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Modeling bidirectionally coupled single-mode semiconductor lasers
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We develop a dynamical model suitable for the description of two mutually coupled semiconductor lasers in
a face-to-face configuration. Our study considers the propagation of the electric field along the compound
system as well as the evolution of the carrier densities within each semiconductor laser. Mutual injection,
passive optical feedback, and multiple reflections are accounted for in this framework, although under weak to
moderate coupling conditions. We systematically describe the effect of the coupling strength on the spectrum
of monochromatic solutions and on the respective dynamical behavior. By assuming single-longitudinal-mode
operation, weak mutual coupling and slowly varying approximation, the dynamical model can be reduced to
rate equations describing the mutual injection from one laser to its counterpart and vice versa. A good agree-
ment between the complete and simplified models is found for small coupling. For larger coupling, higher-
order terms lead to a smaller threshold reduction, reflected itself in the spectrum of the monochromatic
solutions and in the dynamics of the optical power.
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[. INTRODUCTION have found that two coupled semiconductor lasers may ex-
hibit a form of synchronization that is characterized by low
The nonlinear behavior of semiconduci@c) lasers has amplitude oscillations in one laser, and large oscillations in
received a great deal of attention in the last decade. Botthe other one—localized synchronization. More recently,
intrinsic interest in chaotic dynamics and practical applica-synchronization of an array of mutually coupled lasers sub-
tions of sc lasers have spurred a wide range of studies, marjgct to delayed Doppler-shifted light injections was reported
of them have been reviewed in Reff§,2]. Most of the stud- by Otsuka and co-workerfgl6]. An abrupt transition from
ies have focused on instabilities induced by optical feedbacksynchronous chaos to synchronous chaos via a “phase-
(from an external mirror[3], optical injection(from another squeezed state” was observed when the coupling between
lased [4], current modulation, and their application in en- the lasers was increased. On the other hand, éteil. [17]
coded communication systerfs,6]. Only few studies have found that two coupled lasers may exhibit subnanosecond
centered on instabilities arising from the mutual couplingsynchronized chaotic dynamics. Even in the case of identical
among different lasers. lasers they found an asymmetric role among both; there is a
When the distance between the lasers is small, typicallyeading laser that synchronizes its lagging counterpart. This
much less than the laser cavity, mutually coupled lasers caeffect has been presented as an example of spontaneous sym-
be considered as a single cleaved-compound-c&@tyla-  metry breaking since there exists a time lag, equal to the
ser. The evolution of the longitudinal modes in &l&ser can  flight time from one laser to the other, between the dynamics
be described by means of a system of time-dependertf the two lasers.
coupled rate equationg’,8]. The analysis of € lasers is In Refs.[14—19 the experimental observations were suc-
usually classified in active-passive and active-active casesgssfully interpreted in terms of a phenomenological single-
depending whether one or the two cavities are biased aboveode rate equation model of weakly mutually coupled sc
threshold. Under appropriate coupling conditions, there is afasers. In the model each laser is described by rate equations,
enhancement in mode selectivity that arises from the conene for the complex optical fiel&, and one for the carrier
structive and destructive interferences of the fields in the twaensityN. The mutual coupling is accounted for by adding
coupled cavities. Consequently, several achievements havke delayed field of laser 2 in the equation for the complex
been demonstrated: better single-mode operaffiin fre-  field of laser 1 and vice versa. Optical feedback caused by
guency tunind 10], frequency-chirp reduction under current reflections from the front facet of one laser back into the
modulation[11], and a lowering in intensity noidd.2]. other one is neglected because of the weak coupling. A more
A completely different operation regime appears when thaletailed description of two multimode mutually coupled
distance between the lasers is enlar§g8]. Optical insta- semiconductor lasers has been recently reported in[ Reif.
bilities arise from the delayed optical injection from a laserThe latter, directly considers the spatiotemporal Maxwell-
to its counterpart and eventually due to optical feedbackBloch equations complemented with adequate boundary con-
from the facet of the other laser. This last situation can balitions. Such an approach can provide a very accurate de-
interpreted in terms of the behavior of mutually coupled non-scription of the system, although the major drawback is the
linear oscillators. When the lasers have dissimilar relaxatioomore difficult physical interpretation of the results and the
oscillation frequencies and intensities, their mutual couplingarger computational requirements.
strength may be asymmetric. In this case, Hethal.[14,15 To the best of our knowledge, the derivation of the phe-
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nomenological model, describing two coupled lasers, fronfor the definition of the Fourier transform. The induced ma-
basic principles has not been reported in the literature yet. Iferial polarizationP(w) can be expressed by

spite of the success of this model in describing the experi-

mental findings, there is no systematic investigation of its ﬁ(w):onwé(w)z60[XL)+X2'(N)]§(Q,), ©)
range of validity as a function of the mutual coupling

strength. In this paper we reconsider the problem of twavherey!, represents the contribution to the optical suscepti-
distant mutually coupled semiconductor lasers. In Sec. Il wajlity in absence of pumping While(g'(N) stands for the
start from Maxwell's equations supplemented with adequat@ontribution of the active material when a current is injected.
boundary conditions, and derive equations for the field amy represents the density of electron-hole pairs excited in the
plitudes in each laser cavity. We also derive rate equationgctive region of the semiconductor laser.

for the total carrier number within each laser. In Sec. lll we  Ag it is usually done in a Fabry-Perot cavity, we express
study the case of weak coupling. In this case we arrive at ghe electric field as the superposition of two counterpropa-
rate-equation model previously used by several autfiofs  gating waves. For simplicity, we neglect the transverse de-

18]. For larger coupling we obtain a closed set of equationgendence of the field assuming a plane-wave-like solution
that we use in Sec. IV to calculate the monochromatic solu-

tions of the compound system. Studying the influence of the gj(z,w)=Ej+eika+2‘j*e’ikiz+ c.c. 4
coupling strength on the stationary solutions gives insight

into the range of validity of the phenomenological model. The polarization direction of the electric field is usually
Finally, in Sec. V we develop a more detailed rate equationrransverse electric due to the geometry of the device. The
model that accounts for higher-order terms in the couplingmodification of the propagation constants due to the presence
We investigate the effect of these terms through several exsf a finite field distribution, lateral and transverse modes,
amples. could be accounted through the effective index metfgid

& are the amplitudes, at frequenay of the forward and
Il. THE MODEL backward propagating plane waves inside each laser section
) . . j=1,2 and in the external cavity=0, while k; stand for
_ We start from Maxwell's equations to obtain a wave equayqir respective propagation constants. The external cavity is
tion describing the propagation of the electric field along theyafineq by the physical separation between the two lasers.
compound system. In Sec. Il B, we complement these equebpon substituting Eq(4) into the wave equatioft), we find

tions with boundary _conditions, at each laser face_t, for thea dispersion relation for the propagation constitthat
two counterpropagating waves. In Sec. Il C, we give equataads

tions that describe the spatially averaged carrier densities

within each laser cavity. Finally in Sec. Il D, we summarize ® i ,

the equations governing the evolution of the optical and ma- Ki=2Nu(N) = 5194(Nj) — an'l, )
terial variables.

for j=1,2, where we have defined
A. Field equations

. n,(N)=y1+Rey' +Rex"(N), 6
The electromagnetic analysis of the electdi¢w), and (N)= Xo Xo(N) (63
magnetic fields,ﬁ(w), within the laser cavity starts from w 1 o
Maxwell’s equations, expressed in Fourier domain. Assum- 9.(N==1</5 (N)lm Xo(N), (6b)
ing that V~§(w)~o, the electric field verifies the standard
wave equation it [ @ | Ou
M= —] —Imyx,+ —/, (60)
. o 2 R R c/n, EQw
V2E(w)+ —) €,E(w)=0, (1) . o .
c with n,, the modal refractive indexg,, the modal gain, and
a!" the internal loss. The propagation in vacuum is de-
where scribed through
— | nl & :2 I_ ext
€,=1+x, T x5 (N)+i o 2 Ko c + 5% (7)

stands for the complex dielectric functian= 1/Jgeq is the ~ Whereag! stands for the total coupling loss accrued in the

light speed in vacuume, the vacuum permittivity, the — €xternal cavity.
vacuum permeability, ana,, the electric conductivity of the
medium. Note that we have used B. Boundary conditions

. The situation of two device-identical semiconductor lasers
ﬁ(w)EJ dt €“'F (1) poupled_ in a face?to—fgce configuration, as t_h.e one depicted
—w in the Fig. 1, consists in two Fabry-Perot cavities with length
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ﬂ‘,l (1-62) ﬂ-lz =L/c being the one-way lag tim&2=exp(-a®*L,) can
wre B /' E be r_egarded as the fraction_of optical power trgnsmi'_[ted by an
v — > Foradiban —> equivalent coupler located in the external cavige Fig. 1
E; /g E; Upon substituting Eqs(8a and (8f) into the scattering
’ i : matrix we arrive at equations relating the outgoing field am-
Lt -l 0 l L+!

plitudes in both lasers;; and&; , that read

FIG. 1. Sketch of two mutually coupled Fabry-Perot semicon-
ductor Iasers: The internékxterna) Iaser_facets havg a reflectiyity [1-r ’Sllei2k1L]eik1';§1_ =r /SlzeiZkzLeikzl"g; . (129
and transmittivityr’, t’(r,t). Only a fraction¢? of optical power is
transmitted by the effective coupler located within the external

CaVity. [1 —r /S22ei2k2L]eik2|E'; =r /821ei2k1Leikl|z'I . (12b)

L and separated by a distantg determining the external ~

cavity. We consider the laser facets as mirrors with an interSimilar equations govern the dynamics of the amplitugfes

nal (external reflectivity and transmittivity’, t’ (r,t). The  within the external cavity.

Stokes relationships imply that= —r’ andtt’=1—r?. Im- Finally, there is a subtle point that deserves some discus-

posing continuity of the electric field and its derivative at thesion. In this section we have described the interface

laser facets, we arrive to the following boundary conditionssemiconductor/air through a set of reflection and transmis-

for the amplitudes of the counterpropagating waves sion coefficients. All through this paper we will consider
these coefficients as constariisdependent of propagation

z=—(L+1), e Mg =prrgkl+E -~ (8  constants An alternative description of the interface is to

include the different dielectric constants in the boundary con-

z=—1, eME =r'e ™'E +tedEy, (8p)  ditions. Recently, Duarte and Sold20] have studied the
equivalence between these two approaches, in the case of a
efikorgg _ reikol’éa H,efiklrgi ' (80) semiconductor laser with optical feedback. They showed that

the two descriptions lead to similar results, for low and large

_ T ikol 2+ coupling strengths. However, the approximation of constant
z=l, e, =r'e L, +elody (8d) coefficients fails for intermediate couplings where the meta-
e . e morphosis(of the solitary laser solutions towards the com-
e kolgy =relkoley +tre ke (8¢

pound cavity solutionsoccurs. In this paper we assume that

. ~ _ - the mutual coupling strength is such that it allows us to con-
z=L+l, e Mg, = el tDES (8f)  sider the reflection and transmission coefficients as con-
stants. Even in the last section of the paper, where we will

with |=L /2. Due to the high degree of symmetry, we have o iye rate equations that take into account high-order terms
taken the origin of the axis at the middle of the external ;, the coupling, the coupling is still weatsuch that it is

cavity. We note, however, that the final equations governin hysically meaningful to consider the longitudinal modes of

the system are independent of this arbitrary choice. By using - |aser instead of longitudinal modes of the compound
Egs. (8b)—(8e) we derive the coefficients of the scattering system.

matrix S, defined through

eikll?;I Si1 Sp e*ikllz’f C. Carrier equations
eik2|z-2+ - S S e—ikzlzg ' ©) The above equations that describe the optical propagation
of the electric field along the whole system have to be
The coefficients of the matrix are complemented with equations describing the interaction with
the active material. The evolution of the carrier density

(1—r?)el%kd within each laser is governed by
SumS |1 g | 009 ‘) a6 N,
IN;(r,t)  Ji(r) I°N; i
. Tt ed YNTDs IRV EY
(1_r2)el2k0| 0z
SL=S=——F—7—. 10b
12= 0= T i (100 — P20 (2], 13

These coefficients are similar to those given in R&fwhen o . S
describing € lasers. On the other hand, the propagation conWith j=1,2.J;(r) is the current-density distributiod,is the
stants within each medium are given by HC). In the  active layer thickness the absolute value of the electronic
external cavity we express the propagation constant as fokharge,y. is the spontaneous recombination rate, @his
lows: the diffusion coefficient. In the mean-field approximation we
' ' neglect the carrier diffusion and we introduce the total carrier
e'%kol = gelo™, (1)  number\;,
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- In many situations this term can be rescaled into the defini-
Ni=|  Nj(nHdr, (14)  tion of the electric field, as we will see later.
active . . . . .
Finally, the gain functiong at a given frequency) is

where the integration limits correspond to the active regiorfPProximated by

of each laser. By assuming that the material polarization
Pj(z,t) adiabatically follows the evolution of the electric gQ(/\/j)E(
field, Eq.(13) can be approximated by

Gn
Ug

(N —M)

S E— 21
1+s|E]? @)

_ ¥ 2e0V 1 [zo+L with Gy=4dg,,(N)/dN|q the differential gain(in rate), v
Nj(t)= o YN +TImX(va)EJ 1&(z,1)|%dz, =c/n, the group velocity\; the carrier number at transpar-
% ency, ands the gain suppression parameter.

(15
wherel; stands for the total injection current in each lasér, D. Dimensionless model
is the active region volumeg, is the origin of the laser In this section, we summarize the equations governing the

cavity, andL stands for its length. In the case of a monochro-g|ectric field and carrier dynamics which constitute our

matic solution at frequency, the integral term on the right-  model. For the sake of clarity and numerical purposes, we

hand-side of the above equation can be determined by subsscale the dynamical variables through the following defi-

stituting Eq.(4) into Eq.(15) and taking into account that the pitions:

amplitudes of the counterpropagating waﬁﬁsin each laser

are related through Eqé3a) and (8f), % [2eqVNeng yI'*° SikiE
] hw YN: hep

A ()~ ! 280V NeC AT ekl g7 ()2
j(t)~g—7’e/\/j—Tgw( DLjleMieT (D)7, Y
(16) Di=x 1
where the sign-(+) corresponds t¢=1 (j=2). whereI's°' is defined in Eq(20) and
The integral termd’; are defined through
1
1 . =—| &M+ —In=
JEEJO 1 ek L) 4 gk @ L)|2q7, 17) Y g a 2|-Inr2 (22)

. S . . stands for the total cavity decay rate. In the case of free-
A subtle point in the determination of the carrier variables : . .
running operation, the rescaled; represent the outgoing

enters into the definition of th€, , terms. These integrals .. . :
I : ; fields calculated at the outer laser facets. By inserting the
represent the longitudinal average of the optical power re-

. - . S .. “definition of theS;; coefficients and expressing the electric
sulting from the longitudinal standing wave inside the cavny,fields in terms ofJ the rescaled ones, EG&2a and (12b)
that in turn, is determined by the propagation constants. B¥educe to '
evaluating the integral in Eq17) we can obtain explicit

functional forms of these terms that read [1— 2aikol _ rz(l—ei4k0')e‘2k1.2L]ﬂl’2

I';(6,)=e "% 2r'sinqRe)) =r'(1-r?e?de?eid,,. (23
. “Im 6, On the other hand, the equations for the normalized carrier
Im 6 1201 _ Im 6;\ __ y
+ el e )71 (18)  densities read
Im 91 '
. T

0;=2Lk; being the dim_ensionless propagatior_1 constant. In_ Dj(t)=1e Mj—Dj—gJ—ijF , (24
the case of a free-running laser, the propagation constant is r

determined by the well-known round-trip conditi
I y W wn rou P i) where the gain function can be expressed as
o 1
el I _ (19) ab;
r2 G=—F"—. (25)
' ) 1+8|Aj|2

In such a case the integrals read . . . . .
9 Finally, we have introduced the following dimensionless pa-

rameters:

Ij 1 YNt fiw NGy

_r2
FSOIEFJ(esoI): M (20)

2 —
r?in— = -1, e="—————s5, :
r? Hi eMve ¢ ‘}/FSOl 280V Nengy Y
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The injection current is also commonly measured with re- _ 1
spect to the solitary laser threshag=1; /15", thus result- w=0+u, eMt=—¢e%
ing u;=p;(1+1/a)—1. r
Equation(23) for the optical fields, together with EqR4)

for the carrier densities constitute our model. In the follow-
ing section, we proceed by commenting on how these equa- 242 iour 5o i2um ~iAGr 1R
tions can be transformed from frequency to time domain in [1=rge™ = (1= e A,
order to investigate their dynamical properties. We present in (1-r?)
Sec. Il a simple rate-equation model valid in the limit of =
weak coupling and single-longitudinal-mode operation. Go-

ing beyond this approximation., we shqw iq Sec. IV the SPECE_ sel0r being the effective coupling parameter. Equation
trum of monochromatic solutions taking into account pos-

. . S : 29) represents our optical model for the Fourier components
sible higher-order terms but still in the slowly varying (29) rep P P

. o ; of the electric fields in both lasers. In order to obtain a dy-
amplitude(SVA) limit. As a final step, we develop a more y

detailed d ical model that is able to include the effect amical model, we have to take the inverse Fourier trans-
ctailed dynamical mode! that Is able 1o Include the efiect Okq my of the above equations. For the sake of clarity, we leave
the higher-order terms into the dynamics.

this point until Sec. V. We instead express all the terms in Eq.
(29) to lower order in the coupling parametér The left-

into Eq. (23), we arrive at

. geiU7eiA92Y1'A2’l, (29)

lll. RATE EQUATIONS UNDER WEAK COUPLING hand side of these equations simply reduce§lie e'2%]

In the absence of coupling=0, the propagation con- ~iA¢;, while for the right-hand term it is necessary to as-
stants of the free-running lasers obey the usual round-tri§Ume that the change in propagation constants behaves as
condition that leads to o(¢) in order to approximaté&e'2%i~¢. Upon introducing

Eq. (28), the lower-order equations read
g°°'=2Lk*°'=27M +iInr'2, (26)
~ ~ 1 ~
with j=1,2 andM being an integer number labeling the lon- TiIUAL = F1AA o+ 5 (1-1a) Y[ G1o~ 1AL,
gitudinal modes. The second term on the right-hand-side of
the equation accounts for the losses through the mirrors. We (1-r?).
express the propagation constants in terms of the free- T &A1 (30
running values, modified by a small perturbation due to the
mutual coupling, i.e.f;=6°°'+ A, . By Fourier transforming Eq(30) to time domain, —iu

We consider the case .of two devi_ce—identicgl semicondqc—_,dt, we arrive at the dynamical system,
tor lasers, except for their free-running emission frequencies

(at threshold that we assume to be single longitudinal mode . 1 ]
around nearly identical optical frequencie€);~Q,. diAL () =FTAA (1) + 5(1_'“) VG127 1AL A1)
Through the temperature dependence of the refractive index,
frequency tuning can be achieved by simply controlling the + kA q(t—7), (3139
temperature of these devices. '

We define the SVA of the electric field&; around the diD1At)=Yel w12~ D12~ G1 A1 471, (31b
symmetric reference fram@=(Q,+Q4)/2 by means of

A(=Aj(he @7) G012 (319
' 1+ 8|A1’2|2

Since the fields are nearly monochromatic aroufid

ﬂj(w)zﬂj(w—g) is nonvanishing fou=w—Q~0. Upon  With k.=(1—-r?)/(r7;,)€. In this procedure we have as-

expanding Eq.(6c) aroundQ and keeping only dominant sumed nearly stationary carrier densities, which is a justified

terms, we obtain approximation in semiconductor lasers since they evolve at
slower time scales than the optical fields.

Analyzing Eq. (319, we find that the termsccA, y(t
— 1) describe the mutual delayed injection from one laser to
its counterpart. We remark that neither feedback reflections
We define the relative detuning as=({;—5)/2, the jnyolving terms likeA(t—27) nor higher-order corrections
group velocity vy = (dldw)[(w/c)n,]lq, the internal of the propagation constants due to the mutual injection are
round-trip time 7,=2Lv, ', the alpha factor @« accounted for at this level of approximation. Equati8ia
=(dRek/dN)|q/(dIm k/ﬁNﬂO, the material gair; , [Eq.  for the SVA of the complex electric fields together with Eq.
(25)], and the cavity decay ratg [Eq. (22)]. We have also (31b) for the normalized carrier numbers within each laser
neglected gain differences between the two lasers due toonstitute the “phenomenological” rate-equation model pre-
their slightly different positions with respect to the gain viously studied[17,18. The main result from numerical
curve when a detuning is present. simulations of two device-identical lasers is the evidence of

Upon introducing the following relationships coupling-induced subnanosecond synchronized chaotic dy-

1
Aﬁl’z’*«irin i|A_|U_§(1_|a)’y(gl’2_l) . (28)
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namics in conjunction with an asymmetric physical role of
the subsystems: the leading laser synchronizes its laggin
counterpart, whereas the synchronized lagging laser driver“;
the coupling-induced instabilitief18]. This phenomenon —
manifests itself simultaneously in a well-defined time lag
between the dynamics of the two lasdmhich coincides
with the delay timer). 10
A final point deserves some discussion. In E2{Lb), the 08
correction prefactorsl’j/FS"' acting on the stimulated re- 0.6
combination terms have been neglected, since, in the case ¢ 04
very weak coupling, the modification in propagation con- 02

b)

—

| Tl

stants is small enough to allow the substitution of the longi- ?;2 =R . . . .
tudinal standing wave by the solitary one. We will returnto 1.0 q
the discussion of these terms in Sec. V. 0.8H

. . . = i
In the following section we describe the spectrum of & %6H]
monochromatic solutions obtained from the “complete” il

oo : 0.2H
model and we compare it with the phenomenological model g oBW Wi\ , , , W
that takes into account only lower-order terms in the cou- -2 -1 0 1 2
pling. 6/ (2m)

FIG. 2. Frequency dependence of the transmitivity: a single
IV. MONOCHROMATIC STEADY-STATE SOLUTIONS Fabry-Perot cavity(a), a C laser with L.=0.42 (b), and two
) ) ) ) ) distant coupled lasers with,=55L (c). In the three cases, the
A basic step in any dynamical system consists in the Calgapry-perot cavities are filled by a passive medium with index of
culation of its steady-state solutions. A rapid way to underyefractionn,=3.5, mirror reflectivityr =0.56, and lossless external
stand that two distant mutually coupled lasers are a situatiogayity £2=1.

significantly different from the one of a®Gaser is by plot-
ting the transmittivity function for the compound system. We should verify the condition of vanishing determinant, provid-
consider that an electric fielll;) is injected at thez=—(l  ing the following round-trip condition for the compound sys-
+L) facet, and we compute the output fid]"" at the ex- tem:
ternalz=1+L facet(Fig. 1). The total field transmittivity7 . . A
=E°UYE" gives insight into the resonances. In the case of a [1— 'S/ 2t ][1-r1'S e ]=r'25,,S)e'?1te
single cold Fabry-Perot cavityfilled by a linear medium (32)
with refractive indexng), the transmitivity is an Airy func-
tion [21] with peaks at the position of the solitary longitudi-
nal modes[Fig. 2a)]. In a C laser, there is a noticeable
rearrangement of the longitudinal modes, which depends not
only on the ratid_./L, but also on the laser gaifBig. 2(b)],
which provides the tunability properties. Finally for two dis-
tant mutually coupled lasers, the solitary resonances are
modulated by the extremely small free-spectral range of th@ve focus on a typical situation where both semiconductor
external cavity[Fig. 2(c)]. This simple analysis provides |asers are pumped at or above threshold, then acting as active
some intuition into the resonances of mutually coupled laelements. In this case, the complex E88) can be regarded
sers, although it is unrealistic because it considers eachs two real equations involving three unknowns, i.e., the
single laser as passive and linear. Then, under lasing condtcommon operation frequency and the gain in both lasers.
tions, it is necessary to include the dispersion relations of thejowever, the rates of stimulated emission in each laser are
active media as well as the nonlinear interaction with thenot independent, but they impose a ratio for their respective
carrier variables. intensitiesp. From Eq.(24) and when the gain-suppression is

In our case, a monochromatic steady-state solution igeglected, we arrive at
characterized by a common operating frequencyf the
electric field in the whole system, fixed carrier inversions , (aua—Gy) I'y
D, and intensitied; ,=|A; 42 in each laser, and a relative P au—G) Ty (34)
phase among the oscillations of the two electric fields. By vy
expressing, (t) =Qy £'24Y, we look for solutions with @ The ratio between intensities is in turn determined by Eq.

pinned relative phase= ¢,— ¢, and proportional field in- (125 or (12b), which also provides the relative phase be-
tensitiesp=Q,/Q;. In Sec. Il B, we derived equations that tyween the fields

govern the evolution of the optical variables. In the case of

i2kol
Using Egs.(103a), (10b), and(26), the above equation can be
expressed as

e—iﬂz

r'Si

et

(33

5_12) i
r ,Sll Sll .

continuous-wavécw) operation, we are interested in finding A, S e 101
solutions where the field does not vanish in both lasers si- pei¢z_2:—11ei(9r92) —11_ (35)
multaneously. Thus, the system of equati¢h2a and(12h) A1 Sp r'Sy
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In principle, Eqs.(33)—(35) represent a set of five real non- 0.6F ('a') """ T LI AORRARRRGRATEC
linear equations that should provide the five unknowns de- 04 , A .
fining @ monochromatic solution, i.ew, G;, G,, p, and ¢. = 3 ;! \\ Doy P
Thereafter, the steady-state intensity in each laser can b= OE IRV 2 2 Y~ U
simply determined from i N A R N N
(ap;=G) EL SV E
i~ Y 04 - . —
PJ:—I‘ (36) 06 :‘ ) .\\. ‘Il‘ L :\11 ........ L i =
Q,—(s+a S’Ol) ‘Foy o T T 3
r 2:-\J\ /'\J\ //\\b/\ //\\J\ /7 \\’/\ .~ \\J\ ’,_:
o ’ Y\ ‘/ VAW /’ /3
o - B R R e
A. Symmetric operation T -2 '/ '. :: ‘. ! l|| ! ' ; ' ! -
As a starting point, we consider the case of symmetricv -4 |I: H '.;I '”" '.; -
operation, wheref;= 6,=6¢*Y™ The common propagation SE f i N i -
constantd®Y™ can be obtained from Eq33), GEL 1 b oo o e
o -20 -10 0 10 20

1xr’e' <% n

05iym=27rM—iIni—iln . . (37
r'?2 e'2kol FIG. 3. Frequency = (w—Q)7] dependence of the gajiEq.
1+ , (38b] of symmetric solutions € sign, ¢=0) in solid lines.
Dashed lines represent E§849 and the diamonds its zeros. Param-
. . . eters:r=0.56, ng=4, L=300 um, a«=3.5, 7=0.5 ns, ¢o=0,
The two first terms on the right-hand side of &87) are the  :_ ¢ 05 in panefa); and é&=0.45 in panelb).
contribution of the solitary laser, while the last term that
behaves as(¢) is the modification in propagation constant rithmic and complex argument functions to first order in the
due to the mutual coupling. We obtain two families of sym-parameterz, we obtain simpler equations for the eigenfre-
metric solutions, which depend on an integer numidela-  quency, which read
beling the longitudinal modes, and on a sigt)( Upon
replacing the expression af*Y™ in Eq. (35 we find that 7*YM=F C sin( »*Y™+ arctana + @), (403
these solutions are restricted po=1, G;=G,=G*™ and
¢=0,7. Thus, a solution with sign-(—) corresponds to a
relative phaseb=0 (¢ =), describing in-phas@ntiphasg
dynamics between the two fields. The only solutions compat-
ible with these peculiar characteristics are restricted\to wjth o= r(mod27) and C= k. 71+ a?. It is worth re-
=0 andu,= u,=pu. Therefore, in the rest of the paper we calling that the solutions of Eq40a are nothing but the
restrict ourselves to the analysis of equally injected lasers iBymmetric steady-state solutions of the phenomenological
which the solitary free-running frequencies coincide. model[17] introduced in Sec. lll. These symmetric steady
The operating frequency and associated gain of the symstates resemble a laser with conventional optical feedback
metric solutions can be easily calculated when taking th&yith round-trip timer when ¢=0 [3].
SVA around a single longitudinal mode. Introducing E2g) Next, we proceed comparing the symmetric monochro-
in Eq. (37), we arrive at matic solutions obtained from the complete modek.
(383] and those from the phenomenological modEh.
(409, as function of the coupling parametérFor the case
of very weak coupling£=0.05, the frequency dependence
of the gain functioffEq. (38b)] is sinusoidal as shown in Fig.
3(a). We note that this dependence agrees with that predicted
In|z.|, (38 by Eg. (40b). For larger couplings, howeveg=0.45, the
in gain function, Eq.(38b), displays rapid variations within a
. free-spectral range of the external cavity, as can be clearly
with 7>"= («*"-Q)7 and seen in Fig. &).
The stationary solutions for several coupling conditions
1+r'ge'” are shown in Fig. 46=0.05, x.=7.6 ns ! in panels(a),(b);
T — (B9  £=0.3, k.=45.9 ns?! in panels(c),(d); and é&=0.5, «.
1t£e‘ 7>y =76.6 ns'in panelse),(f). Panelda),(c),(e) correspond to
r' the solutions of Eq(383, while panelgb),(d),(f) correspond
to the solutions to first order ié, Eq. (40a. The symmetric
Once the eigenfrequency is obtained by solving the non- steady-state solutions witth=0(7) are represented by dia-
linear equation(383, the associated gain can be calculatedmonds(starg in a (G—1) vs n diagram. For the case of
from Eq.(38b). It can be shown that by expanding the loga-weak coupling, the monochromatic solutions are arranged in

r

ym_ 1 5 25 og o 40b)
g +7005(77 + ¢0), (40b)

-
nsym=r[aln|zi| +argz. ], (383
n

GYm=1+

sym
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0.05F R 3 N i
T 0.00f oL 3 oLt 3 ]
CHon T | S 5 0.02 -
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E ] o
015k —— I - Al L, T L 4 & 0.00 —
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= © F@ ] -0.02 &
05F 3k 3 1
& 0oF E(3 E ~0.04 .
—0-5:_ _:_ _: 11 P! I T N N N Y ]
1oF s 3 -0.04 -0.02  0.00 0.02 0.04
i T T T TR TN | || T P PO P P PR | Sg
-100 -50 0 50 100 -100 -50 0 50 100 1
E (Ie) ' ' ' . ('f) ' ' ' e FIG. 5. G, — 6G, diagram around an in-phase symmetric solu-
oF 1t 1 tion (¢). The curves are solutions of E2). The asymmetric
r 1T 1 solutions are represented with the symbdh)( Parametersr
i ok 1 4 =056, a=35, ng=4, =05 ns, L=300 um, ¢,=0, £
> 1t 1 =0.01,p=1.50,N;=1.5x1C% andGy=3x10 °ns .
oL | ]
' I ] Tin | 1. .
I I P PRI SRR B | S N PRI BRI B 50j:_|7|577+§(1_|a)776gjy (41)

-400 -200 0 200 400 400 -200 O 200 400

n n with §7=7n—»>" and 6G;=G;—G>™ With these new

FIG. 4. Symmetric steady-state monochromatic solutionsvariables Eq(33) reduces to
(a),(c),(e) are solutions of Eq(383 and (b),(d),(f) are solutions of

theo(¢), Eq.(40a, »=(w— Q). The meanings of the symbols are [(1=T)e ?1—1][(1=T)e 2-1]=T% (42
(¢©) for =0 and (*) for ¢=m. The same parameters as Fig. 3 . . .
excepté=0.05 in (a),(b), £=0.3 in (c),(d), and&=0.5 in (€),(f). with T=S;,/S;; and the sign+ standing for¢=0,7 sym-

metric solutions.
an ellipse, centered aroung=0, which corresponds to the In a general case, the gain in both lasers may differ, and
free-running frequency. The solutions with large negative Eq. (42) can be regarded as a parametric equationst@y
have larger loss reduction and consequently larger associatetid 57, once a value 063G, is provided[22]. From Eq.(42),
optical power. For weak coupling we observe a very goodhe gain variation in laser 2 reads
agreement between both predictions. Typically, there is good
agreement when the coupling coefficient is in the range of -2
£~0-0.1(i.e., when less than 1% of the optical power is 60U,
transmitted by the external cavityWhen the coupling in-
creases, we start to observe some differences at abpout [ 1 ( T2 ”
=0.3 (9% power transmissigrFigs. 4c,d)]. The solutions XIn 1+ . i
are still arranged in an ellipse but many points prefer positive (1=T) (1xT)e -1
7 and the loss reduction of the largest negatiyés lower.
This last effect is a result of a nonsinusoidal dependence
the gain as a function of.

i S+ —
ion+ —
Tin

:'yT(l—ia)

(43

ofhe frequency shiftsn can be obtained imposing 183,
=0 in the above equation. The final result is that, under cw
operation, the laser gains must follow a curve in t&g&(
B. General case — 6G,) plane, as the one shown in Fig. 5. The point (0,0) in
) . . this diagram represents the symmetric steady-state solution
The general analysis of the monochromatic solutions oty,gieq in the preceding section. The existence of asymmet-

two mutually coupled semiconductor lasers is quite involved;ic so|utions still depends on a condition associated with the

and, in this paper, we restrict ourselves to giving some guideryois of an additional equation. Upon combining E(&))

lines for their calculation. As already commented, we have tg,, g (35), we arrive at
solve a system of five real nonlinear equations, Eg§8)— ’

(35). To overcome this problem, we take advantage of the (app— G- 8G,) I'y
symmetric solutions calculated in the preceding section. We sym .
look for solutions around each of the symmetric steady states (au1—G>"=0Gy) "2
by defining 6;= 6°Y™+ 66, . The only assumption abod, (1=T)e 1901 1|2

is that it admits a SVA form as in E¢28), — g 2Im (861~ 567) =0. (44

063815-8
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L L L AL be restoring the initial symmetry of the system; i.e., both
(7,G1,G>,p, ) and (,G,,G1,p~ 1, — ¢) must be solutions.
Due to the symmetrp—p~ ! and¢p— — ¢, each crossing in
Fig. 6 represents two asymmetric solutions and therefore in
the figure 14 asymmetric solutions are actually represented.

V. DYNAMICAL MODEL INCLUDING HIGHER-

) ORDER TERMS

We have found, from the steady-state analysis, that the
applicability of the phenomenological model is restricted to
e o b e b Lo B weak coupling strength, typically less than 5% of the coupler
-004  -0.02 %go 0.02 0.04 transmission. In this section, our aim is to explore the dy-

1 namical consequences when the coupling exceeds, albeit by

FIG. 6. Frequency shiff with respect to an in-phase symmet- a small amount, the limit of validity of the phenomenological
ric solution (). The black curves are obtained from Ed2), model.
while gray ones are from Ed44). Crossings between these two It is worth recalling that our problem consists in Fourier
curves are steady-state monochromatic solutions. The asymmetriransforming to the time domain E@29). Following the
solutions are represented with the symbal)( The same param- guidelines given in Ref[23], we proceed, introducing the

an
o
lIllIllllIlllllllll

4

eters as in Fig. 5. auxiliary variables,

For each point of the parametric curvé§,— 69, in Fig. 5, [1-ei8012

the above equation is solved fém. In Fig. 6, we represent RyAu)=——A, Ju), (45)
these solutions in @7 vs G, plot. The black lines represent Tin

the solutions obtained from Ed@43), while gray lines are

those from Eq(44). A generic monochromatic solution ap- which represent the variation in propagation constants with
pears when both lines cross. Around the in-phase symmetri@spect to the free-running laser. Upon introducing these ex-
solution (¢ ) there are seven crossings marked with the sympressions into Eg(29), we obtain

bol (A) and therefore seven asymmetric solutions appear. In

contrast to the symmetric solutions, the number of asymmet- _ e N~ o o~

ric solutions depends on the injection current. Hence, we Rua(U)= k€A, 1(u)— xie?"A (u) + E2€'27Ry H(u)

have demonstrated that, even with the high degree of sym- ~

metry in the system, solutions in which both lasers evolve —0€""Ry y(u), (46)
asymmetrically are indeed possible. Finally, the relative

phase¢ associated with each of these solutions can be reghere we have defined the effective injection rétce=(1
covered from Eq(35), and it is plotted in Fig. 7. As a final _9%(rr), the effective feedback ratex;=(1
remark, we have to comment that in the case of a perfectly /> f

symmetric system, pairs of asymmetric solutions appear to_rz) &1, and o=(1-r?)élr. Equation (46) can be
straightforwardly transformed from Fourier to time domain,

4 T I T T T I T T T I T T T I T T T I T Obtalnlng
I i Ry A1) = kA 1(t— 7) — kAL At—27) + E2Ry ot —27)
2= = .
- . —oRy(t— 7). (47
e 0 — The above equation provides the value of the variables
K ] R; «(t) as a function of the past history of the system. The
B | first term on the right-hand side of E7) describes the
2 _ delayed injection from one laser to its counterpart, while the
= . second term accounts for passive reflections at the external
B . 7 facet of the other laser. The last two terms, involving electric
v N N T N fields with arbitrary large delays, describe the modification in
_0.04 -002 0.00 0.02 0.04 propagation constants due to multiple reflections within the
) ' $g1 ) ' external cavity.

On the other hand, we need to specify which is the tem-
FIG. 7. Relative phase among the oscillations of the two electrigooral evolution of the electric fields in terms of th® ,
fields obtained from E¢(35). Only asymmetric solutions/{) with  variables. Equatioi45) can be transformed to time domain,
¢>0 are represented. The same parameters as in Fig. 5. resulting in
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1 0.20
R: (1) = —[ A 1) — eTinl Fid+(12)(1-1a) ¥(G1,,-1)]

140= —[AsdD) e

XA At=7)]. (48) 0.10

The above equation, in finite differences, can be approxig 0.05

mated by a differential equation in the limit ef,—0: s 0.00

L g 0.20

RiAt)~diA (D) Z1AA (1) —5(1~ia) Mods

Xy[G1At) = 1]A1 o). (49 010

As a final step, we need to reconsider the longitudina 0.05

confinement integral$’; [Eq. (17)] in order to fully deter- 0.00
mine the evolution of the carrier variables. We express Eq 0 100 200 300 400 500

(18) in terms of the variation in propagation constants; , tins)

FIG. 8. Numerical simulation of the complete dynamical model

1 (Sec. Vj (a) and the phenomenological modb), P ,=|A; J2. The
— —Im A6; ; : ;
Fj_r_ze m2%1 2r'sind ReA ) parameters arer=0.56, L=300 um, 7=4 ns, ¢o=0, ny=4,
ve=1 nsl, AM=15x10% Gy=3%x10° ns!, «=35, o™
2 Im A 6; ~ImAG: =20 cni!, £=0.03, £€=0.05, andp=1.01. The time traces of
+ —(1+ ) ; i i
+r (1re )—(1+e ) (50) laser 2 have been vertically shifted for clarity.
In(r?)+1mA#;

. . o We use Eqgs(53a and (530 to update the electric fields and
We expand Eq(S0) to first order in variations carrier variables, while Eq(53b) describes the interaction
_rsolrq S0l Im A6, among the lasers. We finally remark that the phenomenologi-
[j=T*°T1-NmAg+. .- ]=T*%e* ™ 24, (5]) cal model can be recovered by approximatify (t)

with I's°" given in Eq.(20) and ~KkeRAo(t—7) in Eq. (533.

1+r? 1 Numerical simulations
A=1+—+ ——. (52 ) ) )
2(1-r? Inr? We perform numerical simulations of the complete model,

Egs. (539—(53d), and the phenomenological model, Egs.

Hence, these integral terms, to lower order, depend on the1g and(31b), for different values of the coupling param-
imaginary part of the propagation constants or the gaineter . We focus on the discussion of the instabilities that
Since the gains in both lasers may differ, there is no way tarise under weak to moderate coupling condition$06 of
rescale these terms into the definition of the field amplitudesthe emitted light is transmittedand long external cavities
However, it is possible to replace these approximate expred-.=120 cm providing a time delay of order 64 ns. We
sions in the stimulated recombination of the carrier equaassume that both lasers are equally pumped, and their cur-
tions. rents are slightly above the solitary threshold. We also con-

In summary, our model for two bidirectionally coupled sider that the free-running emission wavelengths are care-
lasers taking into account higher-order corrective terms readsilly tuned to achieve resonant operation, i.e., no detuning is

present.
. 1 i In the absence of couplingé€0) both lasers reach cw
thlyz(t):+'AAl,Z(t)JFE(l_'“)V[Qj(t)_l]Al,Z(t) emission, with small fluctuations if spontaneous emission
processes are included. The latter can be easily incorporated
TRy A1), (538 in the rate equations, but as a first step, we are interested in
investigating the deterministic dynamical properties. In Fig.
Ry o 1) = kA 1(t— 7) — kAg {t—27) + E2Ry ot —27) 8, the coupling is very weak, only 0.25% of the light is
' ' ’ ’ transmitted k.=7.6 ns!). We can observe how the laser
- &Rzyl(t— 7), (53b intensities undergo irregular fast puldpsartially washed out
due to the filtering procegsin subnanosecond time scales,
Dj(t):,ye[Mj_Dj_g]_ef}\(fin/Z)'y[gj(t)*l”Aj|2:|’ accompanied by sudden power dropouts followed by a

(530 gradual recovering of the optical power when looking to mi-
crosecond time scales. This typical behavior, also referred to
aD. as low-frequency fluctuationf.FF), has been extensively
G=—-—1 (530 studied in the case of a laser with external optical feedback
' l+e|Aj|2 [3]. We have found that power dropouts appear for a wide

063815-10
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1.4
1.2

equivalent to one of coupled-cavity lasers, except for the air
gap that is assumed to be very much longer than the laser
cavities. In addition, we have restricted ourselves to the case
of device-identical lasers, being equally pumped and tuned to
achieve equal free-running emission frequencies. Our de-

'(a)'

© 04 = scription has focused on the propagation of the electric field

502 = through the compound system, complemented by adequate

g 92 ' ' ' ' = boundary conditions. We have demonstrated that, in the limit

= 3 of weak coupling and single longitudinal mode operation, the

N 2.0 — . L.

Q" model can be reduced to rate equations describing the evo-
15 lution of the slowly varying envelope of the electric field and
10 the carrier number within each semiconductor laser. Taking

the limit of small transmittivity of the coupler, located in the
05 external cavity, the rate equation model can be reduced to the
0.0F . . so-called phenomenological model, which only accounts for
0 200 400 t(ns) 600 800 1000 mutual injection from one laser into its counterpart and vice
versa.

FIG. 9. Numerical simulation of the complete dynamical model ~From the steady-state analysis, we have found three dif-
(Sec. V) (a) and the phenomenological modb), P, ,=|A; 4% The  ferent types of monochromatic solutions: in-phase and an-
same parameters as Fig. 8 except§er0.25 andp=1.04. tiphase symmetric solutions and asymmetric solutions. In the
symmetric solutions, the two lasers oscillate with a relative

hase that is restricted to being either(id-phase or 7
antiphasg In spite of the high degree of symmetry in the
: . ystem, asymmetric solutions, in which the gain in both la-
slower than any other time scale of the system, displays 0g‘ers is different, have also been found. The bifurcation dia-

good correlation between the two time series. Zooming int . ) ; .
Fig. 8, we can observe that actually power dropouts do nogram and stability properties of these solutions are interest-

occur simultaneously but with a small lag time. By analyzingIng Issues to be |_nvest|gated. However, we haye seen from
Cgumencal simulations that many of these solutions become
t

a large number of power dropouts under different couplin ST
g P P b nstable when coupling is increased. The spectrum of sym-

conditions we have found that the lag time corresponds . . ; .
the flying time . A surprising phenomenon is that, although metric monochromatic solutl_ons was calculated fo_r different
; fvalues of the mutual coupling strength. From this steady-

all the dropouts appear with this small time lag, the role o state analysis, we have inferred the limit of validity of the

the lasers(leader and laggajdmay change from drop to henomenological model, which is restricted to typically less

drop. Thus, the asymmetric role between the two lasers, e han 5% of 9 ler tr n'mi on. As a final typ W yh v

perimentally observed in Refl7], is also captured by our . an 5% of coupier transmission. As a final step, we have
investigated the dynamical properties of the complete model,

model. It is worth noting that for these very weak coupling eing able to incorporate the effects of higher-order correc-
conditions, the results obtained with the phenomenologic li) 9 1corpe 9 .
ive terms. For injection currents close to the solitary thresh-

model[Fig. 8b)] are in good agreement with the complete ) i
model. Hence, this fact suggests that the existence of LFF iﬂld and very weak coupling, we have observed synchronized

bidirectionally coupled lasers is a direct consequence of th ower df°p°.“ts' but with a time lag 'between thg two signals.
delayed mutual injection, although they could be eventuall n this situation the phenomenological model yields correct

modified due to passive feedback reflections. In Fig. 9, thées_ults, but for higher couplings there is a decrease in mean
coupling has been enhanced to 6% of light transmissim‘?'otlcal power, and power dropouts appear more frequently.

(k.=38.3 ns1). The larger the coupling, the larger the dis- . The study of mutually coupled semiconductor lasers is

crepancies between the two models due to the existence portant from the point of view of fundamental physics,

higher-order corrective terms. For instance, power dropout ynamical systems theory, and also for their technological

appear more frequently in the complete model, and we cafiSPects- A thoroggh und_erstanding .Of the sync_hronization
also appreciate lower mean power levels ' properties is crucial to their potential implementation as key

In summary, we have found that for the particular Situa_components in, e.g., encoded communication systems.
tion of a perfectly symmetric system, the external flying

range of coupling rates and injection currents close to th
solitary laser threshold. This low-frequency dynamics, muc

time, being much larger than any other typical time scale in ACKNOWLEDGMENTS
the system, plays an important role in the dynamics, mani- . ]
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VI. CONCLUSIONS
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