaldegrees of Section Il discusses the Lorenz circuit and the experimental
freedom may induce occasional kicks out of thgnchro- methodology. Section Il discusses the main results of this

nized Statdeading to some kind of higher'dimenSional be- work, and their Comparison with the theoretical Study. And,

havior, while in the second the phase locked stable and urfinally, Sec. IV contains the main conclusions of the present

stable solutions, respectively, will collide leading to a so-Work:

called eyelet intermittency®® Instead, imperfect phase

synchronization is a behavior in which a purely deterministic

system also exhibits a nonuniform phase dynamics, not agk. EXPERIMENTAL SYSTEM AND METHOD
sociated to external influences or the proximity to the onset o . .
of phase synchronization. The analog circuit representing the Lorenz sysfeim

An alternative way of understanding phase synchronizath® one described in Refs. 19 and 20. Starting with the dif-
tion is in terms of unstable periodic orbitsP09.2 In the ferential equations representllng the Lorenz system plus a
case of phase coherent systefsystems with a relatively ~Sinusoidal forcing term in the term'*° (forcing is intro-
narrow distribution of return times, i.e., of frequengjes duced in this term in order to preserve the symmetry of the
phase synchronization is attained when all the UPOs beconfduation$
entrained with the forcingaround thenatural frequency of
the system and this is possible for all the UPOs simulta-
neously as they have similar frequencies. In the case of the y—Rx—y—xz
Lorenz butterfly systentand in general systems with a broad .
distribution of return times and due to the influence of the z=xy—b z+E’'sin(Q't). (1)

X=o(y—X).
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The circuit consists of three integrators, one for each variwhereE=E’/10 andQ=AQ'=10Q’. In Eq. (3) the de-
able, and the nonlinear terms are represented using analeiyatives are with respect ta while in Eq. (1) they are with
multipliers. The first step in designing the circuit is to rescalerespect to the original time
both the three state variablgsy, andz in order to fit within These equations have been implemented in an electronic
the dynamical range of the sourfe 15V,15V], and such  cijrcuit as shown in Fig. 1. The analog multiplie&D633)
that the circuit operates in the frequency range of a few kiyaye 4 noticeable offset at the output that may alter the dy-
Iohertg. The transformation applied to the variables is thenamical behavior of the system, and this has been compen-
following: . :
sated using a compensation array. The tolerances of the re-
u=x/5, v=y/5, w=2/10, 7=t/A, A=10°. (2) sistors and capacitors are of 1% or less. In particular, the

This rescaling of variables leads to the following set of dif- Parameters for the Lorenz oscillai® recalculated from the
ferential equations, in which the variables,v, w, are volt- actual values of the electronic components are as follows:

ages across the three capacitors of the circuit, and in whici=10.19,b=2.664, andR=28.17(to be compared with the
the time is expressed in seconds, intended valuesor= 10, b=28/3, andR=28). All the experi-
mental results have been measured with a sampling rate of
80 kHz using a data acquisition card with 12 bits of resolu-

375k

u=Ao(v—u),

v=A(RuU-v—10UW), tion, sufficient' for the dynamic range of the Lorenz circui.t.
_ In all the studies presented here the amplitude of the forcing
w=A[(2.5uv—b w)+E sin(Q 7)], (3) has been fixedthrough a resistanggo be E=1 V [corre-
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FIG. 2. Return time of the free running Lorenz oscillator at the Poincare
surfacew=(R—1)/10 versus variable. The two branches correspond to FIG. 3. Return map for the free running Lorenz oscillator at the Poincare

the two lobes of the attractor. surfacew=(R—1)/10. Variableu at a given intersection with the Poincare
surface,u, ., is plotted versus the same variable at the previous intersec-
tion, u,. The two parts of the figure correspond to the two lobes of the
sponding toE’'=10 for the Lorenz systen(l) before the attractor.

rescaling. Another important information concerning the

system is the natural frequency of the unforced Lorenz sys- ) o, o )
tem, that has been found to bg=1311 Hz=8241 rad/s. It As the dynamics at the Poincacenss-section is approxi-
has been estimated by using E8) in Ref. 13. The above mately one dimensional, one could consider also a descrip-

quoted values ofr, b, R, andE have been kept fixed in all {ion based on iterated maps, namely by plotting variatde
the results presented in this paper. a crossing with the Poincasection versus at the preceding

cross sectior(see Fig. 3 This representation will also ex-
hibit a singularity, namely at the intersection of the Poincare
cross section with the stable manifold of the saddle equilib-
As already mentioned in the introduction, the key featurerium.
of the Lorenz system for the parameter values considered in  As explained above the system studied in this work con-
the present work is that the saddle point at the origiry sists of an oscillator, that due to its chaotic dynamics exhibits
=w=0 is part of the attractor. This single point is determi- a strong variation in the rotation period, forced by an oscil-
nant in the dynamics of the system due to the fact that théator rotating at a fixed pace. The most interesting dynamics
dynamics of the Lorenz system for the parameter valuesf this system corresponds to those parameter values for
studied in the present work consists basically in spiralingwhich the system exhibits some kind of synchronization be-
around one lobe followed by jumping to the other lobe,tween these two different behaviors. The type of synchroni-
where the system exhibits the same spiraling dynamics, anzhtion found can never be complef@ue to the dissimilar
jumping again. While the system is rotating in a given lobenature of the systems involvgdand it is rather phase syn-
these rotations are quite regul@ndfasy. Instead, jumping chronization. Thus, both types of oscillatiofshaotic and
to the other(symmetrig lobe implies that the system be- regulay are different in detail, but beat at the same pace,
comes under the influence of the stable manifold of thewhat implies that they exhibit approximately the same fre-
saddle point at the origin, what leads to a slow down in thequency(this frequency is the average frequency in the case
dynamics. of the chaaotic oscillatgr This can be seen from Fig. 4, where
This behavior can be adequately characterized by takinthe difference between the mean frequency of the Lorenz
a suitable Poincareplane 10v=z=R—1, or w=(R oscillator and the driving frequency is represented. For a
—1)/10. The(high) rate of contraction along the transverse fixed value of the forcing amplitud&=1 V, and by varying
direction will lead to an approximately one-dimensional dy-the forcing frequencyl, a region in which the difference of
namics in this Poincarsection. An interesting characteriza- frequencies is quite smaftlose to zerp can be found(cf.
tion of this behavior can be obtained by representing thd=ig. 4). A closer inspectior(see the inset of Fig.)4shows
return times at the Poincangoss section, i.e., the times that that the plateau is not exactly zero. The oscillations in the
a trajectory spends between crosses with the Poinmass  inset(compared to Fig. 11 in Ref. 13hould be ascribed to
section. As explained, these times are not bounded frorthe larger number of turns used in the latter study, and also to
above, and this can be also seen from Fig. 2, in which thexperimental uncertainties. Anyhow, the frequency differ-
time necessary to arrive to the Poincaress section is rep- ence tends to be positive in all the synchronization range, as
resented versus the value of variableltage u at the cross- it should(cf. with Fig. 11 in Ref. 13.
ing. From this representation it can be clearly seen that the Another quite interesting way of characterizing the im-
return times diverge logarithmically when approaching theperfect phase synchronization behavior exhibited by our
singularity. electronic sinusoidally excited Lorenz oscillator is by look-

IIl. RESULTS
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100 ' ' teau[see Figs. B)-5(f)]. However,(cf. also Ref. 13 even
8ok 4 | inside thewell synchronizedregion the snapshot attractor
ol | never resembles @anore or less narrowstripe as expected
60 . for the case of perfect phase synchronizatiery., for the
o Or \ case of a phase coherent oscillatdrs explained in Ref. 13
| 4or ’ he well defined btained inside th hronizati
_o the well defined pattern obtained inside the synchronization
73 a0 L 8160 8300 plateau can be expla_lined_ noticing that the _syster_n appears to
=~ spend most of the time in the central regitthe figure is
& or symmetric through the change— —x due to the two lobes
exhibited by the attractprwith occasional excursions that
-20F !
form the whiskersof the pattern.
_40L Another demonstration of imperfect phase synchroniza-
' : : tion can be obtained by plotting the temporal development
7800 8000 8200 8400 8600

between the phases of the driven Lorenz system and the
Q . i * . .
FIG. 4. Difference between mean frequeney and driving frequency S|nu50|d_al driving force(see Figs. ,6 a_'nd)?AS explam_ed
Q, in rad/s, estimated from a time series of 200 s for each value of thePOV€, imperfect phase synchronization is characterized by
frequency, corresponding, approximately, to>2¥° turns of the chaotic the unbounded character of return times, that leads to the
oscillator. driven system losing the pace of the sinusoidal generator.
Thus, at first sight it can be surprisiiig.g., from Fig. 7 that
ing at the attractor stroboscopically sampled at a suitabléhe phase slip§.e., errors of synchronizatigrare quite often
chosen Poincarsection(the result will be a snapshot attrac- positive, as with the definition used this implies that the
tor). In our case we consider thesual Poincaresectionz ~ driven system actually performs more rotations than the
=R-—1, that in rescaled units becomas=(R—1)/10, as sinusoidal driving(although in Fig. 6 one can find examples
explained above. The evolution of this snapshot attractor agf both positive and negative jumpdhe existence of these
the forcing frequency is varied can be seen in Fig. 5. Thgumps (far from the transition to nonsynchronizatjois one
snapshot attractor exhibits a transformation from a diffuseof the well known signatures of imperfect phase
cloud for frequencies of the sinusoidal oscillator outside thesynchronizatiort?*3It is also interesting to mention that al-
synchronization plateau of Fig. 4 to a well defined patternthough jumps by one turn,72 jumps in terms of phase, are
inside this synchronization plateau, and, again, a diffusehe most common, # can also be foundas in Fig. 7 fort
cloud when increasing the forcing frequency outside the pla<[8,9]).

(a) (b)

FIG. 5. Snapshot attractors of the Poincarapping for
different values of): (a) 7350 rad/s{b) 7900 rad/s{c)
8150 rad/s;(d) 8250 rad/s;(e) 8350 rad/s;(f) 8400
rad/s. The phas@ of the sinusoidal oscillator at the
Poincarecross sectionow=(R—1)/10 is represented
versus variablel.
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Lorenz systentthe slow turn in the left panels of Fig),8and

so the driven Lorenz oscillator loses almost one turn when
compared with the sinusoidal generatitris can also be seen
clearly in the three insets in Figs. 6 and Although the time
from peak to peakor, in other words, between two crossings
through the Poincarglang is not the saméit varies chaoti-
cally), the variation happens in a relatively narrow range
outside of these changes of lobe, and the Lorenz system is
able to keep the pace with the drive. However, when one of
these changes of lodand, thus, slow turnsoccurs, the Lo-
renz system almost performs one turn less than the sinusoidal

N(t) — (2m)'at

III|III|II||...I

3.010 3.028 -2 generator. These events are relatively common as can be seen
8.934 8.945 . . .
_4 | | | from the cloud of points going down below the plateaus in
0 5 10 15 20 Figs. 6 and 7, and that almost go down to the level of one

; turn less(with respect to the level at the plateau
However, the absence of phase slips for many changes of

FIG. 6. Te_mporal development of'the gﬁfferenqe between thg number ofobe is due to the fact that the Lorenz system is able to
turns (rotationsg of the Lorenz and sinusoidal oscillator, respectively, in the . . . .
state of imperfect phase synchronizatio= 8100 rad/s, and crosses denote perform an eXtra_ rotation, with respect to the s_musmdal 9_9”'
intersections with the Poincamoss sectiomw=(R—1)/10. erator. When this does not happen, a negative phase jump

occurs, while sometimes the Lorenz system is, quite surpris-

ingly, capable of performing twéor even thregextra turns.

The above mentioneparadoxicalfact that typically the ~These fast rotationgsome of them could even be called
driven Lorenz system performs more turns than the sinupseudo-rotationsas they are characterized by a very small
soidal generator can be understood better by looking at sonfétation radius, see paneig,2 and (c,2) in Fig. 8 may
time traces of one of the three state space variables,vg.g., happen immediately after the change of I¢panel(a,2], or
and also at some state space projectitinis is shown in Fig. ~ slightly after[panel(c,2)]. Quite curiously, during these fast
8). Considering variablev has the advantage that it can be rotations the variablev exhibits an interesting modulational,
compared more cleanly with trinusoidal pacemakehatis ~ Or beating, transient periodic behavioesembling amplitude
below in all the time traceasw remains always positiye modulation). This behavior is probably associated to the in-
Anyhow, one has to keep in mind that the oscillations with aterference between tr@nomaloudfast rotations and the fre-
large period are associated with changing labeoment quency of the sinusoidal generat@f course, as negative
where the dynamics is more influenced by the saddle equibhase jumps do not have associated fast rotations, the system
librium). The results in Fig. 8 correspond to three differentdoes not exhibit modulational behavior in this instance
phase jump events, that are the same presented in the three On the other hand, if one looks carefully at the behavior
insets of Figs. 6 and 7: a positive and a negative, respe®f the system in the intervals of time in which the system
tively, phase jump by 2 in Fig. 6 and a positive # jumpin  goes from an almost negative phase jump to a positive one
Fig. 7. As explained above, the three phase jumps have ifleft inset of Fig. 6 and inset of Fig.) bne can see that the

common that they are preceded by a change of lobe in thdriven Lorenz system performs more turns than the sinu-
soidal drive. Following Refs. 12 and 13 one can interpret this

behavior by a change in the locking ratio between the drive
and the Lorenz systems, that is no longer 1:1, but rather
n:n+2 in a 27 phase jump, on:n+3 in a 47 phase jump
(the locking ratio will ben:n+1 in the frequent events in
which the system does not exhibit a phase jump, although
there is an almost negative phase jump, that occurs at almost
all changes of lobe In this sense, synchronization is not lost,
but the system exhibits an alternation between different lock-
ing rates, in the periods of type in which the dynamics is
more strongly nonhyperboli¢hose in which the Lorenz sys-
tem is under the effect of the saddle equilibrium point at the
origin).

0 5 10 15 20 IV. DISCUSSION

FG. 7. T | devel ¢ of the diff between th b In the present study we have been able to characterize
. 7. Temporal development of the difference between the number o : . o . .
turns (rotationg of the Lorenz and sinusoidal oscillator, respectively, in the [mamblguousw imperfect phase synchronization in a sinusoi

state of imperfect phase synchronizatifi=8250 rad/s, and crosses denote dally for_ced repres_ent_ation of the Lorenz OSCi_"atO_r as an
intersections with the Poincargoss sectiomw= (R—1)/10. electronic(analog circuit. The results presented in this con-

Downloaded 26 Feb 2003 to 130.206.133.111. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/chaos/chocr.jsp



Chaos, Vol. 13, No. 1, 2003 Experimental imperfect phase synchronization 325

(a.1) (a.2)
5.0 3.00 o !
3.8 288F & .
Iy =
2.6 2.76 £ 1
z z
1.41 N 2.641 E’sgr R J-:t 4
+ +++ + +F
0.2 2.52F f +++ R
-1.0 2.40 Frbey gt
3.010 3.025 -2.0 -1.3 -0.6
t u
(b.1) FIG. 8. Study of the behavior of the Lorenz system at
5 three different phase jumps, namely those represented
4 in three insets of Figs. 6 and 7. The three left panels
contain the evolution of variable for the three phase
3r jumps, respectively, while in the three right panels the
s s 5k phase portraitv vs u is represented for a subset of the
time interval. Panel(b,2 represents the whole time
1+ snapshot in pandb,l), i.e.,[8.934, 8.94%while panels
0 (a,2 and(c,2) detail the fast turns happening in the time
8.934 8.945 _4 0 4 intervals[3.0135, 3.0152Ffor (a,1) and[8.565, 8.570)

for (c,), respectively.

t u

tribution are so clear and clean that sometimes are almost The outlook of the present experimental demonstration
identical to the equivalent results obtained from the direcis that imperfect phase synchronization should be relatively
numerical simulation of the dynamical systéof. Refs. 12 common in a number of fields. The reason for this is that
and 13, even though in our case the system is subject tainstable fixed points being part of the closure of a chaotic
sources of nois¢thermal, channel, tolerances in the compo-attractor are relatively common in a number of fields, like
nents, etg. This precise correspondence between experimerftuid mechanicge.qg., in the transition to turbulengaonlin-

and numerical simulation makes us firmly believe that theear opticge.g., semiconductor lasgretc. However, the be-
imperfections observed in the phase synchronized state alavior of these systems can be more complex than the one
not due to the presence of noise, proximity to the onset opresented here, as the unstable fixed point at the origin of the
phase synchronization or the like. In addition, the phasd.orenz system is a saddle, while higher-dimensional systems
jumps have a clearly defined deterministic structure: during avill typically have saddle-focus unstable fixed points.
transient period of time the system appears to be described

by a different locking .ratio(one yvould not' e.x.pec.t this pe- ACKNOWLEDGMENTS
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