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Abstract
The Hopf bifurcation is the dynamical instability which occurs in a feedback
amplifier as the positive feedback is increased to the point where the system
starts to oscillate spontaneously. The howl heard in a public address system
when the presenter moves so the microphone gets too close to the loudspeaker
is an example of increased positive feedback leading to oscillatory behaviour
through a Hopf bifurcation.

Hair cells are the sensory cells responsible for hearing and balance; they
contain mechanosensitive transducer channels that convert mechanical vibra-
tion into an oscillation of their membrane potential. In many hair cells the
membrane potential sinusoidally oscillates at small amplitude without input;
their input-output transfer function has a large gain for small input and a re-
duced gain for larger inputs. These and other features are easily explained if
hair cells are poised at a Hopf bifurcation.

An amplifier poised at the Hopf bifurcation will have a compressively-
nonlinear transfer function and also infinitely sharp tuning for vanishingly small
input. The cube-root shape of its transfer function provides for an extraordi-
narily large gain for a small input signal at the natural frequency and a reduced
gain for larger inputs. Moreover, any biosensor for detecting periodic signals
of any sort would enjoy these great advantages by employing this commonly
occurring instability.
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The classic Helmholtz theory (1) posits that our hearing organ, the cochlea, is ar-
ranged like a harp or the backplane of a piano, with a number of highly tuned elements
arrayed along a frequency scale, performing Fourier analysis of the incoming sound.
This found strong support in Von Békésy’s classic measurements (2) which demon-
strated the mapping of sound frequencies to positions along the cochlea. Von Békésy
observed the tuning to be quite shallow and found cochlear responses to behave lin-
early over the range of physiologically relevant sound intensities. His hypothesis was
that a coarse mechanical tuning was to be followed by a “second filter,” whose nature
was surmised to be electrical. However, Von Békésy had performed his measurements
on cadavers, whose dead cochleas lacked power sources or amplifiers that might have
provided positive feedback.

Rhodes’ pionnering work in Méssbauer velocimetry in live monkey cochleas (3),and,
more recently, laser-interferometric velocimetry performed on live and reasonably in-
tact cochleas has led to a very different picture (4; 5). There is, in fact, sharp
mechanical tuning in a live cochlea, but it is essentially nonlinear, there being strong
nonlinearities for amplitudes as small as the neural threshold. Only below neural
threshold are linear responses recovered. Observation of the essential nonlinearity
of the response at the level of cochlear mechanics contradicted von Békésy’s find-
ing. Also because it disappeared when the cochlea’s ionic gradient was temporarily
disturbed, it depended on a biological power supply(6).

Soon after having worked with Fred Hoyle on the Steady-State model of the uni-
verse, Thomas Gold began work on hearing, writing two papers in 1948 which came
well ahead of their time (7; 8). In them he recognized that dissipation of the ear’s
internal vibrationis had to be large due to viscous damping by water, though the
ear’s performance strikingly appeared as if it was unaffected by such damping. A
tuning fork “rings” maybe five thousand times when struck in air, though not much
at all when struck in water. Gold resolved the contradiction by concluding that the
ear must have a feedback amplifier that cancels the effect of viscous drag. He fur-
ther went on to predict that the ear could sometimes have too much feedback gain
and emit sound. At the time this was thought to be nonsensical and a strong point

against his theories; much later, the discovery of spontaneous otoacoustic emissions



would vindicate Gold’s point of view (9). (There was in fact a case of a dog who’s ears
emitted a tone of about 50 dB SPL, i.e., having a conversational volume.) Recently
these emissions have been found to be relaxation oscillations (10).

It is now known that the source of the ear’s amplification are the hair cells; later
on we’ll discuss three distinct kinds of amplifiers known to exist inside different kinds
of hair cells. Each amplifier can be poised close to a dynamical instability and ring
spontaneously. Intuitively, when so poised, such a cell will respond with a very large
gain to a small input signal at its natural frequency. In dynamical systems language,
we would say that Gold’s theory asserts that the elements of the hearing organ some-
how poise themselves at a Hopf bifurcation, like a sound technician adjusting the
volume of an amplifier to the loudest possible setting before feedback oscillation en-
sues (11). We shall show that at a Hopf bifurcation we generically expect essential
nonlinearities, compression of dynamic range, sharp tuning for soft input, and broad
tuning for loud input. In essence, many of the nonlinear aspects of hearing may stem

from the Hopf bifurcation.

WHAT HAIR CELLS DO

In the clearly unbiased opinion of the authors, hair cells are probably among the
prettiest cells; at the top of each there is an organelle shaped like an array of organ
pipes called the hair bundle (Fig. 1A). The bundle is composed of stereocilia contain-
ing polymerized and cross-linked actin fibers which makes them into a stiff group of
parallel cilia (12). Mechanosensitive channels lie at their tips and these are connected
by fine tip links to the other cilia (13). Deflecting the bundle towards its tall end
opens these channels and admits a positive current, mostly of K, into the cell. For
a long time hair cells were thought to be sensitive transducers converting mechan-
ical vibration into an electrical signal. Other sensory neurons are such transducers
with their high sensitivity deriving from active processes at the cellular level. Unique
though among sensory transducers, hair cells are in fact feedback amplifiers, charged
with emitting as well as receiving, since they can exert forces back onto the structure
that houses them.

Take the mammalian ear as an example (Fig. 1B). Sound waves from the eardrum
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Figure 1: A: Hair cell with a stiff hair bundle of stereocilia at its top. Fine tip links
between the individual stereocilia gate mechanosensitive channels when the bundle is
deflected towards its tall end. B: Snail-shaped mammalian cochlea. Sound enters via
the stirrup bone s coupled to the oval window ow at its high-frequency end. Dashed
line is through a cross-section at the high-frequency end. C: Four hair cells in such a
cochlear cross-section. Three outer hair cells at right amplify wave energy travelling
into the figure and along the cochlea’s basilar membrane BM. A single inner hair cell
at left transforms the mechanical oscillation of its hair bundle into a nerve impulse
going to the brain. D: A cochlear tuning curve (dotted line) shows high sensitivity
and sharp frequency selectivity, both of which are lost when the outer hair cells are
damaged (solid line) (C and D Courtesy of Liberman) (14). Note that 0 dB SPL
amounts to a mechanical displacement on the order of 1 nm.



drive a membrane on the cochlea called the oval window, sound entering at the
cochlea’s high-frequency end. At each cross-section of the snail-shaped cochlea four
hair cells are tuned to approximately the same frequency (Fig. 1C). These cross-
sections are arranged in an order so that the high frequency waves are the first to
be “picked off”. Note that the cochlea is an unusual “backwards” wave guide, first
picking off, or cutting off the propagation of high, rather than low, frequency waves
along its basilar membrane. The reason for this is simple: it’s as if each cochlear cross-
section contained a band-pass filter actively sucking up wave energy at a particular
frequency.

In a cochlear cross-section there are two distinct kinds of hair cells. A single flask-
shaped inner hair cell picks off wave energy and transforms the mechanical oscillation
of its hair bundle into a voltage oscillation and then via calcium into a nerve impulse
propagating to the brain via an afferent (inward) fibre of the 8th nerve. Each cross-
section also contains three rows of cylindrically-shaped outer hair cells whose job is to
amplify the basilar membrane’s wave energy at a specific frequency. Outer hair cells
are mostly innervated by efferent (outward) nerve fibres so that they don’t appear to
be sending signals to the brain. Rather in the mammalian cochlea we seem to have
a division of labor where inner hair cells suck up wave energy and send signals to
the brain, while the outer hair cells amplify the energy in the wave. Indeed if one’s
outer hair cells are lost then one could still hear, although sensitivity and frequency
selectivity would pretty much disappear (Fig. 1D) (14).

Figure 1D shows a so-called tuning curve . Here it plots the stimulus intensity
input into the ear drum at a given frequency in order to obtain the minimal amount of
firing of a nerve fibre at “its” threshold of hearing. Below this threshold noise would
drive the firing of the fibre. If instead we “inverted” this tuning curve—plotting the
output for a constant amplitude input as we swept the frequency—there would appear
a resonance peak.

Resonance peaks are judged in terms of their quality (), which is the number of

1 —giving the “ringiness” of the reso-

radians until the wave’s energy decays by e~
nance. Another way to get the () is to divide the natural frequency of the resonance
by its full width at half maximum power (Fig. 2). “Ringy” resonance peaks can be

due to a passive oscillator like a tuning fork in air, but in the aqueous environment of
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Figure 2: A: Power versus frequency plot for a moderately high-Q filter peak. w is
the peak’s full width at half maximum power. Here @) = % ~ 10 meaning that after
exciting the oscillator with an impulse its energy will drop by e~! after about 10
radians, or 2.4 cycles of oscillation. B: A lower-Q resonance is less “ringy” and has
less sharp frequency selectivity.

the cochlea the oscillator must be active and have an energy source. Such a high-Q
amplifier with a pointy peak is desirable because it provides a large gain only for one
specific frequency—it combines sensitivity with selectivity. The mammalian cochlea
appears to be a filter bank made up of a long line of high-Q) active filters. At the heart
of these high-(Q) filters are the hair cells, outers doing the amplifying work and inners
as the pickups sending nerve impulses to the brain in separate frequency “channels”.

The really pretty part about the whole business is that the amplifiers inside the
cochlea figured out an easy way to give an enormous gain to weak signals and at the

same time to turn off gain when the input signal got large. They did this by poising



on a Hopf bifurcation.

WHAT A HOPF BIFURCATION IS

AN INTRODUCTION TO DYNAMICAL SYSTEMS

At the turn of the 19*" century, Henri Poincaré founded, pretty much in the same
stroke, both topology and the qualitative theory of dynamical systems, two math-
ematical disciplines that have been closely interwoven ever since. Topology studies
mathematical objects, like surfaces, by abstracting away every smooth deformation
possible and keeping only that which cannot be done smoothly. In this way the details
of the shape of a surface vanish, so that a soccer and a rugby ball are topologically
identical; only relevant to topology is the way things are assembled together, since
these cannot be changed smoothly. The surface of a doughnut cannot be smoothly
changed into a sphere.

Similarly, when studying dynamical systems, it is observed that the qualitative
behaviour of a system changes abruptly as a function of external parameters. Pushing
furniture on a rug results in no motion at all for small forces, and an abrupt jump
at a particular force; blowing on a sax results in a hiss for small blowing pressures,
and a note appears abruptly as one increases air flow. Such abrupt transitions are
called bifurcations. Just like the topology of surfaces cannot be changed smoothly,
so that surfaces can be classified into discrete numbers, bifurcations can be classified
into distinct classes.

So the theory of dynamical systems provides tools that can help us to understand
complex dynamics from this very general perspective. In particular the concept of
bifurcation is very useful because any system close to the same bifurcation is described
by the same set of equations, called normal forms. Just like a sphere is, topologically,
a model for all balls, soccer or rugby, normal forms provide models of transitions and
instabilities that occur as some control parameter is varied, and any system making
the transition can be “deformed smoothly” onto the normal form.

Before describing further what a bifurcation is it is convenient to introduce the
concept of phase space. Phase space allows for easy representation of the evolution

of the state variables of a system. One simple example is given by a pendulum



with friction. In its phase space its angular position is plotted on the x-axis and the
derivative of the angular position is plotted on the y-axis. If you push the pendulum off
the vertical it will start swinging until it eventually stops—its phase space trajectory
will be an inward spiral to the origin, i.e. towards zero displacement and zero velocity.

In general, the state of a system depends on the control parameters. Everybody
has experienced the following situation when cooking. If you have a pot full of water
and start heating it slowly, you will see that initially the water stays quiet without
apparent movement, up to the moment when it starts moving violently. This is a
bifurcation: qualitative changes in the dynamics of a dynamical system as a control
parameter, in this case temperature, is varied. The parameter values at which they
occur are called bifurcation points. One of the most common bifurcations observed is
the so-called Hopf bifurcation (15). Below this bifurcation point, small disturbances
decay to equilibrium after ringing for a while. If the decay becomes slower until
it finally changes to growth at a critical value of the control parameter then the
equilibrium state will lose its stability. In many cases the resulting motion, above the
bifurcation point, is a small-amplitude, limit-cycle oscillation about the former fixed

point. A simple set of differential equations describing this bifurcation is given by

F=pr—r? (1)

é = W (2)

where r is the radial position, € is the angular position, and p is the control param-
eter. Sometimes a term that takes into account the dependence of frequency versus
amplitude can be added (usually of the form —br?). For p < 0 the system’s fixed
point attractor is given by 7y = 0 and its phase-space trajectories are inward spirals
towards this attractor. However, for p > 0 the fixed point is unstable and small per-
turbations around the position r = 0 let the system escape from it. After leaving the
neighborhood of » = 0 what does the system do? A close inspection of the equations
indicates that 72, = p is a new solution for g > 0. This solution corresponds to an
oscillatory behavior with amplitude 7., and angular velocity wy.

When changing the control parameter from 4 < 0 to 1 > 0 the state of the system



can be described by Figure 3. Initially the system will be at rest. As soon as the
control parameter exceeds the transition point uy = 0, the fixed point solution is
no longer stable and a small amount of noise will make the system depart from it
and wrap onto a limit-cycle attractor whose amplitude grows as the square root of
the difference between the control parameter and its threshold value. This is the
signature of a Hopf bifurcation (15).

More technically, a Hopf bifurcation can be described in terms of eigenvalues of the
linearization about the fixed point solution. Writing Equations 1 and 2 in Cartesian

coordinates

i = pxr —wey — (2* + )z (3)

Yy = woz + py — (2% + %)y (4)

the Jacobian of the linearization around the fixed point 7y = 0 has eigenvalues A =
pEiwy. The real part of the eigenvalues indicates the stability of the fixed point under
consideration: If it’s negative perturbations die out and the fixed point is stable,
whereas if it’s positive perturbations will grow. The eigenvalues cross the imaginary
axis as u increases from negative to positive values. In a Hopf bifurcation a pair of
complex conjugate eigenvalues change their real part from negative to positive, while
their imaginary part gives the angular frequency.

It is also important to consider the temporal response of the system. How fast
does the system adapt to the asymptotic state, or attractor, after a perturbation.
It’s easy to see that u sets the characteristic time scale so that amplitude relaxes to
equilibrium as e#t. Thus, far from the bifurcation the decay is very fast. However as

we approach the bifurcation y becomes small and the relaxation slows down.

FORCING

In the following we study the response of a system close to a Hopf bifurcation sub-

jected to a periodic forcing. A generic equation describing a forced Hopf bifurcation
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Figure 3: Canonical supercritical Hopf bifurcation for the system described by Equa-
tions 1 and 2. A: The dynamical system spirals in towards a fixed point attractor
when the control parameter p is less than zero. B: The system spirals away from the
now-repelling fixed point and toward a stable limit-cycle attractor when p is greater
than zero. A Hopf bifurcation occurs when p = 0, and this is also where the system
is most unstable to perturbation, and therefore the most sensitive.
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Figure 4: A: A cube-root shaped transfer function showing the response when forcing
a system poised on a dynamical instability called a Hopf bifurcation at its natural fre-
quency. Slope gain is infinite for vanishingly small input. B: The frequency response
to different levels of forcing (F = .0001, .001, .01, .1) is shown going like Equation 6.
The Hopf resonance becomes infinitely sharp for vanishingly small input at the point
where the system begins to spontaneously oscillate (called the bifurcation).

can be written
= (p+iw)z — |22 + Fe™' (5)

where z(t) is a complex variable of time, wy is the natural frequency of oscillation,
1 is the control parameter, F' the amplitude of the external periodic forcing and w
its frequency (16). Please note that in order to recover Equations 1 and 2 we have
to write z = re'®. For the spontaneously oscillating system a variety of entrainment
behaviors occur. Assuming a 1:1 locked solution, the frequency of the system is the

same as that of the external forcing and we obtain at the bifurcation
F? =R+ (w—w,)*R? (6)

where z = Re™'™*®_ Figure 4 shows that on resonance, no matter how small the
forcing F' might be, the response is nonlinear, R = F'/3. It’s worth noting that the
differential amplification Z—I{f blows up like F~2/3 at small forcing. Off resonance, for
small F', the system’s transfer function is linear R =~ F'/|w — w,|.

The width of the resonance depends on the amplitude of the forcing. Defining the

11



half-width T" of the resonance as the range in w where response R falls by one-half,
one obtains

I = 3T‘ﬁF2/3 : (7)

The softest of forcings elicits a nonlinear response when the control parameter lies
exactly at the bifurcation. What if the control parameter is not poised exactly at the
bifurcation? Near the bifurcation there is a linear regime for soft sounds; how soft
they need to be depends upon proximity to the bifurcation. At resonance in the sub-
bifurcation regime, as F — 0, R — —F/u and the amplification for infinitesimally
small soft sounds is —1/u. Nonlinear compressibility starts to be observed when
F > (—p)?3. Note that in the linear-regime amplification is proportional to the

integration time i given by the exponential in the absence of forcing.

COUPLED HOPF OSCILLATORS IN A WAVE GUIDE

Cochlear velocimetry data can be reproduced by an oscillator close to a Hopf bi-
furcation. Compression of the dynamic range, infinitely sharp tuning at zero input,
and the generation of combination tones are naturally recovered by poising on this
common instability (16; 17; 18) . This suggests that “inside the cochlea” there is a
technician adjusting the control parameters of both hair cells and neurons in order
for the cochlea to operate exactly at a Hopf bifurcation.

Even though this simple dynamical instability is capable of capturing essential
features of hearing, there are still intriguing open questions. For example, although
tuning curves obtained from an oscillator close to a Hopf bifurcation resemble those
obtained empirically from the cochlea, they present some differences. Most evident
is the universal asymmetry observed in the cochlear tuning curves: the slope for
frequencies below the natural frequency is much less steep than for frequecies above
it who present a very sharp slope (Figs. 1D and 5). This contrasts with Figure 4’s
depiction of the filter characteristics of a Hopf bifurcation, whose tuning curves are
symmetric and more slowly increasing near the natural frequency. Although a more
general form of Equation 2 can introduce some asymmetry in the response, it is very

unlikely that this is the responsible for such a sharp increase. Is it possible to modify
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the dynamical system to account for this asymmetry?

We recall the main asymmetry of the cochlea: sound waves travel along the
cochlea’s basilar membrane from its high to low frequency regions (19). Hair cells
located closer to the base of the cochlea have a high natural frequency, whereas those
located in its appex have a low natural frequency. Consider an intermediate position:
frequency components higher than the natural frequency of this particular filter have
already been nonlinearly amplified by their corresponding outer hair cells and the re-
sulting wave energies absorbed by resonant inner hair cells. However, lower frequency
components are still unaltered at this position, so that the cochlear tuning curve’s
low frequency arm agrees well with that of a Hopf bifurcation. A bank of Hopf filters
distributed along a wave guide in a way that cuts off high frequencies will likely be

able to account for the shape of the cochlear tuning curve.

BIOPHYSICAL SYSTEMS UNDERLYING A HOPF
BIFURCATION IN HAIR CELLS

We’ve just seen that poising on a Hopf bifurcation gives an amplifier an enormous
small-signal gain. Consider a hair cell poised slightly above the bifurcation and spon-
taneously oscillating. Its control parameters have been adjusted for too much gain,
i.e. the amplifier has too much positive feedback. Here we’ll look at three differ-
ent hair cell amplifiers and show in each case how increased positive feedback leads
them to spontaneously oscillate. But first, we’ll review a major invention called the

negative-feedback amplifier ...

NEGATIVE-FEEDBACK VERSUS POSITIVE-FEEDBACK
AMPLIFIERS

In order to appreciate how hair cells do it we study the opposite—Harold Black’s
invention of the negative-feedback amplifier. In 1928 Black tried to patent the idea of
negative-feedback and met with the skepticism usually reserved for perpetual motion
machines (20). His idea was to start with a nonlinear amplifier that had a very large

gain and then use negative feedback in order to throw away most of the gain and get
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Figure 5: Laser velocimetric data from a living chinchillas cochlea displaying the root-
mean-square velocity of one point on the basilar membrane as a function of driving
frequency. Each curve represents a different level of stimulation, labeled in decibels
sound-pressure level. The characteristic frequency at the position of measurement is
9 kHz. Notice that at 4 kHz, the curves from 40 to 80 dB span two decades (40 dB),
whereas at 9 kHz the curves from 3 to 80 dB span just under one decade (20 dB).
Note that the response at 9 kHz saturates beyond 60 dB. At 4 kHz, the response rises
an average of 1 dB per decibel (linear behavior), whereas at 9 kHz the response rises
only 0.3 dB per decibel (output going like inputs). Note furthermore the dramatic
increase in bandwidth as the intensity increases (Courtesy of Ruggero) (4).
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rid of all of the nonlinearities (Fig. 6). Since arbitrary electric signals are made up
of many different frequency components Black’s amplifier would amplify any electric
signal without distortion—it was a great invention.

Contrast this with a positive feedback amplifier—start with Figure 6’s schematic
of Black’s amplifier, but with an AM P that delivers a lot less gain, say between 1 and
2 instead of between 1000 and 2000. Next do just the opposite of Black and change

the sign of the feedback connection from - to + while increasing F'B strength to .5.

AMP
GAIN = 5 7B (8)

will now blow up for small inputs near frequency fy. All of the nonlinearities in gain
versus frequency and input amplitude will become exaggerated. By increasing +F'B
by just the right amount we get a high-Q filter with a transfer function that decreases

gain for larger input signals.

FROG SACCULAR HAIR CELL AMPLIFIER

Hair cells of the frog’s vestibular organ, the sacculus, employ an amplifier based on
negative hair bundle stiffness (21). When a transduction channel under tension pops
open it provides a so-called gating force which immediately decreases the hair bundle’s
spring constant, since it acts in the same direction as the tension. This effect is known
as gating compliance (22). Gating force can in fact be larger than the bundle spring’s
restoring force, hence negative hair bundle stiffness. By tapping an energy source,
in this case a calcium gradient between the inside and outside of the bundle, gating
compliance can be used to make a mechanical amplifier (Fig. 7A) (23). In this case
transduction channels opened by tip link tension 7', allow Ca™™ to bind to receptors
near the inside of the channel, closing it. With a time delay internal buffer sweeps
up the Ca™™ so that tension then reopens the channel. Perhaps the clearest evidence
that such an amplifier exists is that under a light microscope one can easily observe
spontaneous 10 Hz oscillations of the frog’s vestibular hair bundles (24; 25).

To see the presence of positive feedback, displacement clamp a bundle that wants
to oscillate. Hold it in a position so as to close its transduction channels and then

let it go. A typical saccular hair bundle has 50 transduction channels each attached
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Figure 6: A: A very high-gain amplifier having nonlinearities in its gain versus fre-
quency and gain versus input amplitude. B: By configuring such a nonlinear amplifier
with a negative feedback connection Black was able to eliminate the nonlinearities.

16



—@?2

3009 ©00— 3
)

Figure 7: Various hair cell amplifiers are based on dynamical instabilities which lead
to a limit-cycle oscillation. A: A frog vestibular hair bundle oscillates without in-
put. The bundle deflects towards its tall end, increasing tension 7" and popping open
transduction channels (1) which admits a current of K* along with some Ca™* into
the cell (2). Ca™™* then binds to an internal site and closes the channel (3). Then
Ca™ unbinds while internal buffer sweeps it up (4) so that the channel once again
pops open. B: The mammalian cochlea contains outer hair cells arranged in feedback
loops which can be poised above Hopf bifurcations so as to spontaneously oscillate.
When the bundle deflects towards its tall end (1) it opens transduction channels so
that the resulting current depolarizes the cell (2). When this happens piezoelectric
proteins in the cell wall contract (3), compressing the cell, and deflecting the bundle
(4) so as to close transduction channels and hyperpolarize the cell. Hyperpolariza-
tion causes the piezoelectric proteins to expand, elongating the cell, deflecting the
bundle back towards its tall end and restarting the cycle. C: In the hearing organ
of the frog the membrane potential of its hair cells oscillates without input. Steady
bundle current through partly open transduction channels depolarizes the cell (1),
activating voltage-gated Ca™™ channels which further depolarizes the cell (2). This
Ca™™ turns on Cat'-gated Kt channels with a time delay (3), hyperpolarizing the
cell. Meanwhile bundle current continues into the cell so that as (4) buffer sweeps
up the Ca™ and the Kt channels close, membrane potential once again depolarizes,
restarting the cycle. 17



to a tip link spring, and all of these springs are thought to be in parallel (22). Each
channel with its tip link is an individual oscillator—when you let go of the bundle
tension will begin to increase over all the links so that a group of channels will gate.
During their gating, tension must redistribute over the remaining closed channels so
that the tension per channel increases. Each cycle this positive feedback effect will
induce other channels to synchronize their gating. Soon the entire bundle will be
engaged in a large limit-cycle oscillation where most of the channels are opening and

closing in synchrony.

MAMMALIAN OUTER HAIR CELL AMPLIFIER

Inside the mammalian cochlea there are electromechanical feedback loops which can
use the somatic electromotility of the outer hair cell to provide a force opposing drag
(26). Assuming that outer hair cell force is able to cancel all of the drag force at a given
basilar membrane position and frequency, then such a region could ring indefinitely
in a small limit-cycle.

Let’s go once through such a limit-cycle. First imagine that the bundle deflects
towards its tall end, opening transduction channels so that the resulting current depo-
larizes the cell. When this happens piezoelectric proteins in the cell wall contract(27),
compressing the cell, and deflecting the bundle so as to close transduction channels
and hyperpolarize the cell (Fig. 7B). Hyperpolarization causes the piezoelectric pro-
teins to expand, elongating the cell, deflecting the bundle towards its tall end and
restarting the cycle.

You’d be able to see the presence of positive feedback if you could voltage-clamp
an outer hair cell in vivo and then let it go. Voltage noise, say hyperpolarizing, would
cause a small elongation, deflecting the bundle so as to open transduction channels.
If the bundle is sensitive enough then the resulting depolarization will be larger than
the original hyperpolarizing noise. Here it is again, positive feedback directing a build
up to a limit-cycle.

The clearest evidence for such an amplifier is the great sensitivity of the outer hair
cell’s bundle (28), the large force produced by electromotility of its cell body (29),
the speed of this electromotile response (30) and finally the existence of spontaneous

otoacoustic emissions where the mammalian ear produces sound in a quiet environ-
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ment (9). Note that while the outer hair cell is part of an electromechanical feedback
loop which can make use of somatic electromotility to poise at a Hopf bifurcation,
that its amplifier could in fact be based either partially or totally on negative hair

bundle stiffness (23). At this writing the issue remains unresolved.

ELECTRICALLY RESONANT HAIR CELL AMPLIFIER IN
THE FROG EAR

The membrane potential of hair cells in the frog’s hearing organ, the amphibian
papilla is unstable. It spontaneously oscillates in the 100 Hz range. This is an ex-
treme form of the phenomenon called electrical resonance (31; 32; 33; 34; 35)in which
about a thousand Ca't -gated, large conductance potassium channels are colocated
in synaptic zones along with several thousand Ca™ channels (36). Without stimu-
lation steady current through partly open transduction channels depolarizes the cell,
activating Ca*" channels which further depolarizes the cell (Fig. 7C). This Ca™*
turns on C'att-gated KT channels with a time delay, hyperpolarizing the cell. Mean-
while transduction channel current continues into the cell so that as the Kt channels
begin to close, membrane potential once again starts to climb. In fact membrane po-
tential executes a limit-cycle oscillation (37). This spontaneous, sinusoidal potential
oscillation is the clearest evidence of a Hopf bifurcation in the frog ear.

If you voltage-clamp a frog ear hair cell at its average membrane potential and then
let it go then once again you’d be able to see the positive feedback build up a limit-
cycle oscillation. Again say noise makes a small hyperpolarization. If the bundle
sources enough positive current into the cell and the K channels are sufficiently
voltage-sensitive (via Ca™™) then the tiny hyperpolarization will turn off the K™
channels enough so that bundle current will make a depolarizing rebound larger than

the original hyperpolarization.

CUBE-ROOT SHAPE OF THE TRANSFER FUNCTION

So it would appear that nature employs at least three distinct kinds of amplifiers in
its hair cells, each with their control parameters adjusted so as to increase positive

feedback and access a Hopf bifurcation. One biophysical theme common to all three
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amplifiers is that in the AM P inside their feedback loop is a channel whose open prob-
ability oscillates. All of these channel’s open according to sigmoid-shaped Boltzmann
probability distributions. So we have a Boltzmann function converting displacement
or voltage into a channel open probability—in the outer hair cell z is the amplitude of
vibration of the basilar membrane and P, is the open probability of the transduction
channel, in the frog ear z is membrane potential and P, is the open probability of the
calcium channel. Say the system mechanically oscillates infinitesimally with a peak-
to-peak size x while poising on a Hopf bifurcation at the midpoint of the Boltzmann,
where it’s steepest (Fig. 8). The oscillating part of the open probability will go like
0P, = % x. The active force generated will be proportional to 6 Py which is in turn
proportional to § x. This feeds back to cancel out the infinitesimal oscillation’s drag

force so as to poise the system and allow it to ring indefinitely. However, when we

Py
dzx

second order term—for them not all of the drag gets cancelled. External forcing will

force the system the resulting larger oscillations will have their gain reduced by

a® z?
16

why all of these systems have their output going like the cube-root of their input.

have to make up for this deficit which goes like 2. This is the physical reason

APPLICATIONS TO OTHER BIOSYSTEMS

Simply because they’re easy to make and they provide high performance one could
guess that inside any biological sensor in the business of periodic signal detection
there would be a filter based on a Hopf bifurcation.

One good candidate for such a Hopf filter would be the ampullary cell in the
electroreceptor of the paddlefish. The paddlefish is a bottom feeder in murky waters.
He uses his electrosensitive ampullary cells to detect the electrical activity associated
with the swimming motions of water fleas (38). Electroreceptors are thought to be
derivatives of hair cells that have lost their mechanical sensitivity. These cells may
nonetheless retain the hair cell’s strategy of electrical resonance for frequency tuning,
such as seen in the frog ear. Ampullary cells are sensitive to electric fields as weak

as 2 mV-m~L.

The neurons innervating them show noisy electrical oscillations at
rest; during stimulation these oscillations are synchronized by external electric fields.

Ampullary cells thus behave like noisy phase-locked loops (38) and would appear to
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Figure 8: It is the saturating nonlinearity in the Boltzmann function which accounts
for the cube-root shape of the compressive nonlinearity in each of the hair cell am-
plifiers. A: A sigmoid-shaped Boltzmann function describing the open probability of
a channel versus an independent variable such as membrane potential or mechanical
displacement. B: First derivative of the Boltzmann function with respect to the inde-
pendent variable. Expansion of the derivative at Py = .5 reveals a constant first term
and a negative second order term. The negative second order term is responsible for
the Hopf bifurcation’s compressive nonlinearity (see text).
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be an excellent candidate for a Hopf bifurcation.

The FitzHugh-Nagumo simplified model of the Hodgkin-Huxley model of a nerve
membrane contains two Hopf bifurcations (39). An integrate and fire neuron is a
leaky integrator of synaptic currents having a voltage threshold where a fast sodium
conductance instability makes the voltage runaway, and this leads to a stereotyped
action potential response. A resonate and fire neuron, on the other hand, requires
periodic synaptic input at the right frequency in order to make an action potential.
Such a resonate and fire neuron if poised at a Hopf bifurcation would reveal itself with
subthreshold voltage oscillations. Close to the bifurcation for small signals it would
acquire the Hopf filter characteristics of enormous gain and infinitely sharp frequency
selectivity (Fig. 4). Simple packet exchange or communications protocols between

neurons in a network could be based upon poising them on Hopf bifurcations.

CONCLUSIONS

Hair cells poise on dynamical instabilities called a Hopf bifurcations so as to make
high-Q filters that are both very sensitive and very frequency-selective. An added
bonus is that filter gain is reduced for larger input signals.

We've reviewed the basic mathematics underlying a Hopf bifurcation in order
to understand its simple filter characteristics. Also we’ve gone over two physical
principles involved in making such an amplifier: Hopf amplifiers are based upon the
use of positive feedback. Also hair cells must employ channels in their feedback loops
which open according to Boltzmann functions and it is the shape of this function
which is responsible for the cell’s output going like the cube-root of its input. Finally
we’ve gone over three distinct hair cell amplifiers, each of which can easily be poised
on a Hopf bifurcation.

We expect Hopf bifurcations to be commonly used by biosensors for periodic signal

detection.
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