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Criteria for Synchronization of Coupled Chaotic
External-Cavity Semiconductor Lasers

José Revuelta, Claudio R. Mirasso, Pere Colet, and Luís Pesquera

Abstract—In this letter, we study the synchronization of two uni-
directionally coupled single-mode external-cavity semiconductor
lasers, that operate in a chaotic regime. A simple theory is devel-
oped to obtain synchronization conditions and to analyze the ef-
fects of the detuning between the two lasers. We find that numer-
ical simulations are in good agreement with the theory.

Index Terms—Chaos, feedback lasers, injection locked oscilla-
tors, semiconductor lasers, synchronization.

T HE IDEA OF enhancing the privacy in transmitted data
by using devices (emitters and receivers) operating in a

chaotic regime has attracted the attention of many researchers
in the last years. Different chaotic synchronization schemes and
their applications to encoded communications have been pro-
posed using electronic circuits [1], solid state lasers [2], fiber
ring lasers [3], semiconductor lasers [4]–[13], and microchip
lasers [14].

Experimental studies have already shown the feasibility of
synchronizing the so-called hyperchaos in optical systems [3],
[7]–[10]. Of special interest are laser diode (LD) systems with
optical feedback. Recent experimental results [8], [10] have
shown that synchronization can be achieved in a rather large
parameter range.

Our aim in this letter is to develop a theory that allows us to
predict the characteristics of the synchronization between two
unidirectionally coupled external-cavity chaotic LD. In partic-
ular, we determine the existence of an optimal value for the cou-
pling and the parameter region where synchronization is pos-
sible. We consider that the emitter [master laser (ML)] and the
receiver [slave laser (SL)] can have different emission wave-
lengths and photon lifetimes. A rate equation model is used
for the complex slowly varying amplitude of the electrical field

and the minority carriers inside the cavity , where in-
dexes and label the ML and SL, respectively. The slowly
varying amplitude is defined as

, where is the electrical field, the imaginary unit
and , being the optical laser frequencies
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under continuous-wave (CW) operation. In terms of intensity
and phase the equation read

(1)

(2)

(3)

(4)

where and the dot
stands for the time derivative. We have taken for simplicity,
the propagation time of the coupling signal from the ML to
the SL, 1 . The term containing in (1), which takes
into account the injected signal coming from the ML is only
present in the SL. We consider the ML and SL to be very sim-
ilar to each other, such that some of the internal parameters are
taken identical ps is the gain parameter,

is the gain saturation coefficient, is the
linewidth enhancement factor, C is the elec-
tron charge, ns is the inverse carrier lifetime and

is the carrier number at transparency. The ML
cavity losses ps is fixed, while will be considered
variable. The threshold current for the ML is mA
and the bias current for both lasers. is the feed-
back coefficient, is the external cavity round-trip time, and

is the detuning. The ML emission wavelength
is m, while the SLs one will be varied. In what
follows, we consider the same feedback coupling coefficients

and delay time ns.
Naively, one would like to have a perfect synchronization be-

tween the two lasers, this is and . However,
even in the case of identical internal parameters, this cannot be
easily achieved, due to the presence of an injected field in the
SL which is absent in the ML. However, and for purposes of

1For Discussions on the Role of� in the Synchronization See [6], [9]–[11],
[13]
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encoded communications, the scheme can work without major
inconvenience if one has

(5)

with being constant in time. This condition implies
which can only be verified by (1) imposing

(6)

Physically, this means that the frequency of the SL locks to the
frequency of the ML. Also for the carriers, we impose

with constant in time. As the delay is the same
for both lasers, (6) implies in (1) and (2). It will be
shown later that under these circumstances the synchronization
will become independent of the feedback.

From (1), (2) and defining and
we have

(7)

(8)

From these equations, we can predict the value of

(9)

where can be calculated by combining (3), (4), and (5)

(10)
where we have used and
. Using (7)–(10), is obtained see (11) at the bottom of the

page. This expression of corresponds to the root that can
be stable in the case of injection locking of lasers in the CW
regime [15]. Therefore, using (9)–(11), we are able to obtain
the characteristics of the SL output from those of the ML.

A closer look to (11) reveals the fact that a minimum value for
the coupling coefficient , below which synchronization is not
possible can be obtained. As is a real number, the square
root of (11) has to be greater or equal than zero, i.e.,

(12)

where we have assumed that . This condition corre-
sponds to the locking regime for the CW operation.

An optimum value for for which both optical inten-
sities are identical, i.e., the value for which
and can be obtained from (7) and (8)

(13)

Fig. 1. Values ofa and�� as function of the coupling constant for�
 =

0:02 ps , � = 2:04 � 10 ps and� = 5. The solid lines correspond
to the predictions given by (9) and (10). The symbols correspond to the results
obtained from numerical integration of (1) and (4).

The existence of an optimal coupling comes from the fact that
the two lasers are different because the SL has an injected signal.
For couplings smaller than the optimum, we obtain , while
for couplings larger than . Notice that .
Thus, from (12) and (13), we obtain that the optimal synchro-
nization is only possible if

(14)

Note that the analytic results for the synchronized solution
are independent of the feedback and consequently of the kind of
dynamics. In what follows, we compare our theoretical results
with numerical simulations of (1)–(3) when the lasers operate
in the chaotic regime. In the simulations, we consider that the
lasers are synchronized when the linear regression coefficient

of the plot versus is greater than 0.9. This is not
a critical value since our simulations reveal an abrupt change
of from a value around 0.7 to a value greater than 0.99 when
increasing .

In Fig. 1, we show the values ofand as a function of the
injection coupling for several detuning values and for a value of

such that the dynamics is chaotic. The solid lines show the
prediction of our theory given by (9) and (10) and the symbols
correspond to the numerical results. Solid lines (symbols) are
plotted only for the values of the coupling constant for which
synchronization is theoretically (numerically) possible. When

(11)
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Fig. 2. Minimum and optimal coupling coefficients as function of the
detuning. Solid (dotted) line corresponds to the minimum (optimal) couplings
given by (12) and (13). The symbols indicate� obtained numerically for
� = 1:02 � 10 ps (squares),� = 1:62 � 10 ps (triangles),
� = 2:04 � 10 ps (crosses). Stars correspond to the value of�

obtained from numerical simulations for� = 2:04 � 10 ps . Other
parameters taken as in Fig. 1.

the lasers are synchronized, our theory gives a very accurate
prediction for and . The intersection of the solid lines/sym-
bols in Fig. 1(a) with the horizontal line corresponds to
the optimal coupling constant, which is precisely predicted by
our theory. It can be also seen that there are frequency detun-
ings for which the optimal coupling cannot be reached, as is the
case of GHz. This value of is smaller than the
critical one [according to (14)] that for the parameters used is

GHz. For zero detuning, the phase difference
is , as predicted by (9), independently of the
coupling. For nonzero detuning approaches as
coupling increases.

The numerical results for the minimum coupling are
displayed in Fig. 2 for different feedback coefficients .
For ps , the time evolution of
and is not fully chaotic, but quasi-periodic, while for

ps or larger it is fully chaotic. It can be
seen in the figure that the minimum value of the coupling for
which synchronization is numerically observed is always larger
than the theoretical prediction (12), which is reasonable since
the latter has been obtained as a necessary condition, rather than
a sufficient one, for the existence of a synchronized solution.
Furthermore, it does not tell anything about the stability of
this synchronized solution. Also, the predicted value of ,
independent of the feedback conditions, agrees better with the
numerical results for low values of and negative detuning.
This can be understood taking into account that for large feed-
back, the system is more chaotic (the dimension of the chaotic
attractor increases). Therefore, a larger region in the joint state
space of master and slave lasers is explored, including possible
unstable subsets for the synchronized solution. In fact, for

ps , the time evolution of and is not
fully chaotic but quasi-periodic. The minimum coupling is also
found to increase with for positive detunings. The value of

is also displayed in the figure.

It is important to point out that for single-mode operation, the
detuning can be changed continuously and the synchronization
still remains. This fact is in contradiction with previous results
[12], due to the fact that in [12], it was assumed that the feedback
phase was the same for both lasers.

Finally, we have studied the effect of thefactor on the syn-
chronization. According to (12), the minimum coupling should
decrease when increases. However, our prediction does not
take into account the fact that asincreases, the dynamics is
more chaotic [15]. The numerical results we obtain for, e.g.,

and 5, agree with this prediction for positive detunings
and large negative ones. However, in the region of small nega-
tive detunings, the minimum coupling is smaller for . In
fact, for , the laser is not chaotic, but quasi-periodic.

In conclusion, we have developed a simple theory for chaotic
synchronized single-mode semiconductor lasers that accurately
predicts the factor between the intensity of the ML and SL, as
well as the phase difference between them. We also obtain an
excellent estimation for the optimal value of the coupling co-
efficient and for the minimum coupling below which synchro-
nization is not possible. The latter is always a lower bound when
compared with numerical simulations.
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