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Growing scale-free networks with small-world behavior

Konstantin Klemn and Victor M. Eguiluz’
Center for Chaos and Turbulence Studidsiels Bohr Institute, Blegdamsvej 17, DK-2100 CopenhageB&mark
and Instituto Mediterraeo de Estudios Avanzados (IMEDEA) (CSIC-UIB), E07071 Palma de Mallorca, Spain
(Received 31 July 2001; published 8 May 2002

In the context of growing networks, we introduce a simple dynamical model that unifies the generic features
of real networks: scale-free distribution of degree and the small-world effect. While the average shortest path
length increases logarithmically as in random networks, the clustering coefficient assumes a large value inde-
pendent of system size. We derive analytical expressions for the clustering coefficient in two limiting cases:
random[ C~ (In N)?N] and highly clusteredG=>5/6) scale-free networks.
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Many systems can be represented by networks, i.e., asiacreases. The value of the clustering coefficient predicted by
set of nodes joined together by links indicating interaction.the BA model is typically several orders of magnitude lower
Social networks, the internet, food webs, distribution net-than found empirically.
works, metabolic and protein networks, the networks of air- Recently, an alternative algorithm has been suggg4#d
line routes, scientific collaboration networks, and citationto account for the high clustering found in scale-free net-
networks are just some examples of such systédns11]. works. Here we generalize the model allowing for random
Most of these networks share three prominent featuas. connections as the network grows. We will show first that a
The average shortest path lendtlis small. In order to con- small ratio of random connections is sufficient to obtain
nect two nodes on the graph, typically only a few edges needmall path length, keeping the high clustering and scale-free
to be passedb) The clustering coefficien€ is large. Two  degree distribution of the original model. Second we will
nodes having a common neighbor are far more likely to beshow, numerically and theoretically, that the crossover can be
connected to each other than are two nodes picked at raexplained by the different scaling of the path length and the
dom. (c) The distribution of the degree is scale-free, i.e., itclustering in the limiting cases.
decays as a power law. The absence of a typical scale for the The modelEach node of the network is assigned a binary
connectivity of nodes is often related to the organization ofstate variable. A newly generated node is in #utive state
the network as a hierarchy. and keeps attaching links until eventually deactivated. Tak-

In this Brief Report we present an attempt to explain theing a completely connected network wfactive nodes as an
empirical observations by a model of network self-initial condition, each step of the time-discrete dynamics
organization according to simple rules. To our best knowl-consists of the following three stagd®. A new node joins
edge, all previous approaches at modeling complex networkihe network by attaching a link to each of timactive nodes.
have only partially taken into account the above properties-or each of tham links of the new node it is decided ran-
(@), (b), and(c). Co-occurrence of high clustering and short domly, with probability «, whether the link connects to the
distance between nodes was originally termed the “smallactive node(as in the original modglor connects to a ran-
world” phenomenon. It can be obtained by departing from adom node(ii) The new node becomes actiyii.) One of the
regular lattice, randomly rewiring links with a probabilipy ~ active nodes is deactivated. The probability that node
<1 [4]. However, networks created in this way display achosen for deactivation ig;=ak; ! with normalization
degree distribution sharply peaked around the mean value;& *=2k; 1The random nodes are chosen according to lin-
power-law decay is not observed. Barsband Albert(BA) ear preferentlal attachment, i.e., the probability that npde
have given an explanation of the scale-free distribution byobtains a link is proportional to the node’s degkge
reformulating Simon’s modé€fl2,13 in the context of grow- For u=0 we recover the high clustering model; the case
ing networks. New nodes join the network by attachmg w=1 is the BA model. Both cases generate networks with
links to other nodes, chosen according to linear preferentialegree distributio® (k) =2m?k 2 (k=m) and average con-
attachment. This means that a node obtains one of the nemectivity (k) =2m. Varying w in the interval 0,1] allows us
links with a probability proportional to the number of links it to study the crossover between the two models. We are es-
already has. The algorithm, henceforth called the BA modelpecially interested in the behavior of the topological proper-
generates networks with a degree distributid®(k) ties, namely, the average shortest path length and the cluster-
=2m?k~ 3 with k=m. However, as the system sikbgrows, ing coefficient, as a function of the crossover paramgter
the clustering coefficient approaches zero as the network siZzeigure 1 shows the variation of the average shortest path

length and the clustering coefficient with the parameter
When increasings from zero to small finite values, the av-

*Email address: klemm@nbi.dk erage shortest path lendthdrops rapidly and approaches the
"Email address: martinez@nbi.dk low value of the BA model. The clustering coefficieGt
*URL: http:/Awww.nbi.dk/CATS remains essentially constant in this same range<1. We
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FIG. 1. Small-world effect in scale-free networks. Introducing o L o

the ratiou<1 of random links into the highly clustered scale-free 10 10° 10°

networks drastically reduces the typical distahcketween nodes. system size N

However, the strongly interconnected neighborhoods of the original .

model (u=0) are preserved, as the clustering coefficient remains at FIG. 2. Average shortest path lendthas a function of system
its large value. Only whem reaches the order of 1 does the clus- $12€ N- In networks without long-range connectiona0) the

tering coefficient drop significantly. All plotted values are averagesrelz"t'on betweeih. andN is linear. This is seen best in the inset with

over 100 independent realizations. The networks hhve10* :?nﬁar scale; on bo;h axes. V\(/jhefn rz]attaching lafraq(aiem.l of all
nodes with average degrék) = 20. inks to random nodes instead of the currently active ohagows

merely logarithmically withN. The values can be fitted well by a

have checked that the power-law distribution of the degreétraight line in the plot with logarithmi&l scale(main panel. Al
(not shown hergis still obtained in this range. Thus the values plotted are averages over 100 independent realizations. The
model with 0< x<1 reproduces the three generic properties?erage degree ik)=20.
(@), (b), and(c) of real-world networks. The model is robust ] ] ] ] o )
against changes in the rule for the introduction of randonfl€activated in the time step of its generation its neighbor-
links. The small-world transition shown in Fig. 1 does notNood does not change any more and it ke€ps 1. Other-
change significantly when the attachment is not preferentialisé @ nodei =l is deactivated. In the next time step the
i_e_7 every node receives a random link with the same probﬂOdEl +1 connects td and all its nelghbors apart from node
ability. i. Thenk|(k;—1)—1 of the possibld (k,— 1) links between

The observed drop in the average shortest path length neighbors ofl exist, where nowk;=m+1. If nodel keeps
and clusteringC is due to a qualitative change in the depen-Peing active a node#1 is deactivated. Node+ 2 connects
dence ofL and C on the system size. Thus, the change bel0 all neighbors of apart fromi andj causing another two
comes more pronounced the |arger is the System_ !inkS to -be m|SS|ng in the n.eighborhoodlosee F|g 3 fOI’ an

Shortest path |engthn F|g 2 we showL as a function of I||UStratI0n. By IndUCtlon It fO||OWS that aften iterations
the system siz&\ for x=0 andu=0.1. Foru=0, the av- 3"_,v=n(n+1)/2 links are missing in the neighborhood of
erage shortest path length grows lineatlysN, the same |
behavior observed in one-dimensional regular lattices. This Thus the clusterin€, depends only on the degrke. The
indicates that although there are highly connected nodes i@xact relation is
the network there are no effective long-range connections
that are able to reduce the path length. In clear contrast, a (k—m+1)(k—m)
logarithmic growth ofL is obtained forw=0.1, L<InN. The Clk)=1- k(k—1) . @
logarithmic increase oE with system size is typical of the
small-world effec{17].

Clustering.We derive analytical expressions for the clus-
tering C in the two limiting cases.= 0 (the high clustering

mode) and =1 (the BA mode). The clustering coefficient can be obtained as the mean

Consid_er first the. casp=0. At any given time step the value of C(k) with respect to the degree distributi¢t(k)
set of active nodes is completely interconnected, simply be- 2m2k—3 k=m. The result is

cause a newly generated node always connects to all active
nodes before being activated itself. It follows that a nbde B
with degreek,=m has C,=1 because all then(m—1)/2 C:f (l—
possible links between neighbors lofctually exist. Ifl is m

This expression indicates that the local clustering scales as
C(k)~k™1* for largek. It is interesting to notice that a simi-
lar scaling has been found in the World Wide Wél5].

(k—=m+1)(k—m)
k(k—1)

2m?k3dk 2
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k=m=2 f d|J djProb{(li)}Prob(1j)}Prob(ij)}
C=1 C ;
1(N 2(N)
(6)
k=m+1=3 where we have approximated the total number of neighbors
by k|2/2. Evaluating the probabilities according to E4). and
C=1-1/3 L using k,Z(N)szN/I yields
i 1. 41
""" Ci(N)=— f f dj(1i)~%1))~°%ij)"°°  (7)
k=m+2=4 8ki(N)
C / ’
=1-3/6 ] =————(InN)? (8
i [ 8IK{(N)
’’’’’ m (InN)? o
FIG. 3. lllustrating the calculation of the clustering coefficient 8 N ©)
of the highly clustered modej{=0, m=2). The encircled node is .
the nodel under consideration. Links of this node are drawn as 10 3883goooooooooooooooooooooooooi
thick lines, links between its neighbors are thin lines. The dotted fOfeMOODONDODODOOREE0RO000
lines are links that are “missing” in the neighborhood lofActive T+ © 1=0.0 (highly clustered model)
des are filled circles, inactive nodes are unfilled. For further ex- +++ @ 1=0.1 (cross-over)
no . ) . ) +4 =+ n=1.0 (BA model)
planation, see text. 107 +y E
+ +,
5 7 Z Yy
— 4 -2 . (&) +
=5 30m O(m~9) (3 + ‘.,
10* | t 1
4
In the limit of largem the clustering coefficient is 5/6. It is +++
worth noting that this value is higher than for regular lattices. +++
The value 5/6=0.83 is similar to the one obtained in the film T
actor network(0.79, the coauthorship network in neuro-  10° L .
science(0.76), and networks of word synonyn{6.7) [16]. -
Let us now consider the BA model& 1). When adding
nodej to the network, the probability for one link of nogle
to connect with node is the ratio of the degree of the node
i, ki, and the sum of all nodes’ degrees in the network,j2
Thus the probability for the existence of a link frgnto i is o 10F
given by g
ki(j)
Pro(ij)}=m—— omi (4) + numerical result
i’ —— theory G(N) ~ N”! in Ny*
——~- theory C(N) ~N™
where the prefactom takes into account than links per .
node are added to the network. By(j) we denote the de- |07 0 0 0

gree of nodd at the time that nod¢ is added. Neglecting
small fluctuations, the degree of théh node isk(j)
=m(j/i)®® according to Ref[11]. Inserting into Eq.(4)
gives

ProH (i)} = 5 (i}) % ®

The local clusteringZ,(N) of the nodd in a network of size

system size N

FIG. 4. Upper panel: The clustering coefficigbtas a function
of network size. Networks generated wijth=0.0 quickly reach the
large value predicted by the analytical calculatiofs<(0.83). With
10% long-range connectiong:.E0.1) the clustering is lower but
still approaches an asymptotic value clearly above zero. In the BA-
model (u=1.0) the clustering coefficient decreases drastically with
growing system size. Each of the three data sets is an average over
100 independent simulation runs. Lower panel: For the BA model,

N is defined as the number of links between neighborS of the function[C(N)N]0-5 grows as I, giving a straight line on a

divided by the total number of pairs of neighbdtsas. Only

logarithmic-linear plot. This indicates very good agreement with the

taking into account expectation values and treating the nodeshalytical resulC(N)«N~(In N)?. For comparison, the theoretical

as a continuum, we find

curve C(N)=N~%"%is shown, as suggested in RET6].
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The average value of the local clusteri@gdoes not depend corrections. A pure power law with exponent).75 as pro-

on the nodd under consideration. The networks generatedposed in Ref[16] describes the numerical data less accu-
by the BA model show homogeneous clustering, despite theately. ) ]

inhomogeneous scale-free connectivity. With increasing net-  €onclusionsin summary, we have defined and analyzed a
work sizeN, the clustering coefficient decreaseshist in ~ SimPle model of self-organizing networks with high cluster-
leading order. The difference with respect to a random grap ng, small path length, and a scale-free distribution of degree.

. . P : - he networks with these generic properties are obtained as a
having a Poisson distribution of degree, is seen only in th%rossover between highly clustered scale-free netwidirks

logarithmic correction (IN)>. _ ~ and scale-free random grapfl]. Although we have con-

Figure 4, upper panel, shows the clustering coefficienkidered growing networks, the dependence of the topology
obtained from numerical simulations. Fpr=0 we find an  on the crossover parameter is very similar to the small-world
asymptotic value of approximately 0.83 as predicted analytitransition observed in static networks when rewiring links
cally. Also for u=0.1 convergence to a finite value is ob- into a regular grid4]. Therefore our studies make a connec-
served. The BA modelg=1.0) displays a rapid decay 6f  tion between small-world graphs and scale-free networks,
as the network siz&l grows. The behavior o€(N) in the  essentially unifying both concepts in one model. We have
BA model is analyzed in the lower panel of Fig. 4, clearly also studied numerically the size dependence of the shortest
supporting the expression in E(P). C(N) is found to be path length and derived analytical expressions for the
inversely proportional to the system size, with logarithmicclustering.
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