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Growing scale-free networks with small-world behavior
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In the context of growing networks, we introduce a simple dynamical model that unifies the generic features
of real networks: scale-free distribution of degree and the small-world effect. While the average shortest path
length increases logarithmically as in random networks, the clustering coefficient assumes a large value inde-
pendent of system size. We derive analytical expressions for the clustering coefficient in two limiting cases:
random@C;(ln N)2/N# and highly clustered (C55/6) scale-free networks.
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Many systems can be represented by networks, i.e.,
set of nodes joined together by links indicating interactio
Social networks, the internet, food webs, distribution n
works, metabolic and protein networks, the networks of a
line routes, scientific collaboration networks, and citati
networks are just some examples of such systems.@1–11#.
Most of these networks share three prominent features~a!
The average shortest path lengthL is small. In order to con-
nect two nodes on the graph, typically only a few edges n
to be passed.~b! The clustering coefficientC is large. Two
nodes having a common neighbor are far more likely to
connected to each other than are two nodes picked at
dom. ~c! The distribution of the degree is scale-free, i.e.
decays as a power law. The absence of a typical scale fo
connectivity of nodes is often related to the organization
the network as a hierarchy.

In this Brief Report we present an attempt to explain
empirical observations by a model of network se
organization according to simple rules. To our best kno
edge, all previous approaches at modeling complex netw
have only partially taken into account the above proper
~a!, ~b!, and~c!. Co-occurrence of high clustering and sho
distance between nodes was originally termed the ‘‘sm
world’’ phenomenon. It can be obtained by departing from
regular lattice, randomly rewiring links with a probabilityp
!1 @4#. However, networks created in this way display
degree distribution sharply peaked around the mean valu
power-law decay is not observed. Baraba´si and Albert~BA!
have given an explanation of the scale-free distribution
reformulating Simon’s model@12,13# in the context of grow-
ing networks. New nodes join the network by attachingm
links to other nodes, chosen according to linear preferen
attachment. This means that a node obtains one of the
links with a probability proportional to the number of links
already has. The algorithm, henceforth called the BA mod
generates networks with a degree distributionP(k)
52m2k23 with k>m. However, as the system sizeN grows,
the clustering coefficient approaches zero as the network
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increases. The value of the clustering coefficient predicted
the BA model is typically several orders of magnitude low
than found empirically.

Recently, an alternative algorithm has been suggested@14#
to account for the high clustering found in scale-free n
works. Here we generalize the model allowing for rando
connections as the network grows. We will show first tha
small ratio of random connections is sufficient to obta
small path length, keeping the high clustering and scale-
degree distribution of the original model. Second we w
show, numerically and theoretically, that the crossover can
explained by the different scaling of the path length and
clustering in the limiting cases.

The model.Each node of the network is assigned a bina
state variable. A newly generated node is in theactivestate
and keeps attaching links until eventually deactivated. T
ing a completely connected network ofm active nodes as an
initial condition, each step of the time-discrete dynam
consists of the following three stages.~i! A new node joins
the network by attaching a link to each of them active nodes.
For each of them links of the new node it is decided ran
domly, with probabilitym, whether the link connects to th
active node~as in the original model! or connects to a ran
dom node.~ii ! The new node becomes active.~iii ! One of the
active nodes is deactivated. The probability that nodei is
chosen for deactivation ispi5aki

21 with normalization
a215( j kj

21.The random nodes are chosen according to
ear preferential attachment, i.e., the probability that nodj
obtains a link is proportional to the node’s degreekj .

For m50 we recover the high clustering model; the ca
m51 is the BA model. Both cases generate networks w
degree distributionP(k)52m2k23 (k>m) and average con
nectivity ^k&52m. Varying m in the interval@0,1# allows us
to study the crossover between the two models. We are
pecially interested in the behavior of the topological prop
ties, namely, the average shortest path length and the clu
ing coefficient, as a function of the crossover parameterm.
Figure 1 shows the variation of the average shortest p
length and the clustering coefficient with the parameterm.
When increasingm from zero to small finite values, the av
erage shortest path lengthL drops rapidly and approaches th
low value of the BA model. The clustering coefficientC
remains essentially constant in this same range 0,m!1. We
©2002 The American Physical Society02-1
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have checked that the power-law distribution of the deg
~not shown here! is still obtained in this range. Thus th
model with 0,m!1 reproduces the three generic propert
~a!, ~b!, and~c! of real-world networks. The model is robu
against changes in the rule for the introduction of rand
links. The small-world transition shown in Fig. 1 does n
change significantly when the attachment is not preferen
i.e., every node receives a random link with the same pr
ability.

The observed drop in the average shortest path lengL
and clusteringC is due to a qualitative change in the depe
dence ofL and C on the system size. Thus, the change
comes more pronounced the larger is the system.

Shortest path length.In Fig. 2 we showL as a function of
the system sizeN for m50 andm50.1. Form50, the av-
erage shortest path length grows linearly,L}N, the same
behavior observed in one-dimensional regular lattices. T
indicates that although there are highly connected node
the network there are no effective long-range connecti
that are able to reduce the path length. In clear contras
logarithmic growth ofL is obtained form50.1, L} ln N. The
logarithmic increase ofL with system size is typical of the
small-world effect@17#.

Clustering.We derive analytical expressions for the clu
tering C in the two limiting casesm50 ~the high clustering
model! andm51 ~the BA model!.

Consider first the casem50. At any given time step the
set of active nodes is completely interconnected, simply
cause a newly generated node always connects to all a
nodes before being activated itself. It follows that a nodl
with degreekl5m has Cl51 because all them(m21)/2
possible links between neighbors ofl actually exist. If l is

FIG. 1. Small-world effect in scale-free networks. Introduci
the ratiom!1 of random links into the highly clustered scale-fr
networks drastically reduces the typical distanceL between nodes
However, the strongly interconnected neighborhoods of the orig
model (m50) are preserved, as the clustering coefficient remain
its large value. Only whenm reaches the order of 1 does the clu
tering coefficient drop significantly. All plotted values are averag
over 100 independent realizations. The networks haveN5104

nodes with average degree^k&520.
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deactivated in the time step of its generation its neighb
hood does not change any more and it keepsCl51. Other-
wise a nodeiÞ l is deactivated. In the next time step th
nodel 11 connects tol and all its neighbors apart from nod
i. Thenkl(kl21)21 of the possiblekl(kl21) links between
neighbors ofl exist, where nowkl5m11. If node l keeps
being active a nodej Þ l is deactivated. Nodel 12 connects
to all neighbors ofl apart fromi and j causing another two
links to be missing in the neighborhood ofl. See Fig. 3 for an
illustration. By induction it follows that aftern iterations
(n51

n n5n(n11)/2 links are missing in the neighborhood
l.

Thus the clusteringCl depends only on the degreekl . The
exact relation is

C~k!512
~k2m11!~k2m!

k~k21!
. ~1!

This expression indicates that the local clustering scale
C(k);k21 for largek. It is interesting to notice that a simi
lar scaling has been found in the World Wide Web@15#.

The clustering coefficientC can be obtained as the mea
value of C(k) with respect to the degree distributionP(k)
52m2k23, k>m. The result is

C5E
m

`S 12
~k2m11!~k2m!

k~k21! D2m2k23dk ~2!

al
at

s

FIG. 2. Average shortest path lengthL as a function of system
size N. In networks without long-range connections (m50) the
relation betweenL andN is linear. This is seen best in the inset wi
linear scales on both axes. When attaching a fractionm50.1 of all
links to random nodes instead of the currently active ones,L grows
merely logarithmically withN. The values can be fitted well by
straight line in the plot with logarithmicN scale~main panel!. All
values plotted are averages over 100 independent realizations
average degree iŝk&520.
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30m
1O~m22!. ~3!

In the limit of largem the clustering coefficient is 5/6. It is
worth noting that this value is higher than for regular lattic
The value 5/6'0.83 is similar to the one obtained in the film
actor network~0.79!, the coauthorship network in neuro
science~0.76!, and networks of word synonyms~0.7! @16#.

Let us now consider the BA model (m51). When adding
nodej to the network, the probability for one link of nodej
to connect with nodei is the ratio of the degree of the nod
i, ki , and the sum of all nodes’ degrees in the network, 2m j.
Thus the probability for the existence of a link fromj to i is
given by

Prob$~ i j !%5m
ki~ j !

2m j
, ~4!

where the prefactorm takes into account thatm links per
node are added to the network. Byki( j ) we denote the de
gree of nodei at the time that nodej is added. Neglecting
small fluctuations, the degree of thei th node is ki( j )
5m( j / i )0.5 according to Ref.@11#. Inserting into Eq.~4!
gives

Prob$~ i j !%5
m

2
~ i j !20.5. ~5!

The local clusteringCl(N) of the nodel in a network of size
N is defined as the number of links between neighbors ol,
divided by the total number of pairs of neighborsl has. Only
taking into account expectation values and treating the no
as a continuum, we find

FIG. 3. Illustrating the calculation of the clustering coefficie
of the highly clustered model (m50, m52). The encircled node is
the nodel under consideration. Links of this node are drawn
thick lines, links between its neighbors are thin lines. The dot
lines are links that are ‘‘missing’’ in the neighborhood ofl. Active
nodes are filled circles, inactive nodes are unfilled. For further
planation, see text.
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Cl~N!5

E
1

N

diE
1

N

d jProb$~ l i !%Prob$~ l j !%Prob$~ i j !%

kl
2~N!

,

~6!

where we have approximated the total number of neighb
by kl

2/2. Evaluating the probabilities according to Eq.~4! and
usingkl

2(N)5m2N/ l yields

Cl~N!5
m3

8kl
2~N!

E
1

N

diE
1

N

d j~ l i !20.5~ l j !20.5~ i j !20.5 ~7!

5
m3

8lk l
2~N!

~ ln N!2 ~8!

5
m

8

~ ln N!2

N
. ~9!

FIG. 4. Upper panel: The clustering coefficientC as a function
of network size. Networks generated withm50.0 quickly reach the
large value predicted by the analytical calculations (C'0.83). With
10% long-range connections (m50.1) the clustering is lower bu
still approaches an asymptotic value clearly above zero. In the
model (m51.0) the clustering coefficient decreases drastically w
growing system size. Each of the three data sets is an average
100 independent simulation runs. Lower panel: For the BA mod
the function@C(N)N#0.5 grows as lnN, giving a straight line on a
logarithmic-linear plot. This indicates very good agreement with
analytical resultC(N)}N21(ln N)2. For comparison, the theoretica
curveC(N)}N20.75 is shown, as suggested in Ref.@16#.
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The average value of the local clusteringCl does not depend
on the nodel under consideration. The networks genera
by the BA model show homogeneous clustering, despite
inhomogeneous scale-free connectivity. With increasing n
work sizeN, the clustering coefficient decreases asN21 in
leading order. The difference with respect to a random gra
having a Poisson distribution of degree, is seen only in
logarithmic correction (lnN)2.

Figure 4, upper panel, shows the clustering coeffici
obtained from numerical simulations. Form50 we find an
asymptotic value of approximately 0.83 as predicted anal
cally. Also for m50.1 convergence to a finite value is o
served. The BA model (m51.0) displays a rapid decay ofC
as the network sizeN grows. The behavior ofC(N) in the
BA model is analyzed in the lower panel of Fig. 4, clea
supporting the expression in Eq.~9!. C(N) is found to be
inversely proportional to the system size, with logarithm
.

05710
d
e
t-

h,
e

t

i-

corrections. A pure power law with exponent20.75 as pro-
posed in Ref.@16# describes the numerical data less acc
rately.

Conclusions.In summary, we have defined and analyze
simple model of self-organizing networks with high cluste
ing, small path length, and a scale-free distribution of degr
The networks with these generic properties are obtained
crossover between highly clustered scale-free networks@14#
and scale-free random graphs@11#. Although we have con-
sidered growing networks, the dependence of the topol
on the crossover parameter is very similar to the small-wo
transition observed in static networks when rewiring lin
into a regular grid@4#. Therefore our studies make a conne
tion between small-world graphs and scale-free netwo
essentially unifying both concepts in one model. We ha
also studied numerically the size dependence of the sho
path length and derived analytical expressions for
clustering.
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