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Quantum properties of transverse pattern formation in second-harmonic generation
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We investigate the spatial quantum noise properties of the one-dimensional transverse pattern formation
instability in intracavity second-harmonic generation. Theepresentation of a quasi-probability distribution
is implemented in terms of nonlinear stochastic Langevin equations. We study these equations through exten-
sive numerical simulations and analytically in the linearized limit. Our study, made below and above the
threshold of pattern formation, is guided by a microscopic scheme of photon interaction underlying pattern
formation in second-harmonic generation. Close to the threshold for pattern formation, beams with opposite
direction of the off-axis critical wave numbers are shown to be highly correlated. This is observed for the
fundamental field, for the second-harmonic field, and also for the cross-correlation between the two fields.
Nonlinear correlations involving the homogeneous transverse wave number, which are not identified in a
linearized analysis, are also described. The intensity differences between opposite points of the far fields are
shown to exhibit sub-Poissonian statistics, revealing the quantum nature of the correlations. We observe twin
beam correlations in both the fundamental and second-harmonic fields, and also nonclassical correlations
between them.
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[. INTRODUCTION OPO an oscillation threshold for the process exists, which
simultaneously acts as the threshold for pattern formation.
Pattern formation has been an active area of research i@n the contrary, SHG always takes place no matter the
many diverse systend]. Numerous similarities to pattern strength of the pump field, but there is a threshold that marks
formation in other systems have been reported in recent studhe onset of pattern formation. This gives pronounced differ-
ies in nonlinear optick2—6]. However similar, nonlinear op- ences with the OPO in the linearized behavior below the
tics also displays properties that are wholly unique due to théhreshold for pattern formation. In the OPO the pump and the
relevance of quantum aspects in optical systems, one marsignal fields effectively decouple and only the latter becomes
festation of this is the inevitable quantum fluctuations ofunstable at threshold. At a microscopic level, the behavior of
light. In the last decade an effort has been made to study thihe OPO close to the threshold can be understood in terms of
interplay in the spatial domain between optical pattern for-a unique process in which a pump photon decays into two
mation, known from classical nonlinear optics, and the quansignal photons with opposite wave numbers. In SHG the fun-
tum fluctuations of lighf7,8]. New nonclassical effects such damental and second-harmonic fields are coupled and both
as quantum entanglement and squeezing in patterns webecome unstable at threshold. This complicates the picture
predicted[8,9]. Another interesting example is the phenom-mainly by the number of microscopic mechanisms that are
enon of quantum images: below the instability threshold, in+elevant to describe the pattern formation process. But this
formation about the pattern is encoded in the way the quaneomplexity, on the other hand, is likely to generate interest-
tum fluctuations of the fields are spatially correlaf&@]. ing correlations between the fundamental and the second-
Nonlineary(®) materials immersed in a cavity have shown harmonic field. Recently, transverse quantum properties in
most promising quantum effects. A paradigm of spatiotem+the singly resonant SHG setup were investigafiet]. There,
poral quantum behavior has been the optical parametric osqueezing in the fundamental output was observed close to
cillator (OPO), which despite its striking simplicity is able to the critical wave number, but since the second-harmonic is
display highly complex behavidd1-13. In the degenerate not resonated the question of possible correlations between
OPO, pump photons are down-converted to signal photons e two fields was not addressed. However, since the second
half the frequency and with a high degree of quantum correharmonic in the singly resonant case is given directly as a
lation. This might be attributed to the fact that the signalfunction of the fundamental, correlations similar to the ones
photons are created simultaneously conserving energy arabserved in the fundamental should be expected. In this pa-
momentum, leading to the notion of twin photons. In theper we will consider the case of doubly resonant SHG with
opposite process of second-harmonic generd®MG) fun-  the aim of investigating the spatial correlations not only
damental photons are up-converted to second-harmonic phovthin each field (fundamental field and second-harmonic
tons at the double frequency. On a classical level, both théeld), but also between the two fields.
OPO and intracavity SHG display similar spatiotemporal be- For this purpose we use the formalism of quasi-
havior. The essential difference between them is that in therobability distributiong15]. Choosing the use of th@ rep-
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z y FH [ field (SH), respectively. They obey the following equal time
I I J Gy commutation relation:
X SH A .
M, y“crystal M, [AD A D]=8;8(x—x"), i,j=12. (1)
FIG. 1. The model setup in a top view. The Hamiltonian operator describing SHG including diffrac-

tion can be written as done in R¢fL3] for the OPO,

resentation we are able to derive a set of nonlinear Langevin -~ - - -
equations that describes the time evolution of the quantum H=Hireet Hint+ Hext, )
fields in the SHG setufSec. I). In Sec. Ill, the linear sta- e
o . - . ) where the free Hamiltonian is given by
bility analysis of this system will be discussed and a proper

regime of parameters specified, for which the formalism 2 2

adopted here is applicable. Section IV will be devoted to an Hfree:hf dxAAI(x,t)( — 81— =— — | AL(x,1)
analysis, on a microscopic level, of the implications of the 2wy 9x?

three-wave interactions in the nonlinear crystal. These con- 5

siderations allow one to identify the most important spatial +ﬁf AxAL(x )| — 8,— ¢ A(x.t). (3)
correlations expected in this two-field system and to define ' 2 4wy gx2) P

suitable quantities to be calculated. In particular, we will

focus on equal time correlation functions of intensity fluc- Here §; = w;— w; ¢4, are the detunings from the nearest cav-
tuations and we will study photon number variances wherity resonancesj?/9x? describes the diffraction, ardlis the
looking for nonclassical features of the intracavity fields. Aspeed of light. The interaction Hamiltonian describes the
systematic study of the spatial correlations is presented firstonlinear interaction in the material

through analytical results in the framework of a linearized "

theory below the threshold for pattern formatié®ec. \j, ~ _1ng A ~t 5

and a)llso through extensive numgrical simulations of the non- "“_Tf dx(A( DAL DI = H.C), @
linear Langevin equations reported beld®Bec. VI and

above(Sec. VII) the threshold for pattern formation. We con- Whereg is the nonlinear coupling parameter proportional to
clude in Sec. VIII. the x® nonlinearity of the crystal. The external Hamiltonian

describes the effects of the pump injected into the cavity at
the fundamental frequency, which is taken to be a classical

II. NONLINEAR QUANTUM MODEL quantity€,,, so we have

FOR INTRACAVITY SHG

We consider a nonlinegy® material with type | phase Hext:iﬁf AX(EAL(X D — EEAL(X,1)). (5)
matching immersed in a cavity with a high reflection input

mirror M, and a fully reflecting mirroM, at the other end, ) ) .
cf. Fig. 1. The cavity is pumped at the frequeney and Then the mgster gqugtlon for the density majixn the
through the nonlinear interaction in the crystal photons ofNtéraction picture is given by

frequency w,=2w,; are generated. This is the process of - .

SHG. The cavity supports a discrete number of longitudinal ﬁ_p: _ '_[|:| pl+(Li+Ly)p (6)
modes, and we will consider the case where only two of at ht e

these modes are relevant, namely the medg,, closest to
the fundamental frequency and, ., closest to the second-
harmonic frequency. In the setup shown in Fig.w} sy
=2w1cqn but we will allow the cavity resonances to be
independent in order to control the detunings individually.

The cavity losses are assumed to occur only through the
input coupling mirror to the external continuum of modes,
and are here included through the Liouvillian terms

The pump beam propagates along thdirection and using Ei;’ZJ dxy;(2A;(x,1) pAl(x,1) = pAT (X, ) A,
the mean field approximation, variations in thelirection
are averaged out. This approach is justified as long as the —A;r(x,t)Aj(x,t)[J), @)

losses and detunings are small. Due to diffraction the trans-

verse section perpendicular to thelirection spanned by the where y; are the cavity loss rates. Here we have assumed
Xy plane also comes into play. We consider the simple onethat thermal fluctuations in the system can be neglected.
dimensional(lD) case where Only one of the transverse di- Using the standard approach of expanding the density ma-
rections is relevant, so variations along thelirection are  trix into coherent states weighted by a quasi-probability dis-
negIeCted and Only thedirection is taken into account. This tribution function, the master edua'[|@§ﬁ) is mapped onto a
could be achieved experimentally by, e.g., using a slit aperfunctional equation, depending on the order for creation and
ture between pump and crystal, as done in RE], or use a  destruction operatofs8,19. For a Hamiltonian that is qua-
waveguide crystal confining the field in one direction. Letdratic in the field operators this results in a Fokker-Planck
A(x,t) andA,(x,t) denote the 1D intracavity boson opera- equation, implying that the dynamical evolution of the dis-
tors[17] of the fundamental fieldcH) and second-harmonic tribution function may be modeled by an equivalent set of
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classical stochastic Langevin equations. However, due to the g, (x,t)=(— y1+i81) ar(X,t) +gai (X,t) ax(X,t)
contributions of higher order to the HamiltoniaA) prob-

lems may arise. When using the Wigner representation the S c?

evolution equation of the quasi-probability functional con- +i z—wl;al(xlﬁgiﬁ V2y1£1(X0),
tains third order derivatives so it is no longer on a Fokker-

Planck form, and this means that no equivalent Langevin (109

equations can be found. These third order terms, which have
been shown to model quantum jump proce$&€4$ are gen-
erally neglected and the resulting Fokker-Planck equation
turns out to be a good approximation to the original problem.

k) = (— y2+i 8 agx,) - 3ad(x,0)

When using thé® or Q representations problems of negative ¢

diffusion in the Fokker-Planck equation come into plag]. Tl Zo, ﬁaz(xth V2y2é2(x,0),

To avoid negative diffusion in th® representation, some

techniques have been developed where the phase space is (10b)

doubled[21], but then numerical problems due to divergent o , i i
stochastic trajectories generally app&a®,23. We choose with multiplicative Gaussian white noise sources correlated
here to use th® representation which in a restricted domain S follows

of parameters has a non-negative diffusion matrix and has * e o 4

been shown to be a useful alternative in the similar problem (& (DK 1))= 8 8(x—x")o(t=t'), (113
of calculating nonlinear quantum correlations in the OPO

[24]. The Q representation has no singularity problems, is (&(x D& 1) =0, (11b
bounded, and always non-negative. gas(x.1)

Introducinge; anda;* as thec-number equivalents of the (E1(X, D E(X 1))=— %5()(_)(')5(»[_”_
intracavity boson operator; and A, the evolution equa- "N (110

tion for the quasi-probability distribution functio@(«) is
B We rescale space and time according to

IQ(a) . ¢t P - =
&t_ :(&al (71—|51)a1—ga’{a2—|—2w1§— in t=tyn, x=xlg, 12
wherely is the characteristic length scale given by
2 2
. g 2 . 4 2
— —id)ar,+-af—i—— c
dag| (121Dt R e 13= . (13
2y10
g & 7 7 We al lize the fields and noi di
—sa—+n + v, e also normalize the fields and noise according to
2% 9as daday dayda’s
g ~ [ld
A]-(X,t)=aj(x,t)—, §J(X,t)=§J(X,t) -
+c.c.|Q(a), (8) Y1 71
g
E=&n—- (14)
with a={aq,a] ,a,,a5}. This is just an extension to the "1

diffractive case of the result obtained by Savégg|. Equa-
tion (8) has the form of a Fokker-Planck equation, and it ha
positive diffusion if

This allows us to rewrite the Langevin equations in dimen-
Ssionless form:

FALX D) =(—1+iIADA (XD +A* (X ) AX,T)

|yl <222, © 2 2
g +i—A;(X,t)+E+ n—hgl(x,t), (15a
t

NG

As shown below, it is possible to fix the parameters of the 1
system in such a way that the stable squ_tlon for the SH _fleld FALXT) = (— y+iA) A% 1) — —Ai&ff)
is well below the value 2,/g. Fluctuations around this 2
stable solution are small, so that the probability violating the 2 3

g - . . I —_— - —_
.condmon(g) is .almos.t Zero. [\l.eglectmg then stpchasuc tra- + = AT + /_ng(xyt)’ (15b)
jectories violating this condition, we may write a set of 2 gx2 Nin
equivalent Langevin stochastic equations by applying the Ito
formalism for the stochastic integrati¢26]. We then obtain ~ where y=y,/y, andA;=6;/v,, andE may be taken real.
the following nonlinear Langevin equations Moreover we have introduced
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Nip=—- (16)

which in the OPO coincides with the number of photons in
the characteristic “areal’y required to trigger the oscillation.

The noise strength is seen to scale likg'?. The normal-
ized noise sources are correlated by

(& (x, t)&(x’, 1))= 5,]5(x X)e(t-t"), (179
(&H(X V(X' 1)) =0, (17b)
e A(X 1) ~ ~ o -
(G106 DX T))= = ———8(x—X") 8(t—1').
(179

These noise sources turn out only to be defined for
|Ax(x,1)]<2, (18)

which coincides with the conditiof®) for a positive diffu-
sion expressed in terms of the rescaled fields.
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A
(ECDEX )= = 578X ) 8(t=t'), (20D

(E2(x, 1) €x(x",1"))=0. (200

With A, being merely a constant, the noise in the linear
approximation is not multiplicative any more. However, as in
the nonlinear equations we have the restriction

| Ay <2. (21)

We would like to mention that the Wigner representation, in
the linear regime, would lead to equivalent results without
suffering from any limitation since it satisfies a Fokker-
Planck equation for any value pfl,|. However, for the sake
of a consistent presentation of our results we have chosen to
consider theQ representation also in the linear case.

It is instructive to introduce the spatial Fourier transform
of the fluctuations

= dx "
ﬁj(kat):f_w\/T—ﬂ_,Bj(X,t)e' X,

(22)

~ In the following the tildes are dropped, and only normal-In the following we use the term far field for these intracav-
ized dimensionless equations are considered. We will alsty Fourier modes, a term normally referring to the Fourier

use the terminologw= w, and 2w= w,.

Ill. LINEARIZED EQUATIONS
AND BIFURCATION DIAGRAM

modes of the fields outside the cavity. Considering Ef9)

and their complex conjugates, it is readily shown that these
amplitudesg;(k,t) fulfill a set of equations which can be
written in the following matrix form:

In this section we consider the linearization of the nonlin- Bi(k,t) B1(k,t)
ear Langevin equations in th@ representation around the B (—k 1) B (—k 1)
homogeneous steady state solutions below the threshold for | ™1 e 1 '
pattern formation. This approach relies on the assumption " Bak,t) Bo(k,1)
that the fluctuations are small with respect to the field mean BE(—k,t) BE(—kt)
values, and therefore we expect this approach to break down 2 ' 2 '
close to the instability threshold. We will come back later 71(K,t)
(Sec. VI B) to the question of the validity of the linear ap- 5 kt)
proximation. We write the fields a8;(x,t)=A;+ B;(x,t), n /i m(=k, (233
where g;(x,t) represent the fluctuations aroundi. The Nl Vyma(kt) |’
classical homogeneous valugs of the fields are given by \/— £kt
the homogeneous steady state solutions of the deterministic Y72 (—k)
limit (ny,—<0) of Egs.(15), as found in Ref[6]. Using this *
in Egs.(15) we find the following set of linearized equations oik) A, Ar 0
A5 oi( 0 A
aB1(X, ) =(=141A1) B1(X,1) + A7 (X,1) + A7 Ba(X,1) M= _ 4, 0 oxk) 0 |- (23
* *
l—ﬁl<x 0+ ik, (193 . TR

where o(k)=—1+i(A;—k? and oy(k)=—7y+i(A,
—k?/2) have been introduced and each noise terik,t) is

the Fourier transform of the noise term appearing in the real
space linearized Langevin equatiofl®). Their correlations

IBo(X, 1) = (= y+iAy) Ba(X,t) = A1 B1(X,1)

|2y
th

are given by
The correlations of the stochastic sourégs,t) in the lin- (i (k) mi(k't"))y=6;6(k—k")6(t—t"), (243
earized limit become
! ! Az ! !
(£ (DE(X 1)Y= 8;8(x—x")8(t—t"), (208 (mOm (K1) == 7=k k) d(t=t"), (24
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FIG. 3. Transverse instability fak;=2.0 andy= 0.5 shown for

the intracavity second-harmonic field, along with the limit for @e
representationA,| <2.

FIG. 2. Stability diagram forA;=2.0 and y=0.5, showing
transverse stationary instabilitygolid line), transverse oscillatory
instability (dashed ling and self-pulsing instabilitydotted ling.

(ma(k,) a(K' 1)) =0, (240 positive diffusionEq. (21)]. Therefore the probability of tra-
jectories violating the conditiofl8) of the nonlinear equa-
The linear stability of the classical equations obtained asions is almost zerd29]. For A,>0, increasingy or de-
the ny,—o0 limit of Egs. (19) was investigated by Etrich creasingA; towards zero, this threshold gets closel .|
et al.[6]. Arich variety of instabilities was shown to exist: A =2.
self-pulsing instability, that leads to oscillations of the homo- We will therefore use the parameters,=2.0, A,=
geneous steady states without any transverse structure, was2.0, andy=0.5 in the rest of this paper, which gives a
present for all parameters. The oscillatory transverse instabipattern formation threshold d,=7.481757 and a critical
ity leading to patterns traveling in space and time was onlywave numberk.=1.833. The noise strength is set g,
present for certain parameters and branched out from the 10° which is a typical value for the cavity setup discussed
self-pulsing instability. Bistability was demonstrated for here[30].
large detunings of same sign and fersmall. Most impor- The main task of the following section is to identify the
tantly, for all parameters also stationary transverse instabilimost important correlations we expect to find in the system.
ties were found to exist, i.e., instabilities at a critical trans-For this purpose it is useful to have a good knowledge of the
verse wave numberk=k, and with zero imaginary spatial structures that emerge in the system.
eigenvalue. It was shown that stripe-type solutions exist but Numerical simulationd31] of the nonlinear Eqs(15)
are always unstable, and numerical simulations showed thabnfirmed the instability at a finite transverse wave number
instead hexagons are the dominating stationary transverse=k. predicted by the linear stability analysis. Above the
instability. The 1D configuration we have chosen to considethreshold for pattern formation modulations were observed
here has the advantage that the pattern will always be a striggound the steady state with wavelengths corresponding to
and therefore leads to simpler interpretation of the correlak.. This is shown in Fig. 4 where the far field intensity
tions. We will choose a range of parameters in which theshows distinct peaks &t=0, corresponding to the homoge-
stationary transverse instability is accessible as the primangeous background, and &= +k. corresponding to the
bifurcation. This bifurcation is supercritical in the 1D model. modulations observed in the near field, as well as higher
The choice of parameters must take into account the renarmonics.
quirement of applicability of th& representation. One finds
that Eqg.(21) can only be satisfied fak ;>0 [27]. Using the

expressions presented in RE$] and fixingA;=2.0 andy 3.0 10"

=0.5 we obtain the bifurcation diagram shown in Fig23]. 25 10°

We observe that foA,<<0 it is possible to obtain stationary 20 0

patterns(solid line) as the primary bifurcation at a critical 15 10

value of the pumpkE; ; increasing the pump beyort] even- 10 107

tually the system will also become self-pulsing unstadlst- 8-(5) ] 10710

ted line. For A,>0 the transverse oscillatory bifurcation )

(dashed ling is the primary one, and therefore traveling -40 20 0 20 40 -6 -4 '21‘1 246

X

waves are observed in this region. The bistable area is lo-
cated forA,>8.3 and hence beyond the range shown here. |G, 4. Numerical simulation of the Langevin equations above

Expressing the onset of transverse instability, seen in Figthreshold withE/E,=1.01 and. = 102.84. Left: The absolute value
2, in terms of the intracavity value of the SH we have theof the near field of the FHlabove and SH(below). Right: Far field
bifurcation diagram for the transverse instability shown inaverage intensity of FH,|A,(k)|?). The far field of the SH shows
Fig. 3. We see that fak ,<<0 we are well below the limit for a similar structure.
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A, s Log(JA,)) . coherent mechanism that creates simultaneously the corre-
sponding photons. The following normalized correlations are
considered:

(8N;(k,t) SN (K, 1))

V(aRi(k02) (8% (k' 02)

Ch(kk)= (25)

where the superscript denotes normalization. The intensity
FIG. 5. Numerical simulation withE/E,=0.9999 andL fluctuations are given by&Nj(k,t)=Nj(k,t)—(Nj(k,t)>,
=103.057, showing the space-time evolutior?|Afl.| in the near  \yhich involves the photon number operat(ftlj(k,t)

fslilld (left) and far field(right). A similar behavior is seen for the ZAJ-T(k,t)AJ-(k,t). The normalization of the correlations. im-

plies thatCi’}(k,k’)zl for perfectly correlated fluctuations,

whereasC{ (k,k")=—1 will be the signature of perfect an-

Below threshold th ntum noise will excite the | . 1 . . :
elow threshold the quantum noise excite the eaStB_orrelanon between the intensity fluctuations. As usual, the

damped modes and precursors of the spatial pattern are o . . : e
P P P P bsence of any correlation will translate into a vanishing cor-

served. This is shown in Fig. 5 where a space-time plot i . 2 N . :
presented for the FH near and far field. Clearly a stripe—typéelatr:()n functlorci%(k,k )=0. In the following we will refer
11(k,k") andC5,(k,k") as self-correlationtoetween dif-

pattern is formed, but as time progresses the noise diffusd® _ )
the patterri10,37 so that averaging over time will wash out ferent modes of a given fieldand to Ci(k,k’) as cross-

this emerging structure and a spatially homogeneous ne&@rrelations(between modes in different fields

field will remain. On the contrary, as we will show, the spa- As a guideline for the investigation of the properties of
tial correlation functions do encode precise informationthese correlation functions, the first step consists of identify-
about the emerging pattern, even after this time averaginld the basic photon processes when the system is taken
has been carried out, as illustrated through the concept @flose to a transverse instability. These photon processes must
quantum image§10]. obey the standard energy and momentum conservation laws.

Whereas the former merely implies that each elementary pro-

cess must connect one SH photon with two FH photons, the

IV. CORRELATIONS, PHOTON INTERACTION, AND latter will translate into a condition on the transverse wave

PATTERN FORMATION numbers. Keeping in mind that the cavity is pumped with a
homogeneous field at the frequeney the first process to

. Our gengral ObJeCt'Ve is the Investigation of the Spat'alconsider consists of two homogeneous FH photpag/(k
intracavity field correlations emerging in this system as a

: ; =0)=[w](0), combining to give one homogeneous SH
result of the coupling of FH and SH fields through the non- . . .
linearity of the crystal, and the implications of the spatial photon, [ 20](0), which will be written as[w](0)+[w]

instability on these correlations. This study has a two-foldg(p)_’[zw](o)' This is encoded in the Hamiltonian term

purpose: First, to obtain a precise picture on how patterrﬁA; in Eq. (4). The inverse process, which corresponds to
formation occurs in cavity SHG. In particular, we will aim at the degenerate OPO process, also takes place in the system,
identifying the relevant mechanisms, in terms of elementaryas shown by the presence of the termD(zA2 in Eq. (4).
three-wave processes that are important for the understan&{aborating on these considerations we propose the scheme
ing of the intracavity field dynamics. Second, it will be in- in Fig. 6 as the simplest way of obtaining a pattern in both
teresting to investigate whether these correlations are thields.
manifestation of nonclassical states of the fields. Such states (1) The first step is the basic SHG channel where two
are identified by investigating the statistics of the intracavityhomogeneous FH photons give a SH photon and vice versa,
intensities, looking in particular for possible sub-Poissonian.e., the channdlw](0)+[ w](0)<—[2w](0). It isimportant
featureq 33]. to realize that fluctuations around the steady state are consid-
ered, hence it is not considered how the FH photons combine
) ) to give the steady state SH photons via the channel above,
A. Photon interaction but rather how the fluctuations invoke the channel beyond
We will start by investigating the equal time correlations this.
between intensity fluctuations at different points in the far (2) The second step is the down-conversion of a SH pho-
field. The intensity of each field being directly proportional ton into two FH photons. Momentum conservation in the
to the number of photons in the corresponding mode, we caprocess implies that the two FH photons have the same value
relate the intensity fluctuations to the creation or destructiorof the transverse wave number but with opposite signs.
of photons. The idea is that the way these fluctuations ar@hese are called twin photons since an emission pb#
correlated gives information about the microscopic mecha{+k') photon must be accompanied by an emission of a
nisms that take place in the cavity and, ultimately, that ard w](—k") photon, and they therefore show a high degree of
involved in the pattern formation process. Generally speakeorrelation. This channel written d2w](0)—[w](—k")
ing, a positive correlation tells us that there should exist at+[w](+k’) generates off-axis FH photons.

013809-6



QUANTUM PROPERTIES OF TRANSVERSE PATTERN.. ..

3)
1) -
/—/\—\
_Ci((i)_‘. 20(+k")
/7

(0) oK)
—— == 20(0)
D

>

_———— 7
W’ ey

“~

———- 1
e ﬁm( K)

R

PHYSICAL REVIEW6S, 013809 (2002

Fig. 6, would not explain any correlations either between
[w](k") and[2w](—k") nor between2w](k') and[2w]

X (—k"). Hence the inspection of the linearized equations
shows that the interpretation of Fig. 6 in terms of a cascade is
too naive. Instead, we have to understand st8pand(3) as

two coherent, joint processes, which generate simultaneously
correlations between the four modes|(k'), [@](—k’),
[2w](k"), and[2w](—k’"). Finally, it is important to stress
that the linearized analysis does not predict any correlation
between intensity fluctuations in field modes with wave
numbers of different modulus. Mathematically, this is due to
the fact that in the linear approximation all correlation func-
tions (25) have the structure

2)

FIG. 6. The basic picture of pattern formation on a microscopic CiJ'(k'k’):Ci(j )(k) 52(k_ k’)+Ci(j+)(k) 52(k+ k'),
level through SHG. The single arrows+) symbolize FH photons, (26)
while double arrows £) symbolize SH photons. The dashed ar- 55 || e shown in the next section. Close enough to thresh-
rows are photons from the homogeneous background. old, however, this will not be true any more because of the

emergence of additional correlations of nonlinear nature.

(3) Off-axis SH photons are obtained by combining the Let us finally briefly address the fundamental difference
created off-axis FH photon from stép) with a photon from  between OPO and SHG: Whereas in SHG, the two figlgds
the homogeneous background to give a SH photon, which bgnd.A, are always nonzero regardless of the pump level, in
momentum conservation must have the same wave numb#te OPO case below the oscillation threshglgis fixed by
as the off-axis FH photon. This channel can be written aghe pump and4;=0. Considering the scheme presented in
[0](0)+[w](+k')—=[2w](+K'). Fig. 6, the vanishing of4; implies that there is no macro-

Of course, these are not the only three-wave processé&$OPic population of the mode»](0) and therefore ste(8)
which are kinematically allowed in the nonlinear crystal, ©f Fig. 6 is not present. The route to pattern formation simply
since the interaction Hamiltonia@) induces any process of CONSists of stef2) in Fig. 6, generating correlations between
the form[w](K") +[w](K")—[2w](k’ +K"), with arbitrary ~ ONi(k,t) and 6N;(—k,t). Mathematically, the consequence
wave numberk’ andk”. In fact, the basic scheme we pro- for the stability of the homogeneous solution is that the two
pose in Fig. 6 only takes into account those three-wave proeduationg19) effectively decouple and that only the FH be-
cesses which involve at least one photon of the homogeneoG9Mes unstable at the threshold.
background fields. Empirically, this choice is motivated by
the observation that below the threshold these are the only
field modes that are macroscopically populated, so that any Once correlations between intensity fluctuations are iden-
process involving them should be stimulated in analogy tdified, it is interesting to investigate if they are connected to
what occurs in standard stimulated emission. Formally, th@onclassical states of the intracavity fields. A coherent field
selection of these particular elementary processes corr@Peys Poissonian photon statistics, which implies that the
sponds precisely to the approximation made by linearizing/ariance and the mean of the photon number opefdtare
the field equations around the steady state solution. As ca@dual. Let us consider the photon number operators associ-
easily be checked, the full equations for the far field fluctua-2t€d with the sum and difference of the intensities at different
tions contain additional terms quadratic in the fluctuationfar-field points N;(k) = N;(k"), where Ni(k)=a/(k)a; (k)
amplitudes, which indeed account for other three-wave proand N;(k)=a/(k)a;(k) are the number operators of two
cesses. Linearizing we are left with E@3a, which only  giatesy (k,t) anda;(k,t). Since we will consider equal time
takes into account the processes represented by @e@sd  correlation functions in the steady state of the system, from
(3). These processes translate into nondiagonal elements gbw on we will drop the time argument of the field operators.
the matrixM (k) of the linear system, and as a consequenceTaking out the special case=j and k' =k which will be
for any value ofk, the time evolution of the four amplitudes treated separately, the variance expressed in normal order
Bi(k,t), Bi(—k.t), Ba(k,t), andBo(—K,t) will be coupled. (indicated by dotsreads
This coupling is expected to translate into correlations be-
tween the intensity fluctuationsl(k), &1.(—Kk), &l5(k)
and 6l ,(—Kk).

This preliminary observation already allows us to give a
more explicit interpretation of the basic scheme of Fig. 6.
Splitting the dynamics of the intracavity fields into indepen-
dent elementary steps, as suggested in the discussion of

B. Correlations below shot noise

Var N; (k) = N; (k") 1= Varf Nj(k) = Nj (k') ]:
+(:N;(k):)[ai(k),af (k)]
+(:Nj(K) ) ay (k)& (k)],

(27)
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where Var)=(X?)—(X)2. For a coherent state, the normal If the normal ordered variance becomes negative
ordered variance vanishes, and the mean, given by the last

two terms in Eq(27), represents the shot noise level for the _ N
considered quantity :Var(N; £N;): <0, (29)

the variance becomes less than the mean, indicating sub-

R R R R R R Poissonian behavior. Such a nonclassical state is identified

CSN=<:Ni(k):>[ai(k),ai’f(k)]+(:Nj(k’):>[aj(k’),a;r(k’)]. when the correlation normalized to the shot-noise level, de-
(28)  fined as

‘Varf N;(k) = N;(k)]: 1
CNi(R)) (k). af () T+ Nk ):)ay(k"),a] (k)]

C{ (kK )= (30

is such thalCi(ji)(k,k’)<1. The computation of this quantity requires one to write the normal ordered quantities appearing in
Eq. (30) in terms of antinormal ordered quantities, since these are the quantities that are computed as averages in our Langevin
equations associated with tigzrepresentation. Using the identities

Nk =a(k)af (k) =:Ni(k): +[a(k),af (k)] (319

tNP(k) s =2 (k)& (k) (K)af (k)
=:N;(k)% +4:N;(k):[a;(k),al (k)]
+2[ai(k),af (k)12 (31b
with three dots indicating antinormal ordering, E§0) reads, when expressed in terms of antinormal ordered quantities,
Var N(k) = NG (k) T = (:Ni(k) £ )[a(k),a (k)] = (: Nj(k") £)[3;(k"),a] (k)]

CH(k,k')=— — _ . : S - - . 32
k) (:Ni(k) £ )[ai(k),al (k) 1+(:Nj(k') 1)y (k'),af (k') ]—[ai(k),af (k) ]~ [a(k’),a] (k")]? %2

Then, e.g., the normalized correlation Mas(k)=N, The starting point of our analysis is the set of linearized
(—k)]/Cgy may be found by setting=j=1 andk’=—k. Langevin equation§23a which have the exact solutions
Equation(32) is valid for k,k’ #0, while the special case

=0 will be addressed in the specific cases.

Bl(kvt) ﬁl(kio)

BI-KO | | BI(-KO) 2
Below threshold, the linear approximation scheme allows K =€ K T\ €
. . . . . BZ( vt) BZ( 10) Nih
one to derive semianalytical expressions for the correlation . .
functions defined in the previous section. These may be ex- | B2 (—k,t) B5(—k,0)
pressed in terms of the auxiliary correlation function

V. LINEARIZED CALCULATIONS BELOW THRESHOLD

m(kt")
~ A L * ’
CRUkK)=(: Rk D) AR (k' ,0)F),  1,j=1,2 «[fareor ;71( Kt
= (A DA (K D[ ’ fyfi(";: ))
/ vy (—k,t’
—([AikDIP)(A (K D), (33 ? a
where the superscrig indicates that the average is done
with the Q representation, corresponding to antinormal or-
dered quantities, as indicated in the first line of E2B). The first term in Eq(34) describes how the intracavity fields
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with arbitrary initial conditions relax to the steady state so- n(k,t")
lution and it does not contribute to the steady state correla- *( ket 4
tions. The second term in E¢B4) gives the response of the 71 (—kt') _ Okt WOk “0
intracavity fields to the vacuum fluctuations entering the cav- Vyma(k,t') e T '
ity through the partially transparent input mirror. Starting 7t (=Kt
from Eq.(34), it is possible to derive semianalytical expres- y72 (=K.)
sions for the correlationé33) allows us to rewrite Eq(34) in the large time limit as
CR(kk)=(|Bi(k.DI?]Bi(K" 1)) Ba(k,t)

—(Bi (kOB (K" D) Bl=kb | _ /iftdtf

+ 2R AF A(Bi(k, 1) BF (K1) Ba(k.D) NinJo

B3 (—k1)

+AFA(Bi(k, D Bi(K D) 8(k)o(k"), (35

where R¢-} denotes the real part. Whereas the first two
terms in the right-hand sidéhs) of Eq. (35 measure the

correlations in the intensities of the fluctuations, the last two
terms can be traced back to interferences between the flucs
tuations and the homogeneous component of each field.

4
x> 2=ty 0k v (k).
I=1

(41)

he needed field correlations are given as

Since these interferences only contribute to the equal tim?ﬁ-(k H)B*(k',1))
I ’ ] l

correlations wherk=k’ =0, we will first concentrate on
k,k’ #0 and come back later to this special case. Henceforth,
unless otherwise specified we consider the ¢qké+ 0.

The Gaussian character of the fluctuations in this linear-
ized Langevin model allows us to factorize Eg5) in terms
of second order moments of the field fluctuations

Cf,?(k,k'>=|<ﬁi<k,t>ﬁr(k',t)>|2+|<ﬂi<k,t>ﬂj<k',t>>l(2.
3

The field  correlations (Bi(k,t) B (k' 1)) and
(Bi(k,1)Bj(k’,t)) can be best evaluated for the solution Eq.
(34) if we introduce the set of eigenvectdig(k)} 1 . 4

of the matrixM (k), defined through

M (k)vO (k) =1 D (k)vD (k). B 1he

An arbitrary four-component vectaw can be decomposed
on this basis

wq(k)
oo | W2 .
W= i |~

Wy (K)

wO (kv (k), (39

2 [t t 4
=— dt'f dt” X 08 (ki * (k')
nth 0 0 I,m=1 !

% ex(')(k)(t—t’)ex(m)*(k’)(t—t”)< 77(|)(k,tr) n(m)*(kr1t/r)>,

(429

6 (Bi(k,1)Bj(K" 1))
) 4

= lav [ S o000 06
NinJo 0 I,m=1

x @M 0k, 1) 7™M 1)),

(42b

noise correlations in the new basis
(nW(k,t") n™*(k’,t")) and (7" (k,t") 7™ (k' ,t")) are

(kA 7™* (K1) = A(K) B(K— k') 3(t =),

(433

(7Ot 7™M (K’ 7)) =Bim(K) S(k+K') 8(t" —t"),

(43b)

where the matrix elements of thex#4 matricesA(k) and
B(k) can easily be evaluated in terms of the matrix elements

TImETIm(k) as

and its components/(" in the new basis are calculated via
the linear transformation

Am(K)=T; T~

4
WO = 2, Tinn(K) Wiy (). (39

This involves a 44 matrix T;,(k) calculated asT (k)
=V(k)~ ! with V|m(k)=v|(m)(k). Decomposing now the
noise vector appearing on the rhs of E84) on this basis
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BACHE et al.

Inserting Eqs(43) in Egs. (42) we can easily carry out the
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the only relevant information, which is the height of each of

time integration, and neglecting transient contributions, wehese peaks. In fact, the quantities

end up with the following expressions

lim (Bi(k,t) B} (K',t))= —G< J(k)s(k—k"), (453

t—oo

llm</3(kt)ﬁ,(k’ t)>——G(*)(k)5(k+k'), (45b)
with
4 4 0 (m) *
(k)= vai-1(K )UZJ 1% (k)
G| (k Z 2:1 Alm(k) _[)\(|)(k)+)\(m)~k(k)] ’(463
4 4 (m)
() (1) — vi) 1(K)v3;2 4 (k)
=2 2, B'm(k)—[M')(k)ﬂ(m)(k)]'meb)

In terms of G (k) andG{")(k), Eq.(36) is given by

cﬁ(k,k'>=niz[|efj><k>|262<k—k')

+]G{7 (k) [26%(k+K")]. (47)

A. Intensity fluctuation correlations

It is now easy to compute the normalized correlation
function Eq.(25). This involves taking into account the com-
mutation relation Eq(1) which reads

[Aik,D),A (k' 1)]= B ! 5(k k'), (48)

after rescaling space and time according to @¢) and the
operators similar to the-number fields in Eq(14). We fi-
nally find

G (I a(k—k')?
Vm(kg (k) 8(0)°
. IGGIKIP a(k+k')?
VoK (k) - 8(0)%

(WG]

Ch(kk')=

(49

with 7;(k) =G )(k) — 1/2], the — 1/2 in the paren-

. s wl?
Cli(k,—k)= i (508
1G5 (k)2
Cl'(k,=k)= —————, 50b
N N CICEC (500

characterize the strength of the correlations between the
modes [w](k) and [w](—K), [2w](k) and [2w](—K),
[w](kK) and[2w](k), and[ w](k) and[2w](—K), respec-
tively. One easily checks thatjj(k,k) =1, as a result of an
autocorrelation.

All the expressions derived so far are only valid for non-
vanishing transverse wave numbers. ikt k’'=0, we al-
ready observed that there are extra contributions to the equal
time correlation function, as expressed by E2p). Further-
more, in the framework of an expansion in the small param-
eter y2/ny,, it is obvious that these extra terms even domi-
nate, since they scale withs;(k,t)|>~2/n,,, whereas the
contributions on the first line of EQ(35 scale with
| Bi(k,t)|*~ (2/n,)2. Hence, in the leading order, the corre-
lation function atk=k’=0 is given by

25(0)

C(K,K)ier 0= : 2Re A} A,G$5(0)

+Af A3 G{5(0)) (k) (k") k=i ~o-
(51
Similar calculations as before allow us to derive the follow-

ing expression for the value of the normalized cross-
correlation atkk=k’=0,

Re( AT A,G{,)(0)+ AF A3 G(5(0))
VaVe

)(0)—1/4]+ Re[ AF2G{)(0)}.

C1,0,0=

. (52)

Where§j=|AJ|2[G

B. Nonclassical photon number variances

The photon number variances considered in Sec. IV B can
be calculated in terms of the auxiliary functio@§ (k) and
G{")(k) as well. The antinormal ordered quantities in Eq.
(32 can be directly calculated by averages in the Langevin
equation, so below threshold the antinormal ordered variance
is for k#0,

thesis reflecting the conversion from antinormal to direct or-

dering. Unlike the mathematical expressi@®) derived for
an ideally infinite system, the correlation functions deter-
mined from the simulations will have peaks of a finite width,
which will be determined by the discretization knspace

s Var N(k) = N;(— k)] = Var | Bi(k,0)[2 %[ 8;(— kt)|2]

Using the commutation relation@8), the commutators in

used in the numerical codes, i.e., the inverse of the totaEq. (32) are[a;(k), a*(k)] 6(0)/ny,, and the normalized

length of the system. This dlfference however, will not alter

self-correlations take the form

013809-10



QUANTUM PROPERTIES OF TRANSVERSE PATTERN.. .. PHYSICAL REVIEW6S, 013809 (2002

2(1G{ (k2= |G (k)2 = G| (k)

Cl(k,—k)= o
i ( ) SO—172 (54)
Similarly, the cross-correlations are
2(2 IGJ‘;)<k>|2t2IG&2"’<k>|2)—; Gji (k)
Cha(k )= . v=+1-1. (55)

2 G (k-
J

Whenk=k’=0 Eq.(53) is no longer valid. Instead, following the procedure outlined for the normalized correlations we
have to the leading orded(n;;"),

{2 AF2G((0) = 247 (A5 G, )(0) + A,GE (0)) |+ 2 [4;°Gf(0)
J

c)(0,0=4—— -1 (56)
; | A2
|
The self-correlations become lations and from the analytical results of E¢S0) and (52).
Very good agreement is found between numerics and analyti-
C](j*)(o,o)zoy (579  cal results.

There are three main features to be considered in the re-
+) B C26a ~(4) ) sults of Fig. 7. First, all curves present a distinctly peaked
Cjj '(0,0=4 Ree “AGj(0)]+4G;; (0)—1, behavior around the critical wave numbderfor pattern for-

(570 mation, which means that the corresponding modes are more

strongly correlated than the modes at any other wave num-

where¢>A is the phase of4; . Note thatC(*)(O 0) is actually  ber. Manifestly, this behavior is connected with the pattern
Var[N (0)] normalized to shot noise. The result of E§72 formation mechanism and is closely related to the phenom-

is S|mply because the correlatm’ﬂj )(k,k’) amounts to cal- enon of quantum mage[;O]. Second,.we also note that n
b all four plots the correlations show a jumplat 0. In Figs.
culating the variance of zero fde=k’=0.

1.0 1.0 b)
VI. CORRELATIONS BELOW THRESHOLD 08t 08k
The linearized results of Sec. V give an analytical insight ., 0.6} o 06f
to the behavior below threshold for pattern formation. How- 04} 04Ff
ever, very close to the threshold this linear approximation g2} ] 02f
breaks down because of critical nonlinear fluctuations, and 0.0 0.0
additional contributions may emerge as, for example, showr 32101 2 3 32101 2 3
in a vector Kerr model by Hoyueloet al. [34]. Such nonlin- k k
ear correlations can be calculated through numerical simula
tions of the full nonlinear evolution equations. 1.0 %)
In this section we present numerical results obtained from g'g
simulations of the nonlinear equatio(f5) below threshold, 04k
with the parameters discussed in Sec. Ill. Our numerical re o 02k
sults are compared with the analytical results of the previous 0.0
section, and therefore also serve as a cross-check of our an. 221

lytical and numerical methods.
ytical and numerical methods 3521012 3

k

A. Linear correlations: Analytical and numerical results i i
FIG. 7. The linear self-correlation&) CY,(k,—k), and (b)

We first consider the strength of the correlations betweert),(k,—k), and linear cross-correlations) Cl,(k,k), and (d)
symmetric points in the far fields below the threshold forc?,(k,—k) as functions of the transverse wave number EOE,
pattern formation. In Fig. 7 the four quantities defined by EQ.=0.99. The points are numerical results while the lines are analyti-
(25) are plotted. The data are obtained from numerical simueal results.
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) . FIG. 9. The linear cross-correlatid@f,(k=0k’=0) as a func-
FICi. 8. The self-correlaltlonﬁt;l(kc,—kc) (full line, squares  {jon of the pump normalized to the threshold, comparing numerical
and Cx5(ke, —kc) (dashed line, circlgsand the cross-correlations  regyts(pointg with the analytical resulfiine). Open(closed sym-
Clike,—k¢) (dotted line, trianglgsand C1,(k.,k;) (dash-dotted s are numerics beloabove E, .
line, diamondgas functions of the pump normalized to the thresh-

old. The points are numerical results while the lines are analyticahssociated eigenvalue precisely goes to zero. Thus the de-
results. crease in the correlations as we move away from threshold
can be seen as the result of the coexistence of different
7(a) and 7b) it is the trivial manifestation of an autocorrela- eigenmodes. Physically the emergence of these correlations
tion, since fork=0, k and —k coincide, while in 7c) and is much less intuitive than the ones in an OPO. As a matter-
7(d) the jump is due to the extra interferences with the ho-of-fact, in the OPO below the threshold momentum conser-
mogeneous background fields as predicted from B6).  vation is enough to predict the existence of correlations be-
Finally, we observe that the peaks localized arokpchre  tween the fluctuations in the modéso](+k) and [w]
superimposed onto smooth correlation profiles. (—Kk). In the presence of the four-mode interaction of SHG,
The strong correlations appearing between the modes atie momentum conservation gives a global condition involv-
sociated with wave numbers arouikg indicate a strongly ing all four beamgat [ w](+K), [w](—k) and[2w](+K),
synchronized emission of photons in the mofled(+k), [2w](—k)]. These correlations in fact arise in connection
[w](—Kk) and[2w](+ k), [2w](—K). This behavior reflects with the emergence of an instability.
the direction of instability of the system. As a matter-of-fact, Turning now to the cross-correlation between the homo-
regardless that all transverse modes of both fields are equalfyeneous components of the fields, we observe @igtk
excited by the vacuum fluctuations entering the cavity, the=0k’=0) in Fig. 7 is negative, reflecting an anticorrelation
fluctuations of the intracavity field modes around the criticalof the photons associated with the FH and SH homogeneous
wave vector will be less damped than the fluctuations in thevaves. In other words, the creation of a pho{@w](0)
other modes. The closer to the threshold, the more the bemplies the destruction oftwo) photons[w](0) and vice
havior of the intracavity fields will be dominated by the yersa. The origin of this correlation is much simpler to un-
mode that becomes unstable at the threshold and gives rise derstand than the previous one: The two mdde}0) and
the pattern. In the four-dimensional phase space spanned by ](0) being macroscopically populated, the vacuum fluc-
the fluctuation amplitude$B;(k,t), 87 (—k,t),B82(k,t),85  tuations simply induce transitions between these two modes,
(—k,t)}, this mode is characterized by a vector with a givenaccording to stegl) in the scheme in Fig. 6. In Fig. 9 we
direction. What we learn from the correlation functions isplot this correlation as a function of the pump. Comparing
that the emerging instability results in an almost perfectlythe value of the correlations below and above threshold, we
synchronized emission of photons in the mofled(+k),  observe that very close to, but below, the threshold, the ten-
[w](—k) and[2w](+K), [20](—K). dency of the curve is reversed and it anticipates the behavior
The dominance of this particular mode when the thresholaf the correlation above threshold. These are nonlinear cor-
is approached is confirmed by the study of the strength ofelation effects that will be discussed in Sec. VI B.
these correlations as a function of the pump. In Fig. 8 we Finally, we would like to discuss the smooth contributions
follow the height of the peaks &=k, of the four linear to the correlations displayed in Fig. 7. We first note that these
correlations displayed in Fig. 7, as a function of the pumpare not connected with the pattern instability. This was
level E/E,. The most immediate observation is that all thechecked by considering very low pump values for which the
correlations become perfect in the limE—E;. This peaks around, completely vanish, while the smooth struc-
asymptotic behavior can be understood from the linearizetures of the curves remain. Considering the central region of
fluctuation analysis presented in Sec. V. It is enough to obthe curves, roughly fotk|<k., the most striking observa-
serve that Eq946) involve the inverse of the real part of the tion is the absence of correlations between the fluctuations in
eigenvalues of the linear systg23a. The dominance at the the modeq w](k) and[2w](k), wheread w](k) and[2w]
threshold of the undamped eigenmode of the linear systenx(—k) are correlated, as well a2 w](k) with [2w](—K).
(23a emerges from the fact that here the real part of theThis behavior seems to indicate the existence of a symmetry
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FIG. 10. Photon number variances f&/E;=0.99 showing FIG. 11. Photon number variances f&/E;=0.99 showing

C{7’(k,—k) (full line, diamond$ and C{}’(k,—k) (dashed line, C%’(k,—k) (full line, diamond$ and C%;’(k,—k) (dashed line,
squares The lines are analytical results while the points are nu-squares

merical simulations. The shot-noise leve=1 is indicated by a )
thin dotted line. when the pump level is taken beyond threshold, cf. Sec. VII.

Therefore the statistics of the intensity difference are not
restoring principle in the dynamics of the intracavity fields. directly affected by the pattern formation mechanism. A radi-
As a matter-of-fact, the absence of correlations betweef@lly different situation occurs for the sum-correlation
[w](k) and [2w](k) implies that the fluctuations of the C%1’(k.—k), which shows a strong peak arouke k. For
numbers of pair productions through stép) and the fluc- the pump value used in Fig. 10 the peaks correspond to a
tuations of the number of conversiofi®](k)—[2w](k)  mMaximum valueC{}’(k.,—k.)=35. This behavior is con-
through stefd3) occur independently of each other. However, nected with the increase of the fluctuations in the modes
while step(2) of Fig. 6 conserves the— —k symmetry of ~ associated with the pattern instability when the threshold is
the system, stef3) does not. As a consequence, a positiveapproached, leading to a large excess noise in the statistics of
fluctuation in the number of times stéB) occurs[[w](k)  the intensity of the individual moddso](k) and[w](—K).
+[w](0)—[2w](k)], automatically implies that there will This excess noise in each intensity cancels when the differ-
be less[w](k) than [w](—k) in the system, and more ence N,(k)—N;(—k) is considered leading to sub-
[2w](k) than[2w](—K). The correlations observed may in- Poissonian statistics, while it is still present in the sum

dicate that the system will try to restore tke- —k symme-  {, (k) +N,(—k). For largek the correlation approaches 1.5,
try by down-convertind 2w](0)—[w](k) +[w](—K), pro-  coinciding again with the corresponding value for the OPO.
ducing a surplus dfw](—k) which again will produce more  Finally, as before, the jumps kt=0 are due to contributions
[20)](_ k) These mechanisms seem to fit well with the rela'from the homogeneous Steady states, cf. Eﬁﬁ) and (57)
tive strengths of the correlations observed in the central rethe corresponding photon number varianes;(k, — k)
gion of Fig. 7. The strongest is alwagy'y(k,—K), in agree-  for the SH field are shown in Fig. 11. In contrast to the FH
ment with the fact that the twin photon emission is thecorrelations there is almost no sub-shot-noise behavior in the
principal source of correlations in the system. Weaker is thgjiffierence correlatiorC$,’(k,— k). In other words, the SH
correlation Cy,(k, —k) and even weakeC3,(k,~k). This  peams only display very weak nonclassical correlations. As
interpretation is consistent with the way the correlations ator the FH field, the emerging instabil)ity does not influence
"

k=k. depart from the value 1 at threshold, when the pump ishe noise level inc$,)(k,—k), but C43)(k,—k) displays a

lowered, as displayed in Fig. 8. _large amount of excess noise in the vicinity kf. The
We now turn our attention to the study of the ﬂUCtuat'O”Sasymptotic largek behavior for both correlationé:(zg)(k,
in the sum and difference of the photon numbers at sym-

- Gk, —K) i lytically found t dt
metrical points of the far field. We first consider the twin thg)sﬁgttj-gozizsékl’imit)llg analytically found fo correspond to
beam photon variances for the FB{;’(k,—k) defined in . () (+)

Eqg. (30) and shown in Fig. 10. The results are symmetric The  cross-correlationsCi, (k,k) and Ci,’(kk) are

) itutid shown in Fig. 12. The linearization approach predicts that
W'.th respect to the S.u.bSt'tUt'. e K, wh_e_refore we plo'gted these correlations are always above the shot-noise limit. Fur-
this quantity for positivek, shifting the origin for better view

- . ) . . thermore, at small wave numbers we note that the variances
of the specific behavior &=0. The linearized Caltzulatlon of the sum and difference coincide. This can only occur
predicts sub-shot-noise statistics in the differedg(k)  when the fluctuations in the individual modgs](k) and
—N.(—Kk) for all wave numbers. For large wave numbers[2w](k) are uncorrelated, what was indeed observed in Fig.
the analytical result for the correlation approaches the valu&. Moreover, both the sum and difference correlations show a
1/2. It is interesting to keep in mind that for the OPO, thelarge excess noise kt=k., which is slightly weaker for the
same quantity is equal to 1/2 independently of the wavelifference, as the result of a partial noise cancellation.
number{35,36. In the SHG case additional processes taking The cross-correlationﬁ(lg)(k,—k) and C(lg)(k,—k) are
place in the cavity result in a smootkdependence of shown in Fig. 13, and here the difference correlations inter-
C{1’(k,—K). These characteristics do not depend much orestingly go below the shot-noise limit as longkais not too
the value of pump, and are not changed significantly everlose to the critical wave number. It is worth pointing out
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3 <3l,(k)31,(0)> <3l,(k)31,(0)>
0.05 0.05
2 0.00 [~ 0.00
0 -0.05 -0.05
1 -0.10 -0.10
-0.15 0.15
-0.20 0.20
0 ! ! ! ! ! ! 3210123 3210123
05 00 05 10 15 20 25 30 k k
k 0.05 .. .. . . . o
FIG. 12. Photon number variances f&/E;=0.99 showing 0.00] s 08 ]
C{;)(k,k) (full line, diamonds and C{})(k,k) (dashed line, ' °
squares 0,051 a ]
&
that the differenceN; (k) —N,(—k) shows nonclassical be- © 010 .
havior while the differencél; (k) — N,(k) (shown in Fig. 12 o . ::1&‘98:1(8»
does not. This somehow paradoxical situation is related to -0.157 o Q,zgigz,jzogi E
what was observed in the normalized correlations where the o v <l (+k)sl,(0)>
. o < -0.20 oy vy vy o vy oy
cross-correlation betweeN; (k) and N,(—Kk) was stronger 107 100 100 10t 100 o001 o041 1
than the almost vanishing cross-correlation betwiig(k) 1-E/E,

and N,(k). At k=k. a large amount of excess noise domi-  FIG. 14. Above: Nonlinear cross-correlatior®],(k,k’ = 0)
nates the behavior of both the sum and the difference correleft) and Cj,(k’=0k) (right) as functions ofk for E/E,
lation and the two correlations show a pronounced peak. For0.999 999. Below: Semilog plot of the nonlinear correlations
largek the correlations approach the shot noise limit, as seefjj(k=+k.,k’=0) as a function oE/E;.

for the other cross-correlations in Fig. 12.

Olsen et al. [37] have investigated the system without
spatial coupling corresponding to our resultskatO, and
they find that, for certain detunings, the variance of the su
of the FH and SH intensities are more strongly quantu
correlated than the variance of the individual intensities, due N . . . .

ke, Cjj(0,xke). From a technical point of view this task

to thAe anticorrelation between them. Ma; (0))/Csy and turned out to be difficult because nonlinear contributions to
VariN,(0)]/Csy can be seen from Figs. 10 and 11, respecthe correlation functions were only observable for pump val-

tively, at k=0. Both are larger than the \ai;(0) ues extremely close to threshold, in a region where the char-
+N2(0)]/CSN observed in Figs. 12 and 13, so that our re-acteristic time of the dynamics diverges because of critical

ear fingerprints in the correlations and in particular for the
emergence of new correlations, i.@{} (k,k") with k# +k’.
"ot particular interest is to look for correlations between the
omogeneous steady statds=(0) and the states with=

sults confirm the ones ¢87]. slowing down. This translates into very long transients and
the need of equally long simulations.
B. Nonlinear correlations: Numerical results We have observed some indication of nonlinear correla-

, , . tions for a pumpE/E;=0.999 99, which became very clear
So far we have only considered the correlations predicteg,nen usingE/E, = 0.999 999. For this value of the pump, we

by the linearized equations. In order to go beyond this reg, .\ in Fig. 14 our results fo€ (k,k’' =0) and Cl(k’
gime, we use our numerical simulations to search for nonlin-_ 0K): these curves put into evidence an anticorrelation be-
tween the modegw](£k;) and [2w](0), and between
[2w](=k,) and [w](0). They present a very sharp peak
structure, with a width determined by the distance between
two adjacent points of the discretizédspace used for the
simulations. This is due to the fact that we now consider the
correlation functions at fixel’ and letk vary. These corre-
lations are a result of nonlinear amplification of the diverging
fluctuations as the threshold is approached. The negative na-
0 o ture of the correlation is connected with the fact that the
fields with nonzero average valu@sere the homogeneous
componentsact as a “reservoir” of photons for all processes
occurring in the cavity. As we will show later, they are a
FIG. 13. Photon number variances f&/E,=0.99 showing precursor of the behavior of the correlations above the
c{;)(k,—k) (full line, diamond$ and C{})(k,—k) (dashed line, threshold. The correlations &t=0 correspond to the linear
squares correlation shown in Fig. 9. The bottom plot in Fig. 14 shows

05 00 05 10 15 20 25 3.0
k
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the nonlinear correlation@i”j(kz +k;,k"=0) as the thresh- 1.0 1.0
old is approached. The correlations are nonzero only for  08f 08}
E/E{>0.9999, as the nonlinear correlations set in the non- o 06} 1o g'g:
linear channels in steg8) and(3) of Fig. 6 become stronger 04t ] ’
. . . 02}
and this weakens the correlations induced by the channel o 5} ] 0.0
step (1), which is exactly what we observed in Fig. 9; 0.0 02
C1,(0,0) becomes less correlated very close to the threshold 32101 2 3 32101 2 3
Moreover, we see that the correlatio®),(0,+k;) and k k
12(0,+k.) have almost identical values, and the same holds g 08
for Co(+k¢,0) andC],(+k.,0). This interesting behavior 0.6 C) ] 0.6 d)
can be traced back to the fact that close to the threshold the g4} 04}l
fluctuationsél 1 (k;) and él,(k.) are perfectly correlated, as © 02l © 02t
displayed by Fig. 8, whereas the slight anticorrelation be-
. . 0.0 0.0
tweenn 611(0) andsdl 250) is respo_n5|ble for the Inower values 02 02
of szr$+kc,0) andC7,(+Kk¢,0) with respect taC7;(0,+k¢) 32401 2 3 32101 2 3
andC74(0,+k¢). k X
FIG. 15. The self-correlationga) C7,(k,—k) and (b) CH(k,
VIl. CORRELATIONS ABOVE THRESHOLD —k) and cross-correlation&) Cl,(k,k) and (d) Cl(k,—k) as

Above the threshold for pattern formation the linearizedunctions of the transverse wave number BJ&,=1.05.

equations(19) are no longer valid. As displayed in Fig. 4,
above the threshold not only the homogeneous modes, big seen below the threshold. Close to the threshold the cor-
also all modes with wave numberg=*+k.,* 2k, relations are perfect, and as the pump is taken further away
+ 3k, ..., will present a macroscopic photon number. Lin- from E, the correlations become weaker. Below the threshold
earizing around the steady state pattern solution above tHBis was explained through an eigenvalue competition, while
threshold under the assumption of small fluctuations, on@bove the threshold the explanation is that the competitions
obtains new linear equations for the far field fluctuation am-between the states become stronger.
plitudes, which take into account three-wave processes such Thek=0 cross-correlation is plotted in Fig. 9, and above
as [2o](k.) —=[w](K)+[w](ke—K) or [2w](K)—[w](K.) the threshold there is a loss of anticorrelation or there is even
+[w](k—k.). In analogy to the situation below the thresh- @ small positive correlation. This might be attributed to the
old a linear fluctuation analysis above the threshold predictgnacroscopic and independent occurrences of the processes
in addition to the correlations already present below theof steps(2) and(3) in Fig. 6.
threshold, the existence of additional correlations between We saw in Sec. VI B nonlinear correlations just below the
the fluctuationssl (k) and 8l ,(k.—k), and betweersl ,(k) threshold, and in Fig. 16 the peaks corresponding to these
and 81, (k—k.). We will not report here the explicit results correlations are plotted in order to follow the progress above
of this cumbersome linear analysis and refer directly to théhe threshold. The strongest anticorrelation is observed just
numerical analysis of the full nonlinear Langevin equationsabove the thresholdz/E;=1.0001 and as the pump is in-
To investigate the implications of the new field configu- creased the correlations become weaker due to increasing

ration above the threshold on the intensity correlations, w&ompetition of processes involving higher harmonics. More-

first consider the correlation8fj(k,k'). The same normal- OVer, the connection between the self-correlations and cross-

ized correlations discussed in Fig. 7 below the threshold argorrelations seen belo, only remains very close to the
plotted in Fig. 15 for a pump value above the threshold. We

observe that the correlations let = k. decrease from their 0015 3 ' 3
threshold value and are no longer perfect as they were at the © : 312182:18;:

threshold. A closer look actually reveals a dip in the correla- 0.1 " <5|§(+kc)5|f(0)> 3
tions exactly at the pixels correspondingke £k.. A ten- 4 v <8, (+k)3l,(0)> "
tative explanation for this is based on the fact that now the 029 ¢ . 3
modes at the critical wave number have a finite average O 5 o
value, connected with macroscopic photon numbers in these 034 . NE
modes, whereas the neighboring pixels are significantly less A v
populated, cf. the far field of Fig. 4. In comparison the nor- -04- * e v ]
malized correlationi?{}(k,k’) show a much smoother be-

havior aroundk;. Hence the observed reductions in the cor- 05 : : :
relations above threshold &= +k. are connected with 1.00 1.05 L10
spontaneous population exchanges between these macro- E/E,

scopically populated modes. FIG. 16. The correlation€]j (k= +k.,k'=0) as functions of

In Fig. 8 the peaks at= =k, of Fig. 15 are followed as the pump relative to the threshold. The gray symbols are the corre-
functions of the pump. The behavior is very similar to whatlations below the threshold from Fig. 14.
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3 RN RN old is increased these correlations become weaker, which
@ was shown analytically to be due to the competition of the
@ eigenvalues of the linear system describing the system below
mﬂnﬂq:m%\% o o the threshold. At large wave numbers, only the correlation
S ] between opposite points of the FH far field survives. This
O ] correlation is always found to be stronger than the others,
which is consistent with the fact that the twin photon emis-
sion at the fundamental frequency is the primary source for
0 B correlations in the system. For far field modes around the
05 00 05 1.0 15 20 25 30 critical wave number the self-correlations as well as the
k cross-correlations between FH and SH photons are linked to
FIG. 17. Photon number variances f&/E,=1.05 showing the pattern forming instability.
C{;)(k,—k) (diamond$ andC{}’(k,—k) (squaresfrom a numeri- Very close to the threshold the linear analysis breaks
cal simulation. down. The numerical simulations below the threshold
showed the existence of nonlinear correlations which involve
threshold, so as the pump is increasg}j(0,+k.) # C1,(0, thek=0 mode and these are also seen above the threshold.
+ke) and Ch(+k¢,0)# Cl(+kc,0). This is related to the The other correlations described above are also found above
loss of perfect correlations away from the threshold. the threshold, but their strength decreases when moving
In Fig. 17 the photon number varianc@ﬁ)(k,—k) away from th_e threshold. This can _be understoqd from t_he
above the threshold are presented. Comparing these resuf@st that additional processes come into play, mainly consist-
with the corresponding ones below the threshold from Figing in population exchanges between the macroscopic fields
10 we observe that they are very similar. Generally, the corat the critical wave number and its harmonics.
relation C{;’(k, —k) does not change much with the pump  The intensity differences between opposite points of both

level, and this fact has also been observed in the (38D the FH and SH far fields, as well as the cross-correlation
’ +) between the two have been shown to exhibit nonclassical

The sum correlatiorC{}(k,—k), however, contains peaks ; ; . ; :
that are very sensitive to the pump level, both below anoSFJb'ShOt'no'Se behavior. These properties for the intensity
above the threshold. The behavior discussed here for the Fg,fferfence tt_urn out no:hto be Sens't'\(/f to the ;)lrct)pess;f pat(—j
is also valid for the SH and the cross-correlations. ern formation, since the corresponding correfations depen
very weakly on the distance to the threshold and show no
particular structure close to the critical wave number. The
VIIl. CONCLUSION AND DISCUSSION emerging pattern is connected with increased fluctuations in

ge modes with wave numbers around the critical wave num-

We have used the master equation approach to descritE)er leading to an excess noise in the corresponding indi
the spatiotemporal dynamics of the boson intracavity opera-."’ "~° . . ; Lo, p
P b y y op idual intensities. Therefore the sub-Poissonian statistics of

tors in second-harmonic generation, and we included in tht intensity diff | tial noi llati
model quantum noise as well as diffraction. Our study is € Intensity difierences reveal a partial noise cancetiation.

based on th&) representation to describe the dynamics ofon the contrary, the sum of intensitie_s plequy exhibit peaks
the quantum fields in terms of a set of nonlinear stochastié‘rc.)und the ctntécal_t\;]vatl;]/e fnumbtt_ar, orflgmant?g from excess
Langevin equations for equivalerd-number fields. The noise connected wi € formation ot a pattern.

choice of theQ representations gives some restraints on th tlr(;tfhlstﬁvo_rktwe cqps}i_delz(;edﬁ?ual time cartrelatlzns (t:?lcg'
parameter space in order to maintain negative diffusion. W ed for the intracavily Tields. 11iS approach turned out to be

have checked that similar results are obtained by using th ery useful to understand the intracavity field dynamics. For

approximated Wigner representation, both in the regions gisthe output fields we expect that the nonclassical correlations

cussed here and also the regions unaccessible b tiep- of the intracavity fields will remain below shot noise. The

resentation. This indicates that the results presented in thguantltatlvg asgessment of the amount Of. noise reductl_on or

paper are quite general excess noise with respect to the shot-noise level requires a
A simple scheme des.cribing the microscopic photon interSPecific additional calculation. For future work it would also

action that underlies the process of pattern formation ha?e interesting to calculate the output fluctuation spectra at 0

guided us in our analytical and numerical studies of the Spa_requency for the difference and sum of intensities, which

tial correlations. Equal time correlations between intensitfeﬂeCt_ the full_amount of quantum corre_latl_ons mduce_d by

fluctuations were used to investigate the strength of the cmt-he MICrOSCOPIC Processes taking p'iice inside the cavity, as,
relations between different modes. Also, possible nonclassf(—Or example, considered for a vectorial Kerr mode(2].

cal effects, such as twin beam correlations, were considered
by calculating the photon number variances of the intensity

sums and differences between spatial modes of the FH and We acknowledge financial support from the European
SH fields. Commission projects QSTRUCT(FMRX-CT96-0077,

We have found that at the threshold for pattern formationQUANTIM (IST-2000-26019 and PHASE and from the
the Fourier modes with the critical wave number are perSpanish MCyT project BFM2000-1108. We thank Steve Bar-
fectly correlated for the FH field, the SH field, and also be-nett, Pere Colet, and Peter Lodahl for helpful discussions on
tween the FH and the SH field. As the distance to the threstthis topic. M.S. acknowledges the A.P. Sloan Foundation.
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