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Resumen

En esta Tesis estudio distintos aspectos de la Ciencia No Lineal, concentrandome en
aplicaciones en otros campos paralelos a la Fisica. El hilo conductor de este trabajo
es el tipo de bifurcaciones que aparecen en cada uno de los sistemas estudiados.

En el Capitulo 2 estudio dindmicamente el comportamiento de las células ciliadas
de la céclea (oido interno) encargadas de la transduccién de las ondas sonoras en im-
pulsos nerviosos. Presento propiedades universales de osciladores muy cerca de una
bifurcacion de Hopf que explican comportamientos observadados experimentalmente.
En particular muestro que las curvas de respuesta en amplitud de un oscilador forza-
do periédicamente presentan las mismas caracteristicas que las curvas de sensibilidad
de nuestro sistema auditivo. En el Capitulo 3, explico mediante el mecanismo de
una bifurcacion de Turing la formacion de una estructura en forma de salchichas que
aparecen al aumentar la presiéon sanguinea en arteriolas. Dicha estructura aparece
como una inestabilidad debida a la relacién no lineal entre la tensién y el desplaza-
miento de las paredes de los vasos sanguineos. En el marco de sistemas no lineales
extendidos con algin tipo de desorden, el Capitulo 4 esta dedicado a la formacién de
estructuras desordenadas espacialmente pero estacionarias en tiempo, comutinmente
llamadas caos espacial. Aunque dichas estructuras se han encontrado con anteriori-
dad en otros contextos, la originalidad de nuestro trabajo radica en que es la primera
vez que se muestra un ejemplo en que la aparicién de caos espacial es inducida por
la forma del dominio y las condiciones de contorno. En el Capitulo 5, estudio siste-
mas cadticos tanto espacial como temporalmente en dominios acotados. La ecuacién
de Kuramoto-Sivashinsky, que es un sistema modelo de comportamiento caético, en
un dominio acotado y con condiciones de contorno distintas de periédicas muestra
promedios temporales estructurados similares a los encontrados experimentalmente.
Cambiando las condiciones de contorno veo que el promedio también cambia y se
ajusta a la simetria global del problema, es decir a las simetrias de las ecuaciones de
evolucion y de las condiciones de contorno. El Capitulo 6, estd dedicado a la ecuacion
compleja de Ginzburg-Landau, una ecuacién modelo de sistema extendido con una
gran riqueza de regimenes dindmicos. Estudiando este sistema en contornos cuadra-
dos, circulares y en forma de estadio se ven nuevas soluciones como es el caso de
soluciones tipo diana, que dificilmente se ven en el caso sin contornos. Finalmente, el
Capitulo 7 esta dedicado al estudio de un sistema dindmico de muchos componentes
en interaccién. Se propone un modelo para la formacién de grupos de opinién en
mercados financieros que presenta cualitativamente varias propiedades encontradas
empiricamente en dichos mercados.
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Abstract

In this Thesis, I study different aspects of Nonlinear Science, focusing on applications
to other fields parallel to Physics. The common thread through this work is the type
of bifurcations that appear in each studied system.

In Chapter 2, I study the dynamical behavior of the hair cells in the cochlea (in-
ner ear). These cells are responsible of the transduction of sound pressure waves into
nervous impulses. I investigate the universal properties of oscillators in the vicinity
of a Hopf bifurcation to explain the behavior observed experimentally. In particu-
lar, I show that the amplitude-response curves of periodically forced oscillators have
the same characteristics as the sensitivity curves of our auditory system. In Chap-
ter 3, I present a mechanism that explains via a Turing bifurcation the formation of
a ‘sausage-string’ pattern that appears when increasing the arterial pressure in small
blood vessels. This structure appears as an instability due to the nonlinear stress-
strain relation of the blood vessel walls. In the context of extended dynamical systems
with some kind of disordered behavior, Chapter 4 is dedicated to the formation of
disordered structures in space but stationary in time, the so called spatial chaos. Al-
though frozen spatial chaos has been previously observed in other contexts, our work
is the first to show an example where its appearance is a consequence of the shape
of the domain and the boundary conditions. In Chapter 5, I study spatio-temporally
chaotic systems in bounded domains. A generic system displaying a chaotic regime
in a domain with boundary conditions other than periodic gives rise to a structured
time-averaged pattern similar to the ones experimentally observed. Changing the
boundary conditions, I find that the average also changes adjusting to the global
symmetry of the problem, including both the evolution equations and the boundary
conditions. Chapter 6 is dedicated to the complex Ginzburg-Landau equation that
is a model equation of extended dynamical system with a great wealth of dynamical
regimes. Studying this system in square, circular and stadium-like shaped domains
there appear solutions like targets, that are difficult to obtain without these contours.
Finally, Chapter 7 is dedicated to the study of dynamical systems with many interact-
ing components. In particular, I propose a model for the formation of opinion groups
in a financial market. The model displays several qualitative properties empirically
found in real markets.

xiii






Capitulo 1

Introduccion

Durante muchos anos la ciencia ha sequido una ruta hacia la especializacion, en
donde los investigadores son capaces de entender hasta los ultimos detalles de una
parcela muy pequenia dentro de un subcampo restringido en un campo mucho mds ex-
tenso. Con esta filosofia son muchos los avances que se han producido en este final
de siglo y los resultados obtenidos auguran un futuro donde los avances tecnolégicos
moldeardn la forma de relacionarse en la sociedad. A pesar de todas estas virtudes,
también es cierto que cada vez es mds dificil la interaccion entre investigadores de
distintos campos, e incluso a veces entre investigadores del mismo campo pero distin-
tas especialidades. Esta division en parcelas de la Ciencia tiene como inconveniente
la dificultad en el trasvase de conocientos entre campos lo que hace que a veces se ten-
gan que redescubrir problemas ya resueltos. Como una pequenia muestra de lo fértil
que puede llegar a ser la interaccion entre diversas disciplinas cientificas, en esta
Tesis presentamos aplicaciones de lo que se suele llamar Ciencia Nolineal en Fisica,
Biologia y sistemas complejos en Socio-Economia.



2 Introduccion

Presentacion.

Cualquier persona que haya puesto a hervir un puchero de agua se habrd percatado
que el agua que estaba en reposo sobre el fuego empieza a moverse a medida que se
calienta. Esta sencilla observacién de que aumentado una magnitud externa (en este
caso dando calor al agua) se produce un cambio cualitativo en el estado del sistema
(en este caso el agua en reposo empieza a moverse) puede extenderse a muchos otros
sistemas. Un fisico utiliza el concepto de bifurcacidn: una solucién que es estable se
desestabiliza cuando el valor de un parametro supera cierta cantidad, denominada
umbral. Normalmente con la pérdida de estabilidad viene asociado el nacimiento de
nuevas soluciones. El tipo de bifurcaciones que pueden sufrir soluciones homogéneas
y estacionarias han sido clasificadas y existen ecuaciones modelo que las describen.

Una primera divisiéon que podemos hacer es entre sistemas con dependencia es-
pacial, llamados sistemas dindmicos extendidos espacialmente, y los que no tienen
dependencia espacial, denominados sistemas de baja dimension. Las soluciones mas
simples de un sistema sin dependencia espacial son puntos fijos, soluciones cuyo valor
no varia en el tiempo. Si pensamos en la temperatura de un punto en una habitacion,
veremos que variard en tiempo, mas alta de dia y méas baja de noche. Una temperatu-
ra fija corresponderia a una solucién punto fijo. Situaciones un poco mas complicadas
son las periédicas, en el que el valor en un instante dado es el mismo un periodo més
tarde. Si P es el periodo, 1" la temperatura y ¢ el tiempo, las soluciones periddicas
cumplen: T'(t + P) = T(t). En el ejemplo anterior el periodo podria ser P = 1 dia
y la temperatura se repetiria al dia siguiente. Situaciones mds complicadas pueden
ocurrir, e.g. soluciones cuasi-periodicas, llegando a situaciones caéticas en el que las
soluciones no estan sujetas a ningin patréon, aun siguiendo ecuaciones deterministas.

Sistemas extendidos pueden presentar como soluciones mas sencillas las soluciones
homogéneas estacionarias, i.e. soluciones independientes del espacio y del tiempo. Si
A = A(x,t) es un campo con dependencia espacial y temporal, A = ay, donde ay
es una constante representa una soluciéon homogénea estacionaria. En el ejemplo de
la temperatura, corresponde a una situacién en el que la temperatura es la misma
en todos los puntos de la habitacién y no varia con el tiempo. La presencia de la
dependencia espacial permite la apariciéon de soluciones periddicas en espacio pero
estacionarias en tiempo, que cumplen A(x,t) = A(x + L,t), para todo t y donde L es
el periodo espacial. Soluciones mucho méas complicadas pueden aparecer, como por
ejemplo soluciones oscilatorias y espacio-temporalmente cadticas.

A lo largo de esta Tesis vamos a ir visitando distintos escenarios tomados de
la Fisica, Biologia y Socio-Economia, donde el tipo de bifurcacién que gobierna su
dindmica va aumentando en complejidad. Empezaré por estudiar un sistema puntual,
para pasar posteriormente a estudiar sistemas extendidos, desde una bifurcacién de
Turing a regimenes espacio-temporalmente cadticos, y finalizar con un modelo de
agentes que se caracteriza por presentar una transicién para la distribucién de grupos.

En lo que queda de Seccion presentaré un resumen de los temas que se desarrollan
posteriormente en los Capitulos 2-7. En el Capitulo 2, empezaré por presentar un
ejemplo de oscilador cerca de una bifurcacion de Hopfy su aplicacién en el estudio del
funcionamiento del sistema auditivo. Los siguientes capitulos trataran sobre sistemas
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Figura 1.1: Ejemplos sencillos de evolucién de una magnitud. De izquierda a derecha:
soluciones estacionaria, periédica y desordenada.

extendidos espacialmente y donde las condiciones de contorno pueden llegar a tener
un papel importante. En primer lugar en el Capitulo 3, presento una explicacién
de un fenémeno de formaciéon de estructuras en forma de salchichas en arteriolas en
términos de un bifurcacion de Turing. Dentro de sistemas extendidos que presentan
algin tipo de desorden, de un lado el estudio de soluciones desordenadas espacialmen-
te pero estacionarias en tiempo se estudian en el Capitulo 4. En él, las estructuras
aparecen debido a las condiciones de contorno y geometria del dominio de integracién.
Por otro lado, comportamientos muy desordenados pueden dar promedios temporales
no triviales cuando el sistema se encuentra en un dominio finito como se muestra en
el Capitulo 5. Para finalizar el estudio de sistemas extendidos, en el Capitulo 6 se
presenta un trabajo sobre la interaccién de espirales con los contornos en un siste-
ma, auto-oscilante. Finalmente, el Capitulo 7 estd dedicado a los llamados sistemas
complejos: sistemas dinamicos de muchos componentes en interacciéon. En particular
propongo un modelo para la formacién de grupos de opiniéon en un sistema finan-
ciero que presenta cualitativamente algunas propiedades encontradas empiricamente
en mercados financieros. Dependiendo del valor de los parametros, dicho modelo
presenta una bifurcacion en la distribucién de grupos.
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El oido como sistema dinamico

El oido constituye un ejemplo de miniaturizacion y precision llevado a cabo por la
evolucion. En humanos, es capaz de funcionar entre los 20 Hz y los 20 kHz, y
funcionar correctamente hasta intensidades que van desde 0 dB (umbral de audicidn)
a los 140 dB, es decir, es capaz de trabajar en 7 6rdenes de magnitud de intensidad
(Fig. (1.2)). El viaje del sonido en los diferentes érganos del oido acaba en el oido
interno y mds concretamente en la cdclea (Fig. (1.3)). La céclea es un 6rgano en
forma de caracol cuyo interior estd separado por una membrana llamada membrana
basilar. Dicha membrana oscila dependiendo del movimiento del fluido que hay en su
interior que a su vez se mueve impulsado por el sonido que le ha llegado al timpano.
Dentro de la membrana basilar se hayan las células responsables de la transduccion
de las ondas de presion que es el sonido a impulsos nerviosos para que el cerebro los
manipule. Dichas células se llaman células ciliadas. Su forma estd esquematizada en
la Fig. (1.4). El cuerpo de la célula estd en contacto con los axones de las células
nerviosas que codifican y mandan la informacién al cerebro. También pueden servir
para que el cerebro mande sefiales y controle el movimiento del manojo de cilios. El
manojo de cilios se mueve con el movimiento de la membrana basilar y su movimiento
desencadena un flujo de iones que produce que el potencial de membrana varie, su
variacion hace que se expulsen neurotransmisores y éstos a su vez son recogidos por
las células nerviosas que producen los impulsos nerviosos. De esta descripcion tan
rudimentaria del funcionamiento del oido interno, podemos sacar la conclusién que
el conocimiento de cémo funcionan las células ciliadas es fundamental para tener un
conocimiento claro del funcionamiento global del oido.

Si extendemos la céclea a lo largo como una regla, podemos asignar a cada punto
una frecuencia caracteristica, es la frecuencia a la cual resuena dicho punto de la
coclea cuando el oido es expuesto a un tono puro de la misma frecuencia. Asi, las
frecuencias se ordenan en orden decreciente desde la parte maés cercana al exterior
(altas frecuencias) hasta el centro del caracol (bajas frecuencias).

Modelos recientes [3] sugieren que las células ciliadas se comportan dindmicamente
como osciladores cerca de una bifurcacion de Hopf. Una bifurcacion de Hopf es la
bifurcacién que ocurre cuando un punto fijo estable pierde su estabilidad y aparece
una nueva solucién oscilatoria. Un ejemplo sencillo de oscilador es un reloj de péndulo.
El mecanismo de un reloj de péndulo consiste en unas pesas que suministran energia
al péndulo a medida que éste la va necesitando, de tal forma que la trayectoria que
describe el reloj de péndulo es un ciclo limite, que se caracteriza por tener un periodo
y una amplitud de oscilacién del péndulo bien definida, independiente de la condicion
inicial. Incluso si le damos un empujén (o lo frenamos un poco) el periodo volvera
a ser el mismo después de unas oscilaciones transitorias. Los osciladores lineales no
tienen este comportamiento: la amplitud de oscilacién depende del impulso inicial.
La independencia de la amplitud de oscilacién es un efecto de la presencia de términos
no lineales en las ecuaciones de movimiento!. Volviendo a nuestro reloj de péndulo, si

!Existen otros tipos de osciladores no lineales que no presentan ciclos limites (i.e. drbitas pe-
riddicas atractivas). Por ejemplo los sistemas conservativos presentan familias continuas de érbitas
periddicas estables que no atraen a las trayectorias vecinas. Sin embrago, estos ejemplos no son
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Figura 1.2: Grafica que muestra niveles de presién de sonido y frecuencia de los tonos
relevantes para la audicién para la mayoria de mamiferos, en particular humanos y gatos.
Sélo aquellos tonos cuyos parametros caen por encima de la curva del “umbral de audicién”
son audibles. El rango de pardmetros que comprende la conversacién normal en inglés [1]
estd marcada en la zona sombreada. De [2]

mientras oscila le quitamos una pesa veremos que lentamente se ird disminuyendo la
amplitud de oscilacion hasta pararse. Cualquier perturbacion que le demos al sistema
hard que éste oscile por un momento y volverd a pararse. Parece interesante estudiar
la respuesta de este tipo de osciladores cuando estan sometidos a un forzamiento
externo periddico a una frecuencia w. La respuesta en frecuencia, es decir, cuando el
sistema es capaz de seguir la frecuencia externa en funcién de la amplitud y frecuencia
de forzado, da lugar a lo que se conoce como lenguas de Arnold que son regiones en
las que el oscilador sigue al forzado.

Desde un punto de vista del sistema auditivo es muy interesante saber cual es la
respuesta del sistema en amplitud, es decir, cudl es la relaciéon entre la amplitud de
forzado y la de respuesta del sistema, que correspode en el caso del oido a estudiar
la respuesta del sistema auditivo (por ejemplo intensidad nerviosa) en funcién de la
intensidad del sonido. Se ha encontrado experimentalmente que la respuesta de las
células ciliadas a distintas intensidades del sonido (amplitud del forzado) esta caracte-
rizado por una compresién no-lineal. Dicha compresion se puede entender desde otro
punto de vista: la ganancia en respuesta para intensidades pequefias es mucho més
grande que para intensidades grandes lo que da un comportamiento saturado para
amplitudes intermedias. Este comportamiento no se puede explicar con un oscilador
(lineal o no-lineal) de relajacién réapida sometido a un forzado externo, porque la res-
puesta es lineal con la intensidad. Otros efectos que se observan son: sintonizacion

relevantes en el estudio de sistemas disipitavos fuera del equilibrio.
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Figura 1.3: El oido externo (pinna) dirije el sonido dentro del canal (ear canal). El sonido
viaja hasta el timpano (eardrum) haciéndolo vibrar, transmitiendo el movimiento al oido
interno. Mediante una serie de huesecillos, la vibracién se transmite finalmente al interior de
la céclea. Dentro de la ciclea estdn las células sensitivas llamadas células ciliadas (hair cells).
Cuando el fluido del interior de la céclea se mueve, la membrana situada en la base de las
células ciliadas también se mueve. Distinta cantidad de movimiento en distintas posiciones
de la membrana corresponde a diferentes frecuencias del sonido. Estos movimientos hacen
que las células ciliadas se muevan a su vez produciendo senales que eventualmente alcanzan
el cerebro a través del nervio auditivo (auditory nerve) para ser interpretados como sonidos.

muy fina para senal nula y generacién de tonos de combinacién.

Nuestra propuesta para explicar las propiedades del sistema auditivo: compression
del régimen dinamico, sintonizacién muy fina para amplitud nula y generacién de
tonos de combinacién, se basa en la observacién de que si el comportamiento de
las células ciliadas se describe como un sistema dindmico préximo a una bifurcacién
de Hopf, se permite una fuerte ganancia cuanda el sistema estd forzado con bajas
intensidades. El mecanismo por el cual se produce dicha amplificacion fue ya sugerido
por Gold [4] en 1948 y se denomina regeneracidn.

El mecanismo propuesto en este trabajo encaja con otros modelos recientes. Por
ejemplo, en [3] proponen un modelo tal que variando los pardmetros dentro de los
margenes fisioldgicos permite estar en una situacién anterior o posterior a la bifur-
cacién, es decir, cuyo comportamiento en reposo es de punto fijo u oscilante. Esto
concuerda con nuestra hipétesis en que la vecindad de una Hopf es un lugar que per-
mite gran ganancia para pequenas intensidades de estimulo. Por otro lado recientes
estudios [5] sugieren que propiedades no-lineales son capaces de explicar experimentos
psicofénicos sin necesidad de recurrir a elementos més sofisticados de nuestro cerebro
como el cortex.

En resumen, en el Capitulo 2, se estudia un modelo que describe el comportamien-
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Figura 1.4: Corte transversal de una célula ciliada. La célula es generalmente cilindrica o en
forma de ampolla. Aunque estdn relacionadas con las células nerviosas, las células ciliadas
no tienen dendritas ni axones. La organizacion del ramo de cilios varia entre especies en
sus detalles pero su estructura general es la misma en todos los vertebrados. A lo largo
de un eje hay un progresivo incremento de la longitud del esterecilio. Sin embargo, a lo
largo del eje perpendicular los estereocilios tienen la misma longitud. Como resultado, el
ramo de cilios tine un plano de simetria; la ilustracion es una seccién a lo largo de dicho
plano. El kinocilio esta situado en el plano de simetria en el lado més alto del cono. Los
nervios aferentes que terminan en la superficie basal de la célula transmiten la respuesta
del receptor al cerebro. De [6].
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to de un sistema cerca de una bifurcacién de Hopf sometida a una fuerza periddica,
centrandonos en la amplitud de la respuesta. Los resultados encontrados en este
modelo se ajustan a los datos experimentales de las curvas de respuesta del oido
en mamiferos y da un posible mecanismo para explicar la compresibilidad no lineal
encontrada en el oido humano (y de los mamiferos en general). Hemos encontrado
que dicho mecanismo se ha utilizado hace muchos afios en el disefio de radios para
amplificar la senal recibida, denominandose en este contexto super-regeneracion. .

Inestabilidad en arteriolas

Una elevada presién arterial en pequenas arterias y arteriolas pueden producir un dano
importante en el sistema circulatorio. Un aumento de la presién en arteriolas produce
primero un estrechamiento de los conductos seguido del desarrollo consecutivo de
dilataciones y contracciones, al estilo de una “ristra de chorizos”. Los segmentos
dilatados aumentan su permeabilidad a macromoleculas de la sangre con lo que puede
llegar a difundir proteinas en las paredes de los conductos.

La forma asalchichada que presentan las arteriorolas sometidas a alta presion es un
ejemplo de estructura periédica. Se puede definir una tamano tipico como la distancia
promedio entre contracciones, y se suele denominar longitud de onda. Abstrayéndonos
de elementos fisiolégicos, lo que ocurre no parece ser muy distinto del ejemplo que
mostraba al inicio de esta presentacion en el caso del agua al irse calentado empezaba
a agitarse. En este caso, un aumento en la presién (pardmetro externo) produce que
el sistema que inicialmente presentaba un estado “trivial” de reposo, se inestabilice
dando lugar a la aparicién de una nueva estructura. Las caracteristicas particulares de
esta bifurcacion, i.e. que la forma espacial no varia en el tiempo pero con una longitud
de onda tipica, se denomina bifurcacion de Turing. Para caracterizar la bifurcacion
de una solucion homogénea estacionaria, tenemos que saber si la estructura nueva
que aparece tiene longitud de onda cero o distinta de cero, y si oscila o no. A veces
en vez de usar longitudes de onda se utiliza vectores de onda que esencialmente son
el inverso de la longitud de onda. Si A es la longitud de onda y k su vector de onda,
k = 2w /A. Tambien se suele utilizar la frequencia w = 27 /T, siendo T el periodo de
oscilacién. En otras palabras, una bifurcacién de Turing se caracteriza por k # 0 y
w = 0.

Nosotros proponemos un modelo sencillo para un fluido en un canal cilindrico
cuyas paredes tiene caracteristicas no lineales en la relaciéon esfuerzo-deformacion.
Este modelo dindmico sencillo da buena cuenta de la bifurcaciéon cuando varia la
presion ejercida sobre el fluido y da una prediccion para la longitud tipica de las
“salchichas”.

Caos espacial inducido por contornos

Hasta este punto hemos presentado comportamientos regulares como son las solu-
ciones periddicas, que vimos con el oscilador para en el oido, y las estacionarias en
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tiempo y periddicas en espacio. En ambos casos vimos cémo dicho comportamien-
to surgia de una inestabilidad de la solucién estacionaria (homogénea en el caso de
las arteriolas). Sin embargo es bien conocido que comportamientos mas complicados
también son posibles incluso en sistemas gobernados por ecuaciones deterministas.
Uno de los ejemplos mas sencillos de comportamiento cadtico es el que se da al lanzar
una moneda. La moneda puede dar cara o cruz. Si cara lo representamos por 1 y cruz
por 0, una serie de lanzamientos correspondera a una sucesién de ceros y unos. Esta
sucesion no tiene orden aparente y ha sido generada por un proceso estocéstico (real-
mente es mecanico). Pues bien, hay sistemas dindmicos deterministas que pueden
hacerse corresponder con el ejemplo anterior.

Un sistema dindmico extendido (i.e. con dependencia espacial y temporal) ademés
del desorden temporal también puede presentar desorden espacial. El ejemplo maés
paradigmatico es el de la turbulencia en fluidos. Un caso interesante intermedio entre
el caos temporal y el espacio-temporal es el llamado caos espacial, en el que el desorden
espacial aparece sin desorden temporal. Este tipo de soluciones se situaria, a su vez,
entre el caos Lagrangianoy el caos Euleriano. En el primero, el Lagrangiano, el campo
de velocidades del fluido puede presentar un comportamiento ordenado y simple, y
sin embargo las trayectorias de las particulas pueden recorrer érbitas cadticas. Esto
puede ocurrir en un sistema tridimensional para un campo de velocidades estacionario.
Es bien sabido que la minima dimensionalidad que se necesita para presentar caos es
tres. Si escribimos las ecuaciones de movimiento para una particula en un campo de
velocidades estacionario v(x) = (v, vy, v,):

= Uz(xayaz)
= vy(z,9,2) (1.1)
2 = wvlx,y,2)

se ve que algunos campos de velocidades pueden dar lugar a trayectorias cadticas. En
dos dimensiones, un campo con dependencia temporal (por ejemplo un campo tempo-
ralmente periédico) también puede dar lugar a trayectorias temporalmente caéticas.
Caos Euleriano se refiere a que el campo de velocidades es cadtico. Asi pues, solucio-
nes que presentan un desorden espacial a la vez que estacionarios temporalmente se
encontrarian entre los dos tipos de comportamiento senalados anteriormente.

Nuestro interés en el Capitulo 4 esta en la biisqueda de soluciones desordenas en
espacio pero estacionarias en el tiempo. En particular, encontraremos una situacion
en que el desorden espacial viene impuesto por la existencia de condiciones de contorno
no perioddicas. Es decir, que si cambiamos las condiciones de contorno las estructuras
desordenadas desaparecen.

El sistema que estudiamos es del tipo de Fisher-Kolmogorov

U(z,t) = V% + f(¥),

donde nosotros estudiamos el caso de f(¥) = 1 — ¥ que tomamos como ecuacién
modelo. Sin dependencia espacial dicha ecuacién presenta dos soluciones estables
estacionarias 91 = 1. Cualquier condicién inicial distinta de la nula lleva a una
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de las dos. En presencia del término de difusion, el sistema también intenta orde-
narse en dos fases, las correspondientes a las soluciones homogéneas v, y se forman
frentes entre dominios de distintas fases. El tamano tipico de los dominios crece con
el tiempo hasta que al final sélo queda una de las fases. Dicha ecuacion no presen-
ta estructuras desordenadas estacionarias en sistemas infinitos o con condiciones de
contorno periédicas.

Por similitud con forzamientos periédicos en sistemas de baja dimensién tomamos
un contorno en forma de canal ondulado, con condiciones de contorno cero en los
laterales ondulados. Como nos interesamos por soluciones estacionarias, podemos
olvidarmos de la variable temporal. Asi nos quedan dos variables espaciales x e y.
La idea es interpretar una de las variables espaciales, digamos la z, como la variable
temporal. En las ecuaciones, con esta interpretacion, queda claro cémo las condiciones
de contorno en la direccién y juegan el papel de forzamiento temporal. Siguiendo con
el paralelismo, para anchuras pequenas del canal, podemos hacer aproximaciones a la
forma trasversal de la solucién y llegamos a una ecuacién del tipo oscilador forzado
paramétrico.

Para un gran rango de parametros demostramos la aparicién de estructuras de-
sordenadas inducidas por la presencia de los contornos.

Mirando un corte longitudinal a las soluciones que aparecen, podemos asociar una
sucesion de 14 a cada oscilacion en funcién del valor que tome el campo mayoritaria-
mente en ese periodo. Sia 1, le llamamos cara y a @ cruz, tenemos el equivalente al
ejemplo inicial de la moneda. Podemos generar cualquier sucesiéon de caras y cruces
cambiando la condicién inicial. Es por ello que los denominamos soluciones cadticas.

Promedios temporales en sistemas extendidos

Comportamientos mas complejos se dan en sistemas espacio-temporalmente cadticos,
que son sistemas que presentan desorden tanto en su evolucién temporal como en las
dimensiones espaciales.

Muchos trabajos han sido dedicados a la caracterizaciéon, tanto desde un punto de
vista experimental como tedérico y numérico de dicho régimen. Medidas estadisticas se
han utilizado para describir tales sistemas y para comparar resultados experimentales
con modelos numéricos. En esta direccién una de las medidas mas sencillas de tomar
es la de promedios temporales, i.e. asignar a cada punto del espacio el valor del pro-
medio temporal de ese punto. Esta claro que con condiciones de contorno periédicas,
donde todos los puntos son equivalentes siempre que no haya una rotura espontanea
de simetria, asintéticamente el promedio temporal es una funcién homogénea que
toma el mismo valor en todos los puntos. Sin embargo, ;qué pasa en un sistema real
donde no hay condiciones de contorno periédicas?

Un ejemplo ilustrativo del comportamiento que se observa en presencia de con-
tornos se da en el comportamiento de los liquidos cerca de las paredes. Experimen-
talmente [7] se ha comprobado mediante rayos X, que un liquido cerca de las paredes
de su recipiente no es un liquido. Se ha mostrado que cerca del limite sélido-liquido
las moléculas del liquido forman capas, parecidas a las que forman algunos cristales
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Figura 1.5: Near the surface of a solid, liquid molecules form layers, which have different
properties from the liquid as a whole [7].

liquidos (Fig. (1.5)). Simulaciones numéricas de dindmica molecular [8] de fluidos con
superficies sélidas muestran también un perfil no trivial para la densidad de particulas
como se puede apreciar en la Fig. (1.6).

Ya en el contexto de sistemas macrocépicos no lineales, Gluckman et al. [9]
realizaron un experimento de ondas de Faraday? en el régimen desordenado donde
presentaban una estructura promediada temporalmente. Lejos de tener una forma
homogénea, que es lo que se espera con condiciones de contorno periddicas, la estruc-
tura promedio presentaba una forma que se asemejaba a la del modo m4s inestable de
la primera bifurcacién. A este experimento le siguieron otros en diferentes sistemas.
Una de las conclusiones interesantes de dichos experimentos es que en la estructura
promedio se recupera la simetria global, es decir, la simetria de las ecuaciones de
evolucién y las condiciones de contorno. Asi se puede apreciar que un experimento
de Faraday en un recinto circular da un promedio temporal con simetria circular.

En el Capitulo 5 estudiamos numéricamente la ecuacion de Kuramoto-Sivashinsky
en una y dos dimensiones, que la tomamos como una ecuaciéon modelo que presenta
caos espacio-temporal. Dicha ecuacién aparece cuando se estudia la altura de un
liquido cayendo por una pared inclinida, frentes de llamas... Importante por lo que se
ha dicho anteriormente van a ser las condiciones de contorno, ya que deben ser distin-
tas de las periddicas para romper la invarianza de traslacion y que alguna estructura
pueda surgir. Vamos a estudiar dos conjuntos de condiciones de contorno distintos
que tienen dos simetrias distintas: unas son pares, es decir hay una simetria especular
por el centro del dominio; otras son impares, en el centro del dominio hay un centro
de inversién. Vemos que en esas condiciones aparece una estructura no trivial en los

2Un experimento de ondas de Faraday consiste en la agitacién vertical controlada de un fluido
en un contenedor. Ver Capitulo 5.
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Figura 1.6: El perfil de la densidad promedio (linea continua) de un liquido en equilibrio
entre paredes (de [8]). Las paredes estdn situadas en y = 0 and 14. En el eje horizontal se
representa, la densidad promedio.

promedios temporales, como ocurre en los experimentos. Dicha estructura es més
pronunciada cerca de los bordes y decae hacia el interior. Somos capaces de definir
una longitud de onda tipica y vemos que estd cuantizada en funcién de la longitud
del sistema.

Defectos, espirales y contornos.

Un sistema paradigmatico de la Fisica Nolineal actual es la ecuaciéon compleja de
Ginzburg-Landau (CGLE). Su generalidad y riqueza de comportamientos es tal que
la cantidad de articulos publicados relacionados en algin aspecto con esta ecuacion
es enorme. La generalidad le viene porque describe la inestabilidad de un campo
homogéneo en una bifurcacion de Hopf, es decir, cuando se pone a oscilar. Esta es la
segunda vez que hablamos de una bifurcacién de Hopf, la anterior fue en el Capitulo 2
sobre oido. La diferencia es que ahora estamos estudiando un sistema con dependencia
espacial, es decir un conjunto de osciladores acoplados difusiva o dispersivamente.

El interés de estudiar una ecuacion tan genérica como la CGLE es doble. Primero,
porque describe situaciones similares en sistemas tan aparentemente alejados como
fluidos y 6ptica de laseres, con lo que todo lo que uno consigue aprender de ella puede
ser utilizado en distintos casos. Segundo, porque al ser méas sencilla que las ecuaciones
que describen completamente el sistema permite un analisis teérico méas profundo de
otra manera inviable. Es por estas razones por la que nos centramos en el estudio
numérico de la CGLE.

En una dimension su diagrama de fases se puede dividir en 4 regiones: una zona de
no caos, donde las ondas planas son estables, turbulencia de fase, turbulencia de de-
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Figura 1.7: Dos ejemplos de espirales en sistemas distintos: (a) Espirales en la reaccién
de Belousov-Zhabotinsky (sistema excitable). (b) Simulacién de la ecuacién compleja de
Ginzburg-Landau (sistema auto-oscilante). La escala de grises corresponde a la fase del
campo complejo. De [10].

fectos, intermitencia espacio-temporal y bicaos. Ejemplos de dichos comportamientos
se pueden encontrar en multitud de lugares y no los repetiremos aqui.

En dos dimensiones el comportamiento es un poco mas complicado. Ademas
de las fases anteriormente comentadas, tenemos la complicacién extra de los defec-
tos topoldgicos. Los defectos topoldgicos no pueden desaparecer espontdneamente
en dos dimensiones, sino que se deben aniquilar por pares defectos de carga opues-
ta. Un ejemplo de defectos topoldgico son las espirales en sistemas auto-oscilantes
(Fig. (1.7)). Por lo tanto, siguiendo el comentario anterior, una espiral no puede
desaparecer sola espontaneamente sino que debe aniquilarse con otra espiral de carga
opuesta. Una consequencia de esta regla es que en dos dimensiones la carga topoldgica
global se conserva a al largo de la evolucion del sistema y viene determinada por la
carga topoldgica de la condicién inicial.
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En el Capitulo 6, estudiamos cémo la geometria y las condiciones de contorno
influyen en la dindmica de la ecuacién compleja de Ginzburg-Landau. En particular,
estudiamos dicha ecuacion en recintos cuadrados, circulares y de tipo estadio, con
condiciones de contorno de Dirichlet, es decir, que el valor del campo complejo se fija
en los contornos a cero. En estas circunstancias las paredes pueden comportarse como
emisores o sumideros de defectos, y se vera que son fundamentales para entender la
dindmica observada. Uno de los fenémenos interesantes que vemos es el papel que
juegan las esquinas como directores en la emisién de ondas planas desde las paredes
adyacentes. También hemos observado la formacién de soluciones tipo ’target’ que no
se observan en la Ginzburg-Landau sin forzamiento externo.

Teoria de juegos y redes en Economia.

Para acabar, se presenta un ejemplo de otro tipo de dindmica basada en teoria de
juegos con aplicaciones en sistemas financieros. Presento un modelo muy simplificado
para la formacion de grupos de opinién. Una forma de colocar a los participantes en
un mercado finaciero, agentes, es una red ordenada, por ejemplo una red rectangular
bidimensional. Si nuestro interés es el de estudiar la interaccién entre agentes cabe
preguntarse sobre la validez de suponer una red tan ordenada y estacionaria. En este
Capitulo, intentamos plantear una dindmica en el que no hay restricciones en cuanto
a la interaccion entre agentes: todos pueden, si asi lo eligen, interaccionar con el resto
de agentes. El proceso de transmision de informacién entre agentes lo modelo como
un proceso de formacion de enlaces. Asi si dos individuos se trasmiten informacion o
la comparten, existira un enlace entre ellos. La formacion de enlaces en este modelo
es un proceso aleatorio, en cada paso de tiempo, se crea un enlace entre dos cuales-
quiera agentes del mercado. Mediante este proceso se da una formacién de grupos,
considerando como tales a todos los individuos que comparten la misma informacién.
Anadiendo a esta dindnica de formacién de grupos, otra de poner 6rdenes de compra
y venta de valores del mercado, conseguimos montar un mercado financiero en el que
el precio de un valor fluctia dependiendo de la oferta (venta) y demanda (compra)
de los agentes.

El tnico pardmetro de control del sistema es la velocidad de propagacién de la
informacién entre agentes. Cuando dicha velocidad es pequena, la distribucion de
ganancias sigue una ley de potencias truncada. Si la velocidad es muy rapida, apa-
recen fluctuaciones muy grandes, llamados crashes, debidas a que todo los agentes
forman un gran cluster y actian al unisono. En otras palabras, variando la veloci-
dad de propagacion el sistema sufre una bifurcaciéon de un estado subcritico a uno
supercritico.

En el Capitulo 7 aplicamos este mecanismo al proceso de propagacion de infor-
macién en un mercado financiero. Con este modelo sencillo de mercado conseguimos
que haya una distribucion libre de escalas, ley de potencias, para un amplio rango de

tamanos de grupos y de retornos?.

3Se llama retornos a las variaciones del logaritmo del precio.
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Conclusiones.

A lo largo de esta Tesis he presentado diferentes aplicaciones en campos colindantes
a la Fisica de los conocimientos adquiridos en el marco de lo que suele llamar Ciencia
No-lineal. Hemos visto como comportamientos sencillos que se conocian desde hace
anos en Fisica tienen una rapida y gratificante aplicaciéon para entender el funciona-
miento de sistemas que de otra forma son muy complejos. Asi ocurre por ejemplo en
las aplicaciones del oido y de las arteriolas. Fisicamente son dos bifurcaciones muy
sencillas pero modelos sencillos basados en este hecho pueden explicar muchas de las
observaciones experimentales y empiricas.

Dindmicas méds complicadas, basadas en regimenes cadticos espacial y/o temporal-
mente, han sido estudiadas fijandose en los efectos que la presencia de una geometria
y unas condiciones de contorno distintas de las periédicas produce en la dindmica de
sistemas extendidos.

Finalmente se ha presentado otro tipo de sistemas que no vienen dados por ecua-
ciones evolutivas sino por reglas pero que también presentan bifurcaciones en su com-
portamiento. Su interés pasa por campos como la Sociologia y la Economia pero
también pueden pasar por la Biologia para entender la interaccién de grupos de es-
pecies entre ellos.
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Chapter 2

Essential nonlinearities in hearing

The indiwidual elements of our hearing organ evidently poise themselves at a Hopf
bifurcation to maximize tuning and amplification. We show that in this condition
several effects are expected to be generic: compression of the dynamic range, infinitely
sharp tuning at zero input, and generation of combination tones. These effects are
“essentially” nonlinear in that they become more marked the smaller the forcing: there
is no sound soft enough not to evoke them. All the well-documented nonlinear aspects
of hearing therefore appear to be consequences of the same underlying mechanism'.

!This Chapter corresponds to Essential nonlinearities in hearing, by V.M. Eguiluz, M. Ospeck,
Y. Choe, A.J. Husdpeth, M.O. Magnasco, submitted for publication (1999).
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2.1 Introduction.

The classic Helmholtz theory [11] posits that our hearing organ, the cochlea, is ar-
ranged like a harp or the backplane of a piano, with a number of highly tuned elements
arrayed along a frequency scale, performing Fourier analysis of the incoming sound.
Although the notion that our hearing organ works like a musical instrument offers
a beautiful esthetic symmetry, it has serious flaws. In the 1940s, Gold [4] pointed
out that the cochlea’s narrow passageways are filled with fluid, which dampens any
hope of simple mechanical tuning. He argued that the ear cannot operate as a pas-
sive sensor, but that energy must be put into the system. As in the operation of a
regenerative receiver?, active amplification of the signal can compensate for damping
in order to provide highly tuned responses.

Von Békésy’s classic measurements in the cochlea [12] demonstrated the mapping
of sound frequencies to positions along the cochlea. He observed the tuning to be
quite shallow and found cochlear responses to behave linearly over the range of phys-
iologically relevant sound intensities. (Gold’s notions were largely set aside in favor
of the hypothesis of coarse mechanical tuning followed by a “second filter”, whose
nature was surmised to be electrical.

Von Békésy performed his measurements on cadavers, whose dead cochleas lacked
power sources or amplifiers that might have provided positive feedback. Only fairly
recently, laser-interferometric velocimetry performed on live and reasonably intact
cochleas has led to a very different picture [13, 14, 15]. There is, in fact, sharp
mechanical tuning, but it is essentially nonlinear: there is no sound soft enough that
the cochlear response is linear. Although the response far from the resonance’s center
is linear, at the resonance’s peak the response rises sublinearly, compressing 80 dB
into 25-30 dB (Fig. (2.1)). The width of the resonance increases with increasing
amplitude, being sharpest for sounds near the threshold of hearing. Observation of
the essential nonlinearity of the response at the level of cochlear mechanics contradicts
von Békésy’s finding. Furthermore, this nonlinearity does not originate in the rigidity
of membranes or in fluid-mechanical effects. Because it disappears if the cochlea is
deprived of oxygen, the nonlinearity depends on a biological power supply.

Psychoacoustical experiments have provided another means of probing the non-
linearities of hearing. When two sine waves traverse a system with a nonlinear trans-
fer function, the response shows integer linear combinations of the input frequencies,
whose amplitudes scale according to products of the input amplitudes raised to the ap-
propriate integer (>1) powers. If the input is weak enough, a linear “small-amplitude”
regime is recovered, in which combination tones are absent. Psychoacoustical exper-
iments showed that the perceived intensity of combination tones is not suppressed in
this fashion: although the 2f; — f, combination tone should be suppressed by 3 dB

2 A regenerative radio receiver amplifies by adding just enough positive feedback that the receiver
barely oscillates. The design was abandoned because it emits into the very bandwidth it receives.
The superregenerative receiver is a self-quenching version; both were invented by Edwin Armstrong,
who also invented broad-band FM. Gold conjectured that a regenerative mechanism for hearing could
lead to feedback oscillations so that the ear would actually emit sound. The subsequent discovery
of spontaneous otoacoustic emissions gave Gold’s theory some notoriety.
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Figure 2.1: Laser velocimetric data from a living chinchilla’s cochlea displaying the root-
mean-square velocity of the basal membrane as a function of driving frequency. Each
curve represents a different sound level, labelled in decibels sound-pressure level. The
“characteristic frequency” at the measured position is 9 kHz. Notice that at 4 kHz, the
curves from 40 dB to 80 dB span two decades (40 dB), whereas at 9 kHz the curves from
3 dB to 60 dB span just under one decade (20 dB); at 4 kHz, the response rises an average
of 1 dB per decibel, whereas at 9 kHz the response rises only 0.3 dB per decibel. Note

furthermore the dramatic increase in bandwidth as the intensity increases. Courtesy of M.
A. Ruggero [14].

for each decibel of attenuation in the input sound, the actual attenuation is only 1 dB
per decibel [16]. The intensity relative to the fundamental tones remains constant.
These observations, too, imply that the system is essentially nonlinear: no sound is
faint enough to elicit a small-amplitude, linear regime.

We shall show that all of these apparently disparate characteristics are related to
one another, stemming from the same mechanism. In dynamical systems language, we
would say that Gold’s theory asserts that the elements of the hearing organ somehow
poise themselves at a Hopf bifurcation, like a sound technician adjusting the volume
at an amplifier to the loudest possible setting before feedback oscillation ensues. We
shall show that at a Hopf bifurcation we generically expect essential nonlinearities,
compression of dynamic range, sharp tuning for soft input, and broad tuning for loud
input. In essence, several nonlinear aspects of hearing may stem from the Hopf bifur-
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cation. We shall then argue that it is physiologically plausible that this is occurring,
given our current understanding of hair-cell physiology.

2.2 Periodically forced Hopf oscillator.

The cochlea can be roughly approximated by a series of coupled Hopf oscillators with
increasing characteristic frequency. A generic equation describing a Hopf bifurcation
can be written

2= (p+iwg)z — (1 +1iB)|z|*z

where z(t) is a complex variable of time, wy is the natural frequency of oscillation,
and p is the control parameter®. For the seak of simplicity we will consider in the
following 5 = 0. When u becomes positive, the solution z = 0 becomes unstable, and
a stable oscillatory solution appears, z = \/uexp(iwgt). If the system is subjected to
periodic forcing as z = (u+iwg)z—|z|?2+ Fe™*, then for the spontaneously oscillating
system a variety of well-studied entrainment behaviors occur. Assuming a 1:1 locked
solution of the form z = Re™'*® we obtain

F? = R® —2uR* + (4 + (w — wo)*) R? (2.1)

This equation is a cubic in R? and hence solvable:

R2 _ S% H _ Z%UQ
325 3 383
where
S=D+y/D2+4U,> D =27F?+164° — 18ul;
Uy = 12 + (wo — w)? Us = —pi® + 3(wp — w)?

If we specialize Eq. (2.1) exactly at the bifurcation we obtain
F? = R + (w — wo)’R? (2.2)

from which we can demonstrate directly one of our main contentions. At the center
of the resonance, where w = wy, R ~ F'/3, so no matter how small F might be, the
response is nonlinear. Notice that because a cubic root of a small number is much
larger than the number, the amplification R/F or the differential amplification dR/dF
blows up as F~2/3 for infinitesimal forcings. Away from the resonance’s center, for
sufficiently small F' we get R ~ F/|w — wp|, the standard form for a single pole seen
from some distance away: the amplification is constant and independent of F'.

The definitions of “near the resonance” and “far from the resonance” depend on
the amplitude of the forcing; therefore the interface between the two regimes depends

3 Another simple model of the transition in explicit oscillator form can be obtained as a variation of
the van der Pol equation: % + vi(z? — p) +w?x = 0. Other “Hopf bifurcations” can be constructed
with different nonlinearities. If the ODE vector field is to be real analytic, however, then the
nonlinearity must be an odd integer; the case we present is generic in this sense. Under different
nonlinearities, the specific one-third power law would change, but not our general conclusions.
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Figure 2.2: Hopf resonance. The response R to different levels of forcing F' is obtained
from Eq. (2.2). At resonance the response increases as the one-third power of the forcing,
while away from the resonance the response is linear in the forcing.

on F. If we define the half-width I' of the resonance as the range in w for which R
falls by one-half, (R/2)® + I'?(R/2)? = R®, from which

I = 3—ﬁF2/3 (2.3)
4
For this system the gain-bandwidth product is constant and independent of the forc-
ing. The gain-bandwidth balance depends strongly on the forcing amplitude, however,
asymptoting to infinite gain and zero bandwidth for zero forcing amplitude. This be-
havior strikingly resembles that of the velocimetric data for the basilar-membrane
response [14].
The precision with which the system can be poised near the bifurcation determines
the maximal amplification and frequency selectivity. We again specialize Eq. (2.1),
this time to the case w = wy, exactly at resonance, to get

F? = R*(R? — p)? (2.4)

Consider first 1 < 0, the sub-bifurcation regime. As F' — 0 then R — —F'/u: the am-
plification for infinitesimally soft sounds is —1/u, which becomes infinite only exactly
at the transition. Therefore, for y sufficiently small and negative we observe compres-
sive nonlinearity for F' > (—u)?/® and a linear regime for softer sounds. We should
furthermore note that for Eq. (2.1), p is also the parameter for exponential relaxation
in the absence of forcing: the system relaxes to the quiescent state as exp (ut). Thus
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Figure 2.3: The resonance of Fig. (2.2) in log-log form shows the compressive and linear
regimes and the boundary between them. The dashed line given by Eq. (2.3) indicates the
half-width T

the linear-regime amplification is exactly proportional to the integration time given
by this relaxation; this integration time becomes infinite exactly at the bifurcation.

Once past the Hopf bifurcation (x > 0), an oscillation occurs, for which the
response above the limit-cycle amplitude is R’ = R—,/p. Eq. (2.4) has three solutions,
of which only one (R' > 0) is stable with stability parameter 2u. In the supra-
bifurcation regime the solution above is by definition phase-locked 1:1, so its stability
is constrained to the 1:1 Arnold tongue. In order to fully explore the behavior of
the system around the Hopf bifurcation, it is better to consider the simplest forced
model able to suffer quasiperiodic transitions. The best numerical scheme is to define
a system whose solution we can compute analytically, then to force it impulsively so
that we obtain a closed-form iterated map [17, 18]. The simplest such homogeneous
oscillator is

Po= r(p—r?) (2.5)
) = w, (2.6)

Numerical exploration of this model and of the model described in® shows that the
features described above are independent of model details [19].

We have thus established that several nonlinear aspects of hearing are compatible
with the idea that individual sound-sensing elements poise themselves at the Hopf
transition. We shall now argue that physiological data suggest that this is the case.
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2.3 Physiological justification.

Electrical frequency selectivity, in which individual hair cells are tuned to specific
frequencies of mechanical stimulation by resonance of the membrane potential [20],
suggests a role for Hopf bifurcations in the auditory system. A seven-dimensional
conductance-based model describes the hair cell’s electrical amplifier, called the mem-
brane oscillator [21, 22]. In this model, the hair-cell’s capacitance is charged by
a standing current through the transduction channels, then discharged by a Ca’*-
activated KT current. The model’s control parameter p is a strong function of both the
transduction and the Ca?* conductances. As described by the membrane-oscillator
model with increased p, electrically resonant hair cells in the hearing organs of am-
phibians, reptiles and birds operate near a supercritical Hopf bifurcation. A small
conductance oscillation in the transduction channels engenders a large current-to-
voltage gain, the benefit of operating near a Hopf bifurcation®.

Sharp mechanical frequency selectivity may also emerge from proximity to a Hopf
bifurcation. A priori, one may suspect that frequency-specific amplification in the
auditory system derives in part from mechanical properties of the hair bundle, the
mechanoreceptive organelle of the inner ear. This bundle does not behave as a merely
passive transducer. The spontaneous and evoked hair-bundle oscillations observed in
hair cells from the turtle’s cochlea and the bullfrog’s sacculus instead demonstrate that
the hair bundle is capable of producing active limit-cycle and high-Q behavior [24,
25, 26]. Two suggestions have been made about the mechanism of these oscillations
[27]. Both posit that the force-generating elements regulate the elastic properties
of the mechanoelectrical transduction channel in a Ca?*-dependent manner, thus
modulating tension in the associated gating spring and altering the mechanics of
the hair bundle. In support of such a mechanism, the current through the channel
displays Ca?t-sensitive oscillations even under conditions in which the membrane
potential and hair-bundle position are fixed, and therefore in which the usual means
of channel gating is frustrated [28].

One possibility is that myosin molecules anchoring the channel complex to the
actin core of the stereocilia power the oscillations. The alternative proposal is that
the channel complex itself is intrinsically active and generates force. The primary
supposition of this model [3] is that the closed state of the channel is stabilized
by Ca?* binding. Because there is a Ca?" concentration gradient across the cell
membrane and the channel is permeable to Ca?*, channel opening regulates the local
intracellular Ca?™ concentration and thus force generation through channel reclosure.
This model is represented by an eight-dimensional system in which two mechanical
equations are coupled to a six-state Ca?t-binding cycle and chemomechanical forcing

4Electroreceptors are thought to represent derivatives of hair cells that have lost mechanical sensi-
tivity. These cells may nonetheless retain the hair cell’s strategy of electrical resonance for frequency
tuning. The paddlefish, for example, uses electrosensitive ampullary cells to detect electrical activity
associated with the swimming motions of water fleas. These cells are sensitive to electric fields as
weak as 2 mV-m~!. The neurons innervating ampullary cells show noisy electrical oscillations at
rest; during stimulation the oscillations are synchronized by external electric fields. Ampullary cells

thus behave like noisy phase-locked loops [23] and appear to operate near a Hopf bifurcation.
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operates through the open probability of the transduction channel.

Variation of parameter values through a physiologically plausible range reveals a
locus of Hopf bifurcations whose frequencies span the range of human hearing. Near
the bifurcation, one observes compressive frequency selectivity; the system is essen-
tially nonlinear. A particularly relevant control parameter is the number of stereocilia
in the hair bundle: many of the mechanical properties may be defined as functions
of this number, which is clearly regulated along the cochlea. In agreement with ex-
periment, near the bifurcation locus the model maps tall, thin hair bundles to the
low-frequency range and short, broad bundles to higher frequencies. A second control
parameter governs Ca?T-binding kinetics; faster transitions correspond to higher os-
cillation frequencies. Tuning of this parameter may be achieved through modulation
of the intracellular Ca?" concentration, which is also subject to tight regulation. This
model demonstrates that a biologically reasonable tuning mechanism in the auditory
system may operate near a Hopf bifurcation and that proximity to the bifurcation
may be tuned by realistic variations in parameter values.

In the mammalian cochlea amplification is thought to be mediated by the phe-
nomenon of electromotility [29, 30]. During stimulation of an outer hair cell, large
numbers of intramembrane proteins rapidly respond to changes in transmembrane
potential by altering the cell’s length. This movement presumably deflects the hair
bundle, causes a conductance change and therefore is fed back to the transmem-
brane potential. To realize the performance attributed to the cochlear amplifier, the
electromotility system may also utilize the instability of a Hopf bifurcation.

2.4 Conclusions.

We have shown that some of the characteristic of the hearing organ, as for exam-
ple the compression of the dynamic range, infinitely sharp tuning at zero input, and
generation of combination tones, can be explained with a superregenerative mecha-
nism. We have shown universal properties of an oscillator in the vicinity of a Hopf
bifurcation that presents similar features as the hearing organ.
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‘Sausage-String’ Patterns in Blood
Vessels at High Blood Pressures

A new Rayleigh-type instability is proposed to explain the ‘sausage-string’ pattern of
alternating constrictions and dilatations formed in blood vessels at high blood pres-
sure conditions. Qur theory involves the nonlinear stress-strain characteristics of the
vessel wall, and provides predictions for the conditions under which the normal cylin-
drical geometry of a blood vessel becomes unstable. The theory explains key features
observed experimentally, e.g. the limited occurrence of the sausage-string pattern to
small arteries and large arterioles, and only in those with small wall-to-lumen ratios'.

! This Chapter corresponds to Instability and ‘Sausage-String’ Appearance in Blood Vessels during
High Blood Pressure, by P. Alstrgm, V.M. Eguiluz, M. Colding-Jgrgensen, F. Gustafsson, N.-H.
Holstein-Rathlou, Phys. Rev. Lett. 82, 1995 (1999), and ‘Sausage-String’ Patterns in Blood Vessels
at High Blood Pressures, by P. Alstrgm, V.M. Eguiluz, M. Colding-Jgrgensen, F. Gustafsson, N.-
H. Holstein-Rathlou, to appear in Proceedings of Statistical Mechanics of Biocomplexity, Springer
Verlag (Berlin 1999)
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3.1 Introduction

Approximately 10% of the population in Western societies has high blood pressure
and roughly half recieve pharmacological treatment. Despite the development of
potent blood pressure lowering drugs, elevated blood pressure remains a major risk
factor for development of stroke and heart disease. While the underlying mechanisms
in the vast majority of cases of high blood pressure are unknown, it is clear that
high blood pressure is primarily caused by an increase of resistance to blood flow in
the circulation. This elevation in resistance to blood flow is induced by an increase
in the tone of the small arteries and arterioles (diameter 30-300u) by contraction of
the smooth muscle cells surrounding the vessels. Smooth muscle cell contraction in
arterioles and arteries may be induced by several vasoconstricting agents, one of the
most potent being the octapeptide angiotensin II. Standard medication for high blood
pressure includes drugs that lower the production or effects of vasoconstricting agents
on the vascular smooth muscle cells.

Extreme increase in blood pressure, so-called malignant hypertension, may for
example be encountered in patients with a kidney disease or in pregnant women suf-
fering from preeclampsia. The underlying large increase in arterial resistance may
be accompanied by severe damage to the circulatory system and result in organ dys-
function, particularly of the kidneys and the brain. This organ dysfunction may be
irreversible and even fatal. In almost every case, malignant hypertension is accom-
panied - or caused - by considerable elevations of the blood levels of angiotensin II
[31]. The vascular damage associated with substantial increase in blood pressure is
confined to small arteries and arterioles, and it is preceded by a peculiar vascular
reaction pattern: Initially extreme uniform narrowing of the blood vessels occurs.
This is succeded by the development of alternating constriction and dilatation, giving
the vessel a ”sausage-string appearance” (Fig. 3.1). This vascular pattern has been
demonstrated in many organs, including the brain, the gut, and the kidney [32] and
it is of decisive importance to the subsequent development of vascular damage, since
damage to the vascular wall occurs exclusively in the dilated regions of the vessel
(33, 34, 35, 36]. In the dilated segments, permeability to macromolecules from the
blood stream is increased resulting in diffusion of proteins into the vessel wall. Pre-
sumably this in turn leads to local dysfunction and ultimatively death of the cells of
the vascular wall.

In experimental studies of malignant hypertension in rats, high blood pressure is
typically induced by intravenous infusion of angiotensin II [33, 34, 35, 36]. As the
infusion is continued, a substantial narrowing of the smaller blood vessels is observed,
and at a given contraction, the narrowed vessels develop the sausage-string pattern
(Fig. 3.1). Despite several decades of experimental research of the phenomenon, the
mechanism causing the ‘sausage-string’ pattern has remained unknown [32]. It has
been suggested that the pattern is caused by a ‘blow out’ of the vessel wall due to
the high blood pressure [37], but this seems unlikely for several reasons. First, as
mentioned above, the sausage-string pattern is observed only in the smaller vessels
(small arteries and large arterioles), cf. Fig. 3.2, and here the pressure elevation is
relatively small compared to that in the larger arteries. Secondly, the phenomenon is
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Figure 3.1: In vivo micrograph of rat intestinal arterioles showing a typical ‘sausage-string’

pattern following an acute increase in blood pressure induced by intravenous infusion of
angiotensin II. The neighboring vessels not showing constrictions and dilatations are the
corresponding venules. From [32].
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Figure 3.2: Intravascular pressure in a large (femoral) artery (FEM ART) of diameter
~ 1 mm, and in three categories of gut arterioles (A1-A3) in normal rats (dashed line) and
rats with high blood pressure (solid line). Mean resting vessel diameters were: Al: 78 pm;
A2: 30 pm; A3: 15 ym. From [38].

highly reproducible [35]. If the infusion of the vasoconstricting agent is stopped, the
normal, uniform cylindrical geometry is restored without remaining deformations, as
generally would be expected if the phenomenon was a breakdown due to mechanical
failure of the elastic tissue. Restoring the infusion causes again an extreme, uniform
vasoconstriction followed by the reappearance of the sausage-string pattern. A third
and intriguing feature of the phenomenon is its overall periodicity with constrictions
and dilatations occurring in a regular and repetitive pattern.

In this chapter, we present a simple anisotropic, elastic model of the vessel wall.
We show that under certain hypertensive conditions a novel Rayleigh-type instability
occurs which leads to a periodic sausage-string pattern of constrictions and dilatations
along the vessel. Our theory provides predictions for the conditions under which the
cylindrical form of a blood vessel becomes unstable. Especially, we show that the
appearance of the sausage-string pattern is limited to smaller blood vessels, because
the pressure elevation there is relatively small (Fig. 3.2). Moreover, we show that
the instability does not occur for vessels where the wall-to-lumen ratio (vessel-wall
thickness divided by the inner radius) is large. In agreement herewith, the sausage-
string pattern has not been observed in the small arterioles where the wall-to-lumen
ratio is 0.3 - 0.5, compared to a value of 0.1 - 0.2 for larger blood vessels. Thus
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we argue that the sausage-string pattern is caused by an instability, and not by a
mechanical breakdown. Furthermore, the borders of the instability window, where
the sausage-string pattern appears, are determined by two different conditions, one
related to the pressure, the other related to the geometry.

3.2 Cylindrical blood vessels

In order to investigate the stability of a cylindrically shaped blood vessel, consider an
initial small axial symmetric perturbation of the inner radius, r — r+u(z) (Fig. 3.3).
If the perturbation grows in time, the cylindrical form is unstable, if it decreases
toward zero, the cylindrical form is stable. To determine the stability, we must
therefore know the dynamic equation for the perturbation u(z,t). To this end, we
invoke the continuity equation,

Oy(mr?) = —0,J , (3.1)

associating a local change of the cross-sectional area at a downstream site z with a
fluid flux J(z). The flux is related to the transmural pressure P, by

J = —c(r)0,P, (3.2)

where ¢(r) is the vascular conductance. In the Hagen-Poiseuille approximation, the
fluid conductance is c(r) = 7r*/(87n), where 7 is the dynamic viscosity of the fluid
(blood). However, the specific form of ¢(r) is not crucial for our purpose

From the continuity equation and the flux-pressure relation, the dynamic equation
to lowest order in the perturbation follows,

c(r) oo
ou=—=0P . 3.3
= o (3:3)
Above, we have tacitly neglected the pressure drop along the vessel, noting that this
is much smaller than the transmural pressure.
As a simple illustration, consider first a very thin vessel wall, for which the pressure
is given by the Laplace form [39, 40|

P=(T/R)+ (T./R.) . (3.4)

Here T and T, are the tensions circumferential to and parallel with the cylinder axis
z, and 1/R and 1/R, are the principal curvatures in the corresponding directions,
1 1 1 —0%r

R i+ @n072" R, [+ @nJ°" (3.5)

Furthermore, we assume that the tensions are constant and identical, 7, = T'. Using
the above expression, Eq. (3.4), for the pressure, we get from Eq. (3.3), retaining only
linear terms in u,

__Te(r) e 294
Oyu = 53 [0Zu + r°0,u] . (3.6)
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(b) (c)

Figure 3.3: (a) A schematic picture of a blood vessel of inner radius r undergoing a
perturbation u(z). The wall thickness w(z) is larger at smaller radii since the circumference
is smaller. (b) Schematic cross-section of a blood vessel in relaxed state. (c) Schematic
cross-section of a blood vessel in activated state. The cross-sectional area is assumed fixed,
so the wall thickness is larger than in (b).

For a perturbation of the form

u=> uk(t)cos(kz) , (3.7)

k
we have ug(t) ~ ug(0)e* !, where
Te(r) o 2.2
Ak 53 k*[1 — k7 (3.8)

Thus, the vessel wall is unstable to modes with rk < 1. The dominant mode, where
A\, is maximal, is at k = 1/(v/2r).

The above instability is known as the Rayleigh instability [41, 42]. The theory
explains why a cylindrical column of water with surface tension 7" is unstable at all
radii. Alternatively, this can be shown in an energy context, varying the area

A= /da = /27r7°[1 + (9,7)?)Y?dz (3.9)
for fixed volume
V= /7rr2dz , (3.10)
in order to minimize the suface energy
F= /Tda . (3.11)
From a perturbation of the form u = ug + uy, cos(kz), where ug = —uj/(4r) [to lowest

order in wuy| is determined by volume conservation, one obtains an energy change

OF = —Fy[1 — r?k?|(ug/2r)? (3.12)
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[to lowest order in wuy|, which is again favorable (negative) when rk < 1.

The cylindrical geometry may remain stable if stabilizing terms appear in the
energy functional F. In the recent analysis of the so-called pearling instability [43,
44, 45], it is the reluctance against bending in tubular lipid membranes that stabilizes
the cylindrical geometry. In the simplest form, an additional term [43]

111,
AF = 2/@/[R+RZ] da , (3.13)

k being the bending modulus, is added to the surface energy. For Tr?/k sufficiently
small, the cylindrical geometry remains stable (for all k). However, increasing the
surface tension (using optical tweezers [43]), the instability occurs when T'r%/k crosses
a given critical value.

In small blood vessels it is not the reluctance against bending but rather a strongly
nonlinear stress-strain relation (Fig. 3.4) that is responsible for the stability of the
cylindrical form. Under normal conditions, the stress is exponentially increasing with
circumferential strain, and an increase in area by an amount da is energetically much
more expensive than gained by a similar decrease in area. Therefore, the cylindrical
form remains stable. However, when the vessel contracts, the exponential behavior is
replaced by a more slow variation, with a smaller area dependence in energy cost. At
sufficiently strong contractions, energy is gained by reducing area, and the cylindrical
form becomes unstable.

For blood vessels one cannot neglect the width w of the vessel wall. Taking the
width of the vessel into account, the Laplacian form for the pressure is replaced by
an integral,

1 o%r
P= / ~ 8, d7 3.14

STrere  Siaeapr T G
where S and S, are the stresses, circumferential and parallel with the vessel. The
stresses, S and S,, defined as the forces per actual cross-sectional area, are related
to the experimentally measured idealized stresses, o and o, defined as the forces per
relaxed cross-sectional area [48],

S=vy,0, S,=77,0,. (3.15)

Here ~ and v, are the normalized lengths in the circumferential direction and in the
vessel direction, i.e. v (7,) is equal to L/Lqg where L is the actual length of a tissue
strip in the circumferential direction (vessel direction) and Lg is the corresponding
resting length. The strain, € (¢,), is by definition equal to v — 1 (7, — 1). Since the
length of a vessel remains almost constant during a contraction, 7, is here assumed
to be constant, v, = 7. Correspondingly, the stress o, is replaced by a constant oy.

The width w of the vessel wall changes when the inner radius r changes (Fig. 3.3).
Assuming that the cross-sectional area of the vessel wall is constant, the radius de-
pendence of w is given, when the inner radius p and wall thickness w are known for
the angularly relaxed state (y = 1). We have

(r+w)?—r*=(p+w)?—p*. (3.16)
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Figure 3.4: A schematic plot of typical stress-strain relations for arterioles (adapted from
[46, 47]). The three heavy solid curves correspond to a completely relaxed vessel (0%), a
vessel where the smooth muscle cells are half maximally activated (50%), and a vessel where
the smooth muscle cells are maximally activated (100%). The thin solid lines indicate how
the points (v,0(7)) and (Y, 0(vy)) [marked 0.1] move with muscle cell activation for
an arteriole with wall-to-lumen ratio w/p = 0.1. The point of instability (r = r.) for the
cylindrical form of the blood vessel can be illustrated geometrically by thin dashed lines
from (0,0) through (v,,0(7,)) [see text]. The instability point is where o(vy)/7w equals
o(vr)/7vr- The thick dashed line [marked 0.2] shows how the point (74,0 (7y)) move with
muscle cell activation for an arteriole with w/p = 0.2, keeping the same curve for (7, o (7;)).
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Equation (3.16) suggests a useful change of variable, from 7 to p, where
7P —r?=p2 = p*. (3.17)

When 7 varies between values r and r 4+ w, which under perturbations changes along

the z axis, p varies between the fixed values p and p+ w. The normalized length ~ at

a radius 7 is simply the ratio between 7 and its relaxed value p: v = 7/p (Fig. 3.3).
For small perturbations, the relevant expression for the pressure reduces to

ptw
P = 70/ [0 — oord?r][p® — p* + 1472 dp (3.18)
p

where the stress o in the circumferential direction depends on the normalized length

y=0p" =+ p (3.19)

To linear order in the perturbation u(z,t), we obtain

P = Py(r) + I(r)u — Ip(r)d>u, (3.20)
where
ptw
Py(r) = %/ olp® —p* + 717 dp (3.21)
p
ptw
Iy(r) = ’YOUOT/ [ﬁQ—pQ-l-TQ]_l/2 dp
p
= yoorlog[l + (w+w)/(p+7)], (3.22)
and
d ptw o d |o| 0y ,.
I(r) = —~Fy(r) = / | Ao dp 2
0= gm0 = [ 4|2 S as .29

The partial derivatives of v with respect to r and p are related,

pH(0v/0r) = r(p* — )71 (v/9p) (3.24)

and I(r) can be expressed in terms of the normalized length -,

0% |olw)  alw)
Itr) = p(1—172) l Yo Vr ] ’ (329
where
Y=r/p, = (r+w)/(p+w), (3.26)

are the normalized inner and outer radius. Note that I(r) is not singular at 7, = 1,
where also 7, = 1.

By Eq. (3.20), the dynamic equation, Eq. (3.3), for the perturbation u(z,t) takes
the form

Oyu = —%[—I(r)@fu + Io(r)0tu] . (3.27)
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For a perturbation of the form (3.7), we have uy(t) ~ u(0)e*? with

A = Egj-k2L—](r)——L(r)kﬂ : (3.28)
2nr
The value of Iy(r) is always positive. Therefore, it is the sign of I(r) that determines
the stability of the vessel wall. If I(r) is positive the cylindrical geometry is stable for
all modes. If I(r) is negative, the cylindrical geometry is unstable, more specifically
to modes with k? < |I|/I.
The dominant (fastest growing) mode, where \; is maximal, is at the value k£ =
[|1]/(215)]'/?, corresponding to ‘sausages’ of length

¢ =2r[21,/|1]? . (3.29)

For w/p = 0.1, and oy = 100 kPa, we find |I|p =~ 2Iy/p =~ 10 kPa. Hence, £ ~ 2mp,
and the length of the ‘sausages’ will be 5-10 times the radius of the relaxed vessel.
This is in good agreement with experimental observations [35] (Fig. 3.1).

From the expression for I(r), Eq. (3.25), it is seen that the important quantity
is 0/v. The cylindrical form becomes unstable when o/v calculated at the inner
radius (r = r.) equals the value of /v at the outer radius. This is illustrated
geometrically (Fig. 3.4), by drawing a line (thin dashed) in the plot of o versus =y
from (0,0) through (7,,0(7.)). The slope of this line is obviously o(v,)/7,. If the
point (Y, 0(7w)) lies above this line, o(vy)/Yw > (V) /¥, L(r) is positive, and the
cylindrical form is stable. If on the other hand the point (7., (7)) lies below the
line, o (V) /Yw < o(%)/7r, I(r) is negative, and the cylindrical form is unstable.

Under normal physiological conditions, the circumferential stress o in blood vessels
increases exponentially with the normalized length [39, 40, 46, 47] (Fig. 3.4), and the
value of I(r) is therefore positive (Fig. 3.5). This ensures that the blood vessel keeps
its cylindrical form. However, when acute hypertension is induced by infusion of a
strong vasoconstricting agent like angiotensin II, there will be a significant reduction
of the inner radius in small arteries and large arterioles due to contraction of the
smooth muscle cells. The operating point for the vessel will move to the less steep
part of the o —+ curve (Fig. 3.4), and when the inner radius is reduced below a certain
value . at which o(vy)/Yw = 0(7+) /7, the value of I(r) becomes negative (Fig. 3.5).
The cylindrical form becomes unstable, and the ‘sausage-string’ pattern appears.

The ‘sausage-string’ pattern following infusion of angiotensin II has been found
to occur predominantly in small arteries and large arterioles [35]. In accordance
herewith, the present analysis predicts that large vessels will be stable. In this case,
the operating point (7, o(7y)) lies on the steep part of the o —~ curve, at high pressure
elevation and rather small contraction (Fig. 3.2 and Fig. 3.4), thus the larger vessels
do not reduce their radii below the critical value r.. As arterial vessels get smaller,
the wall-to-lumen ratio w/p generally increases [39, 40]. From the expression for I(r),
Eq. (3.25), we find that the value of r. decreases with increasing wall-to-lumen ratio
w/p (Fig. 3.6). In Fig. 3.4, the thin solid lines illustrate how the points (v, o(7,)) and
(Yw, (7)) [marked 0.1] move with muscle cell activation for an arteriole with wall-to-
lumen ratio w/p = 0.1. For a given activation of the smooth muscle cells (50%, 100%),



36 ‘Sausage-String’ Patterns

100

50 —

I(Np 25
(kPa)

-25 }—

<0 | | | | | |

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4

r/p

Figure 3.5: A plot of the stability measure I(r) at large muscle cell activation for two
different wall-to-lumen ratios, w/p = 0.1 and w/p = 0.2. The cylindrical form of a blood
vessel becomes unstable when I becomes negative (at r = r.). An almost linear stress-
strain relation in a region above r. gives rise to a decay of I. Above v = 1, where the stress
increases exponentially, also I(r) increases exponentially.

a thin dashed line is drawn from (0,0) through (v, 0(7.)). As argued above, when
the point (7,0 (7)) lies above the thin dashed line, the cylindrical form is stable;
when it lies below, the cylindrical form is unstable. For w/p = 0.1, we see from
Fig. 3.4 that the cylindrical form is stable at 50% activation, but unstable at 100%
activation of the smooth muscle cells surrounding the blood vessel. For w/p = 0.2
((Yw, 0(Yw)) illustrated by thick dashed line marked 0.2), the cylindrical form is only
barely unstable at 100% activation. For larger wall-to-lumen ratios, the cylindrical
form remains stable (Fig. 3.6). Hence, the ‘sausage-string’ instability will not appear
in blood vessels with large wall-to-lumen ratios. While the transmural pressure and
the contractile potential sets an upper limit, the wall-to-lumen ratio sets a lower limit
for vessels that will undergo the ‘sausage-string’ instability in response to an acute
increase in blood pressure.

We note that when I(r) becomes negative, the pressure at slightly larger radii
is smaller than at slightly smaller radii. Accordingly, the resulting flow J will be
directed from low-radii regions to high-radii regions, causing the small radii to become
even smaller, and the large radii to become larger. This continues until the pressure
stabilizes at a value which is the same for both the large radius 7,,,, and the small
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Figure 3.6: The critical radius 7., normalized by relaxed radius p, decreases with (relaxed)
wall-to-lumen ratio w/p. Above the 7. curve, the cylindrical form is stable, below it is
unstable. The dashed lines indicate the circumferential normalized lengths v, = 0.6 at 50%
and v, = 0.3 at 100% activation of the smooth muscle cells. At 50% activation, the . line
lies entirely in the stable regime, and the cylindrical form is stable for all wall-to-lumen
ratios. At 100% activation, the 7, line lies in the unstable regime for wall-to-lumen ratios
below 0.2, hence the cylindrical form is unstable for blood vessels with w/p < 0.2.

radius 7,,;,. The stabilization is possible because the pressure for radii above the
instability, » > r., again increases with r. The theory allows an estimate of the
radius in the dilated regions, 74, Assuming that 7,,;,/p is small (close to zero), the
final value of 7,4, is estimated by the condition P(7,,.;) = P(0). Interestingly, the
almost linear stress function in the region above r. (Fig. 3.4) gives rise to a decay
of I(r) in the same region (Fig. 3.5). As a consequence Tz /Tmin Can become quite
large. However, close to v = 1, the stress increases exponentially due to the elastic
properties of the vessel wall [39, 40], and the value of I(r) will also increase rapidly.
This will prevent 7,,,, from attaining a value substantially larger than the relaxed
radius, p, of the vessel. Preliminary experimental data from Gustafsson’s laboratory
confirm this. However, r,,,, may be larger than the working radius of the vessel under
normal physiological conditions, because the normal working radius is smaller than
the relaxed radius [39, 40|, i.e. the vessel has spontaneous tone. This may explain
why earlier the dilated regions have been suggested as a ‘blow out’ due to mechanical
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failure of the vessel wall [37].

3.3 Conclusions

In summary, we have demonstrated that during severe vasoconstriction, the normal
cylindrical geometry of a blood vessel may become unstable, resulting in a sausage-
string pattern of alternating constrictions and dilatations. The sausage-string pattern
is thus the expression of an instability, and not caused by a mechanical failure of
the vessel wall due to a high blood pressure. The instability is associated with the
Rayleigh instability of a fluid column and with the ‘pearling’ instability observed in
tubular lipid membranes. The mechanism behind the instability is however novel,
involving the nonlinear stress-strain characteristics of the vessel wall. The developed
theory explains many of the key features observed experimentally, especially why the
instability is only observed in small arteries and large arterioles, and predominantly
in those with small wall-to-lumen ratios.
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PhysicsWeb
Institute of Physics Publishing

News: 16 October 1998

Physics solves blood vessel mystery

[Friday October 16] A group of physicists has solved a surgical mystery that has puzzled
doctorsfor over 70 years. When a patient suffers high blood pressure, small blood vessels
tend to alternately constrict and dilate along their length, forming a " sausage-string"

pattern that is damaging to the patient. Previously physicians had thought that the blood
vessels had suffered a ™ blow-out" , but closer examination by Finn Gustafsson and colleagues
in Denmark and Spain revealsthat the blood pressureistoo small to cause such an effect.
Instead they suggest that the elasticity characteristics of the vein cause the problem. The
work has been submitted to Physical Review Letters.

Experiments on the effect have been performed by introducing a compound called angiote
into the blood stream of a rat. This compound narrows the diameter of the blood vessels, \
increases the blood pressure and leads to the formation of the "sausage-string" pattern in
vessels. If the angiotensin Il is removed, the blood vessel returns to its previous shape.
Gustafsson’s group suggests that the shape of the blood vessel becomes unstable at high
pressure if the inner radius of the vessel becomes perturbed.

Gustafsson and co-workers defined a quantity, I(r), in terms of the dimensions and elastic
properties of the vessels. If I(r) is positive, then the stress on the vessel increases in such
keep the blood vessel cylindrical in shape. However, if I(r) is negative, the radius of the ve
that point becomes smaller, increasing the pressure and causing blood to flow away from-
region. This further reduces the radius, eventually leading to the "sausage-string" pattern i
vein. According to their equations, the length of each "sausage” should be 5-10 times the |
the vessel, which is backed up by experimental evidence. The theory also explains why sil
patterns are not seen in larger blood vessels.

RELATED LINKS:
Instability and 'Sausage-String’ Appearance in Blood Vessels during High Blood Pressure
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‘Sausage-String’ Patterns

ACADEMIC PRESS

DAILY e
inScight

PostedlO March 1999, 5 pm PST

From the SCIENCE newsroom

The Secret of Blood Sausages

Blood vessels under high pressure undergo weird contortions: They swell and
shrink into something resembling sausages on a string. Now a team of
physicists has developed equations that model this curious--and potentially
harmful--behavior and can predict when and where it might occur. The
scientists say their calculations, reported in the 1 MBhykical Review

Letters, could lead to new ways of treating acute hypertension.

The sausage-string pattern, first noticed in the 1950s in laboratory animals,
has been found in people who suffer from extremely high blood pressure.
Physiologists thought that weak spots in the vessel walls ballooned under high
pressure, but this did not explain the regularity of the changes or their presence
in smaller vessels where pressure is not as high. To solve the mystery, Preben
Alstrgm, a physicist at the Niels Bohr Institute in Copenhagen, Denmark, and
his colleagues examined the inherent stability of blood vessels.

The researchers started with equations that describe blood flowing through
cylindrical tubes with the elasticity of blood vessels, then they worked out a
theory to describe what happens when muscle cells constrict the vessels. This
squeezing, their model predicts, would not only narrow the vessel but,
paradoxically, also lead it to swell in some places--exactly the sausage-string
pattern. "A normal blood vessel is stable because to expand costs it a lot of
energy," says Alstram. But when constricted, the system is perturbed and slight
variations in variables such as rate of fluid flow will make sections of the
vessel more inherently "stable" if they expand.

The team may have finally hit upon the correct explanation for the
sausage-string patternanterie®, says Raymond Goldstein, a physicist at the
University of Arizona, Tucson. He'd still like to see more detailed
experimental work that can be compared to the model’s predictions, such as
how the length of each sausage depends on parameters like the thickness of the
artery walls. Alstram says this sort of knowledge could lead to ways to prevent
the formation of the sausage-link shapes, which can disrupt blood flow. For
example, he imagines drugs that might change the elasticity of the arteries so
that they don’'t become unstable under high pressure.

--Meher Antia



Chapter 4

Frozen spatial chaos induced by
boundaries

We show that rather simple but non-trivial boundary conditions could induce the ap-
pearance of spatial chaos (that is stationary, stable, but spatially disordered config-
urations) in extended dynamical systems with very simple dynamics. We exemplify
the phenomenon with a nonlinear reaction-diffusion equation in a two-dimensional
undulated domain. Concepts from the theory of dynamical systems, and a transverse-
single-mode approzimation are used to describe the spatially chaotic structures'.

!This Chapter corresponds to Frozen spatial chaos induced by boundaries, by V.M. Eguiluz, E.
Herndndez-Garcia, O. Piro, S. Balle, to appear in Phys. Rev. E (1999).
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4.1 Introduction

In the past few decades, considerable understanding of the phenomenon of temporal
chaos in dynamical systems of few degrees of freedom has been achieved [49, 50,
51]. On the other hand, spatio-temporal chaos in extended dynamical systems with
infinitely many degrees of freedom is currently under very active investigation[52, 53].
It is remarkable however, that an area of problems laying somehow between the
two extremes has not received so much attention, namely, purely spatial chaos as a
stationary attractor of extended dynamical systems [54, 55, 56, 57, 58, 59, 60, 61, 62].

The possible existence of this kind of attractors was first suggested by Ruelle
[63] in the context of equilibrium phases. He pointed out the parallelism between a
time-dependent differentiable dynamical system and the space dependence of equilib-
rium states in statistical mechanics. He then raised the question as to whether the
existence of turbulent crystals could be the natural next step towards complexity af-
ter spatially homogeneous, periodic, and quasi-periodic equilibrium phases have been
found. Newell and Pomeau [64] gave some conditions under which such a turbulent
crystal would exist in pattern-forming systems described by a free energy. Theoreti-
cal and experimental work on modulated phases and commensurate-incommensurate
transitions [65, 66, 67, 68] represent additional concrete results along these lines.

In the context of fluid dynamics, the existence of spatially chaotic, but temporally
steady solutions would also fill a conceptual gap between two well-studied complex
phenomena: Lagrangian chaos, and Eulerian chaos or turbulence. The former refers
to the chaotic motion of a fluid parcel which might occur even in laminar and, in three
dimensions, steady flows [69, 70, 71]. On the other extreme, the road to turbulence
is usually associated to a hierarchy of instabilities leading to increasingly spatio-
temporally chaotic Eulerian velocity fields. Frozen spatial chaos would then refer in
this context to a third possibility: a stationary flow spatially chaotic in the Euler
description.

By now, many extended dynamical systems displaying spatial chaos have been
identified. Most of the studies are concerned with one-dimensionally extended sys-
tems. They are specially suitable to analysis because their steady state configurations
depend just on the unique spatial coordinate. These configurations are solutions of
sets of ordinary differential equations (the spatial dynamical system) with the space
variable as the independent variable. The standard theory of low-dimensional dy-
namical systems can be used to describe such configurations, by just considering the
spatial coordinate as a fictitious time. Rigidly traveling waves with spatial chaotic
structure can also be considered as a case of spatial chaos in a moving reference frame
[56, 57, 58, 59, 60, 61].

Spatial chaos may appear when the spatial dynamical system has a sufficiently
high dimensional phase space. This high dimensionality may arise from either a)
the presence of high-order spatial derivatives in a single evolution equation as in
the cases of the Swift-Hohenberg equation [72, 73], and Kuramoto-Sivashinsky and
related models [58, 62], b) the coupling of several fields each one satisfying a lower
order differential equation as in excitable media [59, 60, 61] and in (the real and
imaginary parts of) the complex Ginzburg-Landau equation[56, 57] which supports
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chaotic travelling waves, or c) explicit space dependent forcing terms as in [54] or [74]

Consideration of two-dimensional spatial chaos has been much scarce. In ab-
sence of a simple connection with conventional dynamical systems theory, the very
concept of chaos in the spatial configuration should be properly defined for the gen-
eral two-dimensional case. A rather complete formalism generalizing dynamical sys-
tem tools (entropies, dimensions,...) to multidimensional spatial chaos has been
developed[55, 75], and some examples examined [55, 73]. On the other hand, as
the number of dimensions increases, a much larger variety of non-trivial boundary
condition classes surely leads to a greater richness in the expected properties of the
steady field configurations. A well-posed question is then whether relatively simple
boundary conditions may lead to steady spatially chaotic configurations. The main
purpose of this chapter is to address this question.

In addition to the existence of chaotic spatial configurations, it is important to
study also their stability in time. A stationary state will only be physically observ-
able if it is stable or at least long-lived. It turns out that the temporal stability of
the stationary solutions is in general unrelated to the stability of these configurations
considered as orbits of the spatial dynamical system. In the examples cited above,
there are cases of both stable and unstable space-chaotic configurations, but insta-
bility seems to be more frequent. As a consequence, spatial chaos has been generally
considered of limited physical relevance.

In this chapter we show that rather simple undulated strip-like domain shapes
can induce, in a very simple nonlinear extended dynamical system, the formation
of patterns that are both spatially chaotic and temporally attracting. The kind of
modulated boundaries we use could be easily implemented in standard experimental
pattern-formation set-up’s such as Faraday waves, convection cells, or open flows.
In fact, our work was originally motivated by the observation, in a fluid dynamics
experimental setup consisting of a periodic array of pipe bends, that the transverse
profile of the steady flow does not necessarily repeat itself with the same periodicity
of the array [70].

In Section 4.2 we present the particular model that we study and perform a prelim-
inary analysis of its behavior. In Section 4.3 a single-transverse-mode approximation
is introduced and we use it to predict the existence of boundary-induced spatial chaos.
Numerical simulations are presented in Section 4.4 to substantiate our claims beyond
the validity of the previous approximation. Finally we summarize the results and
open problems in the Conclusions.

4.2 A reaction-diffusion equation in a strip-shaped
domain
As stated before, the application of the theory of dynamical systems to the study

of stationary spatial configurations of one-dimensionally extended systems is direct.
A stationary pattern satisfies, in general, a system of ordinary differential equations
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with the spatial coordinate as its independent variable which we can think of as a
time. Parity symmetry in a spatial coordinate will appear as time-reversal symmetry
after reinterpretation of this coordinate as time.

The general study of spatial chaos in several spatial dimensions requires the no-
tion of translational dynamical systems with d times [55, 75]. There are situations,
however, where such formalism is not necessary because the two independent spatial
directions are distinguished by the geometry of the system, so that one of them nat-
urally plays the role of time. In this way, the spatial variation in one direction would
be interpreted as time evolution of a one-dimensional field that only depends on the
remaining spatial coordinate. Particularly suited to our approach will be the case
of two-dimensional extended systems in strip-shaped regions much longer (ideally in-
finite) in the time-like direction than in the space-like one. If the strip is narrow
enough, only patterns composed of one or few transverse spatial modes will be al-
lowed and spatial chaos could be readily defined and identified in terms of the usual
concepts of dynamical systems theory.

In order to concentrate on spatial chaos purely induced by boundary effects, we
consider a very simple model equation containing only up to second order derivatives
and a single field variable, a reaction-diffusion equation of the Fisher-Kolmogorov
type:

o) = V4 +ap —p* (4.1)

with appropriate boundary conditions for the real field ¢(x,t). The real linear coeffi-
cient a can be absorbed rescaling the variables, but we find convenient to keep it ex-
plicit in the equation. Equation (4.1) appears in several contexts including phase tran-
sitions, where it takes the name of real Ginzburg-Landau equation or time-dependent
Ginzburg-Landau model [76], and population dynamics [77]. The dynamics of (4.1)
can be written as purely relaxational [78, 79] in a functional Lyapunov potential V[¢]:

oY = —5‘5/—5/1] (4.2)
with 1 L o, 1.,
Vivl = [ ax (519012 = Su7 + 10t) + Sl] (13)

where the integral is over the domain D. The surface term S[¢] takes into account the
effects of boundary conditions over the domain limit, and it vanishes when periodic,
null Dirichlet (¢ = 0) or null Neumann (0,3 = 0) boundary conditions are speci-
fied. It follows from Eq. (4.2) that V can only decrease with time. The relaxational
character of Eq. (4.2) implies also that the only asymptotic states are fixed points.
Therefore, this model does not display any limit-cycle oscillations or more complex
dynamics such as temporal chaos in any number of spatial dimensions.

Equation (4.1) has been extensively studied in one and two dimensions. In one
dimension, for infinite systems, we have the following situations: For a < 0, ¥ =0 is
the only stationary solution and is stable under time evolution. At a = 0 a pitchfork
bifurcation occurs and the former trivial solution looses its stability. For a > 0 some
of the stationary solutions are the following:
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1. Homogeneous solutions: ¥ (x,t) = 0, and ¢ (z,t) = +y/a = ..
2. Kink type solutions: ¢(x,t) = i\/ﬁtanh(\/gx).

3. Periodic solutions: ¥ (z,t) = vVa — k%sin(kx) + ..., where the ellipsis stands for
higher order harmonics.

Only v and the kinks are now linearly stable.

For finite systems, the boundary conditions normally restrict the variety of solu-
tions either by selecting some values of k, or by favoring either the kink or the .
solutions. Additionally, the boundary conditions may have as an effect a shift in the
pitchfork bifurcation point ¢ = 0 to a different value a. # 0 and a change in the
coefficients appearing in the solutions.

The typical time evolution of initial field distributions leads to the formation of
domains where values of ¥ close to either ¥, or ¥_ dominate. These domains are
separated by kink- or anti-kink-type walls that can move into each other producing a
mutual annihilation. By this mechanism, small domains disappear and feed the larger
domains whose sizes then increase logarithmically in time until one of the stationary
solutions, prevailing by chance, takes over the whole system.

In two dimensions, the dynamics typically consists of the coarsening of domains of
¥, and 1_ phases whose typical size grows as the square root of time[76]. Interfaces
between the two phases are locally similar to the one-dimensional kink solutions. The
gradient term in Eq. (4.3) is important at the interfaces giving a positive contribution
to the Lyapunov potential. Since the dynamics always minimizes V, it tends to
reduce the length of these interfaces. This reduction is achieved by the shrinking and
ulterior collapse of the smallest domains to contribute to the (square-root) growth of
the remaining ones.

It was shown by Collet [80] in a more general context that the time evolution and
final states of Eq. (4.1) in finite domains are similar to those in an infinite system
except in a boundary layer around the border whose size depends on the a parameter.
This result holds in both one and two dimensions. Thus, in order to observe the
influence of boundaries on pattern evolution, we need to consider a domain small
enough at least in one of the directions. In a stripped domain, elongated in the x
direction, this small dimension will be the transverse y direction. The domain will
be limited in this transverse dimension by the boundaries yy(z) and y; (), where the
function 9 (z,y,t) will take values 9y(z) y 11(x), respectively (Dirichlet conditions).

In the one-dimensional case, conventional dynamical systems theory implies that
there are no chaotic stationary solutions to Eq. (4.1) because the spatial dynamical
system is just a second order ordinary differential equation. However, chaos can arise
if some z-dependent periodic forcing is added to the equation. These arguments do
not apply directly to the two-dimensional case. However, it is tempting to think of
undulations of the lateral boundaries as a kind of periodic forcing on the longitu-
dinal coordinate. This suggests the possibility of finding chaotic structures in the
z-direction induced by undulated boundaries.

As a particular case we consider domains limited by two sinusoidal boundaries.
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(@) (b)

Figure 4.1: Examples of stripped channels enclosed in oscillating walls: a = 27/\; dy = di,
and (a) ¢ =, (b) ¢ =0.

With applications to hydrodynamics in mind we think of these domains as channels
with sinusoidal banks.

yi(z) = %(1 — cos(ax)) (4.4)
wl(@) = —1-— %(1 + cos(az + ¢)) (4.5)

Here dq, dy are the amplitude of the undulation of each bank, « is the spatial
frequency which we assume to be the same for both banks and ¢ is their mutual
phase mismatch. Figure (4.1) shows a few typical shapes for our channel-like domains.
The case d; = dy and ¢ = 7 gives a sausage shaped channel with symmetrically and
sinusoidally varying width. On the other hand, d; = dy and ¢ = 0 sets the boundaries
in phase and corresponds to a domain with the form of a sinusoidally meandering
channel of constant y-width.

We stress that we want to consider the simplest situation that may display spatial
chaos. Consideration of more complex equations exhibiting spatial chaos even with
simple boundaries, or more complex boundaries such as incommensurate oscillations
for the upper and lower banks (corresponding to quasi-periodic forcing) would only
enrich the complexity of stationary solutions.

A complete definition of the model requires also the specification of boundary
conditions on the longitudinal x direction. The analogy with a temporal variable
would be better for domains infinite in the z direction, with only the weak requirement
of boundedness for 7). However, an infinite domain is inadequate for the numerical
approaches to be described below. In our calculations we would need to impose
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periodic boundary conditions (of period L) along the z direction. In this way we are
restricting the class of solutions to periodic orbits of period L or less in the time-
like coordinate. We will still be able to identify as spatially chaotic the configurations
that have the maximal period L, provided this period increases and the periodic orbit
approaches a chaotic trajectory as system size L increases. Subtle considerations
such as Lyapunov number computations for such limiting orbits will be addressed
elsewhere.

To perform numerical simulations we can choose between several strategies. If we
are only interested in stationary states, we can numerically solve the time-independent
version of Eq. (4.1) by means of finite elements or finite differences. These methods
can be implemented to find solutions that may or may not be stable under time
evolution. Another possibility is to follow the dynamics of the full Eq. (4.1) until
a stationary state is reached. In this way, only attracting (i.e. stable) stationary
solutions can be found (remind that only stationary attractors are allowed by this
purely relaxational dynamics). In any case, a convenient way to handle the boundary
conditions is to map the region limited by y¢(z) and y;(z) (and by z = 0,L) to a
rectangular one: §; = 1, gy = 0, and = = 0, L. For arbitrary functions yo(z) and
y1(z), the map (z,y) — (z,7), with

7=—v)/(y1— %) , (4.6)

transforms Eq. (4.1) into an equation for ¥ (z, §,t) = ¢(z, y, t):

O = ﬂ)+ F ()55 + G(2)050
H(x

)03 + ayp — P (4.7)
where

Fz) = H(Affy"””y (4.8)

Ga) = —ptel e (4.9

Alz) = yi(z) — wl(z) (4.11)

Aufa) = AG@) (1.12)

Murl) = T A@) (413)

Yoiz = %yo,l (4.14)

Here A(z) is the transverse distance between the boundaries and gives the width of
the strip. If this width does not vary along z, then A (z) =0 = A ().
The new transverse boundary conditions are

P(z, 5 =0)=h(z), P(z,§=1)=1(z). (4.15)
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A first observation is that the shape of the domain boundaries is reflected as

a parametric forcing of the equation in the new coordinates. For example, for the

simplest case of a meandering channel given by Eqs. (4.4) and (4.5) with ¢ = 0, and
Op = 05,00 + F(2)055% + G(2) o0

+ H(x)0 + ap — P (4.16)

1+ (dozsig(omc))2

F@) = —7ap (4.17)
G(z) = —da%(;m) (4.18)
M) — 22 oole) (4.19)

Setting the right hand side of Eq. (4.7) to zero in order to seek for stationary
solutions, and thinking of = as the time we can view Eq. (4.7) as a nonlinear evo-
lution equation for a one-dimensional field with a ‘time’-periodic parametric driving
due to the boundaries. Present knowledge on spatio-temporal chaos and pattern for-
mation can in principle be applied to analyze the behavior of this resulting evolution
equation. General results are not abundant, however. In the next Section further
approximations will be introduced in order to facilitate the analysis and establish the
existence of stationary spatially-chaotic solutions.

4.3 Single-transverse-mode approximation

For definiteness, in the rest of the chapter we will consider just null Dirichlet bound-
ary conditions, that is the field ¢ takes the value zero at the transverse boundaries:
Yo(x) = 1 (x) = 0. In this case our model in the form of Eq. (4.7) has the trivial solu-
tion 12(:1:, 7,t) = 0. The stability analysis of this solution for the case of a rectangular
domain of width [ leads to an eigenvalue problem for the linearized equation. For
a > a. = (7)? the eigenfunctions factorize into longitudinal (exp (ik,)) and trans-
verse (sin(k;7j)) modes: 9y x(, 7, 1) = exp(At) exp(ik,x) sin(k;7), with k; = Tm,m =
1,2,..., ky real, X satisfying the dispersion relation A = a — k?, and k* = k2 + k7.
The unstable modes are then those satisfying the condition ¥?> < a. The first un-
stable mode corresponds to (kz, k3) = (0, 7), which becomes unstable at the critical
value a. = (§)?. The transverse modes are discretized in multiples of 7 due to the
boundary condition. If in addition, we require L-periodicity in the longitudinal coor-
dinate x, k, will be also discrete, but provided that L > [ this discretization will be
much finer than the transverse one. The value of the parameter a controls how many
modes are linearly unstable. If the transverse size [ is small enough for the control
parameter to satisfy the condition (%)? < a < (#%)2, there would be just one linearly

unstable transverse mode, with many associated longitudinal unstable modes. Close
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enough to the instability threshold, we can try an approximate solution of the form
U(zx,7,t) = Az, t)sin(rj) and write an evolution equation for the amplitude A(z, t)
of the first transverse mode.

We are interested however in a domain which is not a rectangular strip but a
undulated channel. The coordinate change bringing our domain into a rectangular
one renders the variables non-separable and the linear problem is no longer solvable
analytically. However, for small deviations from the uniform channel a perturbation
scheme can be used. In the same vein as in the preceding paragraph we try, for our
undulated domain, the ansatz ¢(z, 7, t) = A(z, ) sin(7) + O(dy, dy ), assuming that
a is close to the threshold imposed by the small [, and that the size of the channel
undulations is small. We call this approach a single-transverse-mode approximation
(STMA).

Projecting Eq. (4.7) onto the single transverse mode present in the ansatz and
neglecting higher order contributions we get the following evolution equation for the
amplitude A:

0, A = 82 A+ B(2) A + w?(2) A — %A‘”‘ (4.20)
where A
B(z) = N (4.21)
and
ADgy — 202 [7\2
w’(z) =a —opnz (Z) (1 + Y12Yoz)
2 5?
(2% - 3) = (4.22)

We have checked that a more rigorous, but lengthy, approach based on a multiple
scale expansion leads to the same result? . The stationary patterns satisfy the time
independent version of Eq. (4.20). In terms of the coordinate x considered as a
time, one can view this spatial dynamical system as a parametrically forced nonlinear
oscillator: domain undulations provide a periodic driving on the frequency of the
system w?(x). In turn, 3(z) is a “dissipation” term which can be positive or negative
depending on z. This z-modulation of 5 comes from the longitudinal variation of the
vertical width. The integral of the “dissipation” §(x) on one period of the oscillating

boundaries T = 2r/a is [2°*7 B(z)dz = In Aéc(:ﬁ)T) = 0. This shows that although

system (4.20) is locally dissipative, it is effectively conservative over one period of the
modulation. This implies, in particular, that the stroboscopic map associated with
the system (4.20) is area preserving.

In the general case, Eq. (4.20) can be simplified by removing the dissipation term
with the change: A(z,t) = exp (—%fﬁ(m)dm) p(xz,t) = p(x,t)/+/A(x). The new
equation reads:

3
Op = 0Opp+Q(2)p — EP?’ (4.23)

2For similar multiple scale analysis applied to fluid flows in a varying curved channel, see e.g.
[81]
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2 +3
12

T\ 2
02 = a— (K) (1 4+ Y12Yoz) — B . (4.24)

A particular case occurs when the transverse distance between the two channel
borders does not vary along the longitudinal direction, so that the dissipation term
vanishes identically, i. e. f(z) = 0. For the sinusoidal channel this happens when

¢ =0 and dy = d; = d (Fig. 4.1b). In this case, the amplitude equation is reduced to

OA =02, A+ W (z)A — ZA3 (4.25)
with ,
2 T \*_ _(mde)” o,
_ N _ 4.2
v (1 n d) 1z en) (4.26)

When 0,A =0, (4.25) is a dissipative Mathieu equation modified by the addition of a
cubic nonlinear term or, equivalently, a parametrically forced Duffing oscillator. This
equation is known to have chaotic solutions [82].

The general time-independent case of Eq. (4.20) [or Eq. (4.23)] reads:
3
OpeA = —w? (1) A + ZA?’ — B(z)0,A . (4.27)

In the absence of undulations (dy = d; = 0) parametric forcing and dissipation
vanish and the equation is both Hamiltonian and integrable. It has a region in phase
space (A, A;) close to the origin where motion is bounded and regular. Beyond the
separatrices of the two saddle points (A, A,) = £2/v/3(a — 72, 0), trajectories escape
to infinity. When undulations are introduced, separatrices of the saddle points deform
and may cross. It is well known that for perturbed Hamiltonian systems, separatrix
intersections indicate the onset of chaos. In our system, in addition to chaotic bounded
trajectories, separatrix intersections lead also to fractalization of the phase-space
boundary dividing bounded and unbounded trajectories. Melnikov theory provide
us with the tools to determine analytically the necessary conditions for separatrix
intersection and the occurrence of chaos. Following [82], the Melnikov function M (#)
can be calculated for small d. For example, in the case ¢ = 7, dy = d; = d one finds:

M(0) = f(a,a)sin(af) . (4.28)

The fact that the function M (@) has zeros as a function of # indicates that separatrix
intersection and chaotic behavior occur. Chaotic behavior appears for arbitrarily
small sizes of the channel undulations. We expect similar behavior to occur for other
values of ¢, dy and d;.

To illustrate the chaotic behavior of the stationary STMA (4.27) we show in
Fig. (4.2a) its numerical stroboscopic map. The dots are values of (A, A,) at mul-
tiples of the forcing period T = 27/« for a set of initial conditions. Several regions
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Figure 4.2: (a) Stroboscopic Poincaré map of the phase space of the system (4.27) for
the values dg = d1 = 1, a = 2w, a = 17, ¢ = w. KAM tori and chaotic trajectories
inbetween are clearly seen. The arrow indicates the approximate location of the fractal
boundary separating bounded and unbounded trajectories. (b) The chaotic configuration
corresponding to the cloud of points surrounding the origin in the stroboscopic map.
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Figure 4.3: Stationary solution of the STMA (4.20) compared to a fully two-dimensional
simulation of (4.1) for the parameter values dy = d; = 0.1, « = 7, a = 10, ¢ = 7. a)
Stationary solution A(z) of the STMA (dotted) and the on-axis values of the actual two-
dimensional stationary solution ¥ (z,y = 0) (solid). b) The full two-dimensional solution of
(4.1) represented on a gray-scale. White corresponds to the highest values of 1) and black
to the lowest. c¢) Reconstruction of the two-dimensional field from the STMA (¢(z,y) =
A(z) sin(7g)) on the same gray-scale as in b).
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dominated by chaotic trajectories and separated by KAM tori (the closed curves cor-
responding to quasi-periodic solutions) are clearly recognized in the picture. Also, the
approximate location of the fractal boundary separating bounded trajectories from
those escaping to infinity is pointed by an arrow. Melnikov analysis also implies the
existence of a dense set of unstable periodic orbits in the vicinity of the separatrix
intersection on both sides of the fractal boundary mentioned before. These periodic
orbits and the fact that they constitute a skeleton of the chaotic trajectories, are im-
portant for our analysis because the periodic boundary conditions in the z-direction
select them out from the uncountable many other possible solutions of Eq. (4.27).

4.4 Numerical STMA and two-dimensional time-
integrations

In the previous section, we have shown both analitically and numerically that simple
undulated boundaries may induce spatially chaotic steady solutions in our simple
model (4.20). In this section, we discuss the accuracy and range of validity of the
STMA and the physical relevance of its solutions by comparing with the numerical
integration of the full model (4.1).

In the first place, we discuss the results of such integration for the particular case
¢ = m and dy = d; = d. Starting from random initial conditions the system, af-
ter a time long enough, settles in a disordered stationary configuration, as shown in
Fig. (4.3). There we present the stationary configuration A(z) = A(x,t — 00) ob-
tained by direct integration of Eq. (4.20). In the same plot, a longitudinal cross section
of the asymptotic field obtained from a simulation with the full two-dimensional model
is shown for comparison. We use as the initial condition of the two-dimensional prob-
lem the solution from the STMA for the same parameter values, ¢ = A(z) sin(7g),
to provide an approximate stationary solution to Eq. (4.1). After a short time of
adjustment, the system settles in a stationary state that is very close to the initial
approximation. The full two-dimensional field and its reconstruction from the STMA
are also shown in Figs. (4.3b) and (4.3c), respectively. This figure reveals a strik-
ingly accurate fit of the STMA solution and the complete field simulation, a strong
indication of the validity of the approximation as a tool for analysis. The maximum
absolute error of the approximate solution is of the same order of magnitude in both
the undulated channel and a rectangular-domain test-case. This suggests that the
error is mainly due to the truncation at the first linear transverse mode, but not to
the peculiarities of the curved boundaries.

The accuracy of the STMA, A(z,t)sin(7y), breaks down when the channel width
increases or when strongly non rectangular domains are considered. Nevertheless, we
have also performed direct simulations of Eq. (4.1) for this last case. An example
of the typical behavior is shown Fig. (4.4) for boundaries defined by dy = d; = 1.0,
a =m, a =20, » = w. Notice that the resulting stationary configuration displays
the same qualitative features of the STMA solutions: disordered distribution of kinks
randomly pinned at some of the narrows of the channel. This is an evidence of the fact
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that undulating boundaries may also be the source of stationary spatial chaos in a
two-dimensional system (4.1) beyond the regime well described by a single transversal
mode.

The results in Figs. (4.3) and (4.4) illustrate the physical mechanism behind the
emergence of spatial chaos in our system. Let us remember that Eq. (4.1) evolves to
minimize the potential (4.3). This minimization requires to reduce as much as possible
the length of the interfaces between 1, and ¢ . Following this tendency, an interface
that links the opossite lateral banks of the channel and is far from any other interface
will evolve to lock into one of the narrows of the channel, where it is shorter than
in any other position. Detaching the interface from the bank of the channel would
imply a temporary increase of the potential V' due to the necesary proliferation of
new interfaces. Such a potential increase is not allowed by the dynamics. Hence,
the random occupation (arising from random initial conditions) of the narrows of
the channel by kinks and anti-kinks finally builds up a spatially chaotic stationary
configuration. This argument, based on kink and interface dynamics, clearly applies
beyond the range of validity of the STMA, where we have analytically established
the existence of spatial chaos, as evidenced in Fig. (4.4). With this mechanism in
mind, we can also conclude that not all the chaotic trajectories presented in Fig. (4.2)
will lead to spatial chaos stable in time: only those corresponding to an energetically
favorable (a local minima of the potential V') distribution of kinks will be reached
under time evolution. In particular the trajectory plotted in Fig. (4.2b) corresponds
to a temporally unstable configuration.

Let us now try to get further insight about the chaotic nature of the irregular
spatial structures described above. Periodic boundary conditions in the longitudinal
direction always force the system to converge not to a chaotic spatial configuration,
but to a periodic one wich we have shown it may very well be of the maximal period.
To justify the use of the chaotic qualifier we need to show that as the size of the system
increases, these periodic configurations approach one that could be characterized as
chaotic in some way. Of course, to numerically carry out this process we would need
to consider very long channels. Unfortunately though, performing direct simulations
on the fully two-dimensional model soon becomes computationally prohibitive as the
number of the channel undulations increases. However, having demonstrated that
the STMA accurately describes the qualitative features of the full model, we can
concentrate our attention on the behavior of the approximate model Eq. (4.20).

In Fig. (4.5) we summarize the results from the numerical integration of Eq. (4.20)
using the same parameter values as in Fig. (4.3) with the exception of the domain
size which now is much larger. An asymptotically stable configuration is shown in
a) while c) displays the projection of the trajectory in phase space (A, A;). The
power spectrum of A(z) plotted in Fig. (4.5b) shows the typical broadband feature
characteristic of chaotic trajectories. As a further indication of the (aproximately)
chaotic nature of this configuration, we have shown in Fig. (4.6) the stroboscopic map
constructed from the trajectory in Fig. (4.5). taking phase space points at ‘times’
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Figure 4.4: Two-dimensional steady state obtained by simulation of the system (4.1) start-
ing from random initial conditions. The amplitude of the field on the channel axis is shown
in the lowest panel. Parameter values: d = 1.0, a = 7, a = 20, ¢ = 7.
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Figure 4.5: One-dimensional solution of the system (4.20) showing a steady chaotic con-
figuration, its spatial power spectrum, the trajectory in the projected phase space (A4, A;),
and the time evolution of the Lyapunov functional, showing that this is an attracting con-
figuration. Parameter values as in Fig. (4.3), but for a longer system

integer multiples of 7. This map reveals an incipient self-similar fractal structure,
also common in chaotic trajectories. All these facts together give compealing evidence
that the trajectory, although L-periodic by construction, develops chaotic features as
system size increases.

Finally, as an illustrative measure of the asymptotic stability of this solution,
Fig. (4.5d) displays the value of the Lyapunov potential V[¢)] evaluated along the
time evolution of the field ¥(z,7,t) = A(z,t)sin(rj). The functional decreases in
time, confirming the consistency of the STMA with the exact dynamics of Eq. (4.2),
and the potential asymptotically approaches a constant value indicating that the field
has reached a local minimum of V.

4.5 Conclusions

We have given evidence of the existence of stationary, stable, longitudinally chaotic
spatial configurations induced by undulated boundaries in a simple two-dimensional
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Figure 4.6: Stroboscopic map of the trajectory shown in Fig. (4.5). Two succesive ampli-
fications are shown, displaying a self-similar structure typical of a fractal.

reaction-diffusion model that does not otherwise display any kind of chaos. We
have demonstrated that these type of boundaries can be convincingly mapped into
spatially-periodic parametric modulations in a one-dimensional approximation to the
original system. In a dynamical systems approach to the study of stationary solu-
tions, these modulations play the role of a temporal time-periodic forcing capable to
drive a nonlinear second-order ODE into chaotic behavior. The diffusive character
of our original model ensures precisely that the relevant ODE is in fact, second or-
der and that the presence of chaotic stationary solutions is expected at this level of
approximation. Previous results exist[54, 73, 74| showing that spatial periodic mod-
ulation of some parameters intrinsic to the dynamics may originate spatial chaos in
relatively simple reaction diffusion models. However, to our knowledge, the present
is the first example in which an straightforward dynamical systems approach is used
to establish the existence of disorder in two-dimensional systems due to the influence
of the boundaries.
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The consequence of our analysis is that chaotic configurations should exist in vir-
tually any of the experimental systems commonly used to study pattern formation,
provided that boundary conditions such as those studied here are imposed. The
stability of these chaotic configurations should be discussed in each particular case.
While in our model stability comes from the tendency of the dynamics to minimize
(4.3) therefore minimizing interface lengths and leading to pinning of these interfaces
to the narrows of the channel, the mechanism for stability in other systems may be
different. Apart from the direct application to pattern forming systems, the idea of
boundary-generated spatial chaos could be speculatively transferred to other non-
linear extended dynamical systems of interest. For example, it is possible that low
Reynolds number fluid flows through a space-periodically perturbed pipeline or even
through a realistic channel of shape similar to the ones considered here can display
frozen spatial chaos [70]. A numerical search for this manifestation of “frozen turbu-
lence” at the level of Navier-Stokes equations is currently in progress. We expect this
observation to promote also experimental work both in the area of pattern formation
and in hydrodynamics.
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Time averages of spatio-temporal
chaos: a boundary effect

Chaotic pattern dynamics in Faraday waves, in rotating thermal convection, and in
electroconvection, show ordered time averages. We suggest a simple universal mech-
anism underlying this phenomenon, here examplified by the Kuramoto-Sivashinsky
equation in a bounded domain. In agreement with erperimental observations, time-
averaged patterns obtained from the Kuramoto-Sivashinsky equation recover global
symmetries broken locally by the chaotic fluctuations, and the averaged amplitude is
strongest at the boundaries and decays with increasing distance to them. The law
of decay is found and explained. The wavenumber selected by the average pattern is
obtained as a function of system size and the different behavior observed between the
central and boundary regions is discussed".

1 This Chapter corresponds to Time averages of spatio-temporal chaos: a boundary effect, by V.M.
Eguiluz, P. Alstrgm, E. Herndndez-Garcia and O. Piro, Phys. Rev. E 59, 2822 (1999).
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5.1 Introduction

Beginning with Poincaré [83, 84, 85] and after the re-discovery of the theory to the
physicists by Lorenz [86], more than thirty years ago, and subsequently by Ruelle and
Takens [87], in the seventies, much effort has been dedicated towards the development
of the Theory of Dynamical Systems. Nowadays, this Theory is quite well established
even though its frontiers are still growing. However, in the last decades a lot of
work has been dedicated to the understanding of extended dynamical systems. This
represents a shift of the focus from the study of the evolution of one quantity (or a
few) to the evolution in time of a spatially extended field. The evolution equations
for the former case are a set of ordinary differential equations, while for a field we
need in general, partial differential equations. Since a field is a function of the point x
within a continuous domain, such evolution equations represent infinite dimensional
dynamical systems. This radical change in focus has been made possible in part by
the tremendous growth in computational power during the recent years which allows
us to deal with infinite dimensional systems. Numerical simulations are intended to
provide us with a first insight in the dynamics of the systems, but sometimes they
become the only available tool due to the difficulty of the analytical approach.

An important issue in the theory of dynamical systems is the appearance of chaos.
A chaotic regime is roughly characterized by the divergence of initially close trajecto-
ries. Initial conditions that differ very little, can have an absolutely different evolution.
The analogue of chaos in the extended case is spatio-temporal chaos, where the solu-
tions are not only chaotic in time but they are also disordered in space. In this thesis
we concentrate on systems that show some kind of spatio-temporal chaotic regime.

In order to bridge simulations to analysis, it is important to concentrate on the
behavior of very simple model equations with the hope that universality can make
relevant these results. However, the need of simplified models also steams from the
computational limitations. When dealing with simplified theoretical models, it is
not a trivial question how we can compare the theoretical results to experiments in
order to validate the models. The problem is that many of the available theoretical
predictions in the literature are not accessible to the experimental work, and viceversa.
For example, Lyapunov exponents can be calculated numerically and analytically in
many situations. However, the practical measurements of phase-space quantities in
experiments have faced great problems when the number of degrees of freedom is
moderately large [88]. In this context, it seems reasonable to expect that a statistical
approach could fill this gap between models and experiments.

Following a suggestion by Golubitsky [89], several experimenters have investigated
the behavior of time averages of chaotic wave patterns. At the beginning researchers
did not pay much attention to the temporal average of extended fields. On the one
hand, when one is doing numerical simulations one easy way to avoid complications
is to take periodic boundary conditions, to make the theoretical analysis and the
implementation of the numerics much simpler to carry. In these circumstances, and
if the evolution equations have translational symmetry, all the points are equivalent,
and on average all will have the same value. Thus, the temporal average does not
show any spatial structure, the average is a constant function in such cases. On the
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other hand, it is usually assumed that the boundaries only affect a region close to
them so that if the domain is big enough the bulk dynamics is not be affected by the
boundaries. However these two assumptions do not apply when imposing boundary
conditions that break the translation symmetry (e.g Dirichlet boundary conditions,
where a value of a field is specified at the boundary) and moderate domain sizes.
There are situations in which the translation symmetry is spontaneously broken (e.g.
Rayleigh-Bénard convection), but this case will be not studied here.

The measurements of the average were done first on the Faraday experiment where
an open container filled with a fluid is shaken vertically. This system first undergoes
a transition from a flat surface to an ordered structure (usually an oscillating square
pattern) when the amplitude is increased. When the amplitude is further increased,
a spatio-temporally chaotic regime is reached. The time averages were done in this
regime. The results are in some way surprising, since a structured pattern is recovered
on average. The symmetries of this pattern are related to the global symmetries of
both the container and the evolution equations, rather than to the local symmetries.

However, so far no complete theoretical explanation for this phenomenon was
given. The purpose of this work is to present a universal mechanism to explain for
this effect. We will show that all we need to reproduce the same behavior found in
the experiments is the co-existence of spatio-temporal chaotic regimes and boundary
conditions that break the translational symmetry. Our program consists of performing
simulations on a generic model of spatio-temporal chaos, the Kuramoto-Sivashinsky
equation, subject to different types of boundary conditions. We present results about
the time average for these conditions and for several system sizes, and we study how
the number of oscillations, wave lengths of the patterns, and amplitudes depend on
the system size.

In the following Section, we present previous experimental results, where time
averages on a spatio-temporal chaotic regime give a structured pattern. We will
concentrate mainly on the Faraday instability, but similar results have been also
found for other systems. In the last Section of this Chapter we present our results on
time averages of the Kuramoto-Sivashinsky equation [90].
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5.2 Previous results

Many investigators concerned with patterns in non-equilibrium systems have turned
their attention to the problem of spatio-temporal chaos. Roughly speaking, the con-
cern here is with situations in which the range of spatial correlations is small com-
pared to at least one dimension of the system. Given the remarkable progress made
in analyzing (a) the chaotic behavior of small systems with only a few degrees of
freedom, and (b) the steady patterns of extended non-equilibrium systems, it is nat-
ural to try to extend the relevant concepts to chaotic extended systems. Indeed, a
major body of experimental literature has appeared on a great variety of systems,
including Rayleigh-Bénard convection [91, 92, 93], rotating convection [94, 52|, Tur-
ing patterns [95], parametrically excited surface waves [96, 97], convection in nematic
liquid crystals [98, 99, 100, 101], binary mixtures [102, 103], rotating films [104], and
Taylor-Couette flow [105].

In parallel with this experimental work, there has been a considerable numerical
and a analytical effort, much of it directed at model equations such as the complex
Ginzburg-Landau equation, which is believed to provide a plausible approximation to
the physics for some systems in which spatio-temporal chaos occurs close to the onset
of the basic pattern. The Kuramoto-Sivashinsky equation has provided another ap-
proach to modeling, as have provided coupled map lattices and other discrete models.
The theoretical work is now so extensive and diverse that it is impossible to reference
adequately; it is thoroughly discussed in a lengthy review by Cross and Hohenberg
[53].

An alternative approach to the dynamical systems methods is using the basic sta-
tistical character of the phenomena, despite their deterministic origin [106]. Experi-
mental studies of the chaotic pattern dynamics in Faraday waves [9, 107], in rotating
thermal convection [108], and in electro-convection [109], reveal that spatio-temporal
complex patterns can have surprisingly ordered time averages. The form of these
average patterns (square, circular, hexagonal) is determined by the underlying sym-
metry [89, 110, 111, 112] imposed by the boundary conditions. It is shown that the
instantaneous images present locally a determined symmetry that does not depend
on the global symmetry of the container. Compare for example Fig. 5.3.b and 5.4.b.
Taken an instantaneous image only from the central region of the rectangular domain
and another from the circular one, they are indistinguishable, i.e. it is not possible
to decide what picture corresponds to what boundary. Experimental observations
lead to the conclusion that although the instantaneous patterns fluctuate chaotically
in time, they are biased towards an average pattern because they have short-lived
patches spatially in phase with this average. Thus, there are some regions that are
in phase with the average for a short period of time, and the rest of the regions are
not correlated with the average pattern. These patches-in-phase appear in different
places of the container at different times and, in average, give rise to the structure of
the time averaged pattern. This phase rigidity seems to come from the boundaries.
The amplitude of the time-averaged pattern depends on the system size and control
parameters. It is strongest near the sidewalls, and decays with increasing distance
from the sidewalls and with increasing fluctuations about the ordered averaged state.
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Figure 5.1: Instantaneous (left) and time-averaged (right) shadowgraphs of interfacial wave
patterns in a circular cell. these chaotic Faraday wave patterns are produced by a vertical
oscillation of the cell at 81 Hz, with a driving amplitude 40% above that required for the
wave onset. The structured average pattern indicates a significant degree of phase rigidity
despite the spatio-temporal chaos.(From [113])

For very large containers the ordered average pattern exists only near the sidewalls.

We suggest a simple universal mechanism underlying this phenomenon, here ex-
emplified by the Kuramoto-Sivashinsky equation in a bounded domain. In agreement
with experimental observations, time-averaged patterns obtained from the Kuramoto-
Sivashinsky equation recover global symmetries broken locally by the chaotic fluctu-
ations, and the averaged amplitude is strongest at the boundaries and decays with
increasing distance to them. The law of decay is found and explained. The wave num-
ber selected by the average pattern is obtained as a function of system size and the
different behavior observed between the central and boundary regions is discussed.

In the following, we describe experimental results on average patterns. For sim-
plicity we will focus on the Faraday experiment, but similar results apply to other
experimental systems.

5.2.1 Faraday waves.

When a fluid layer with a free surface is subjected to a vertical oscillation of amplitude
A greater than a critical value A, it is unstable with respect to interfacial standing
waves. This instability was first studied and described by Faraday [114] and Lord
Rayleigh [115]; the linear stability theory was developed by Benjamin and Ursell [116].
This instability of the surface is of the parametric type (in the sense that the external
forcing appears as a modulation of the parameters, in this case the acceleration of the
gravity ) and, consequently, it is usually called parametrically driven surface waves.

Under some assumptions, the linearized equations of motion reduce to the stan-
dard form of the Mathieu equation. The solution has stability tongues in the pa-
rameter space defined by drive acceleration vs wave number. The wave frequencies
w within the tongues occur at w = n{2/2 where 2 is the drive frequency and n is
a positive integer. The n = 1 sub-harmonic response is selected due to its lower
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Figure 5.2: Mean wave number of the average pattern, showing the phenomenon of statis-
tical quantization.(From [113])

threshold, after the effect of viscous dissipation is included in the theory. Thus, the
frequency of the standing waves is half the driving frequency.

Patterns of various symmetries have been observed in large aspect ratio systems
(large lateral size of the fluid layer compared to the wave length of the waves) de-
pending on the driving frequency and fluid properties (viscosity, surface tension and
density). One typically observes patterns of standing waves (parallel stripe patterns),
two waves at a 90° angle (square patterns); it is only in recent years that a vari-
ety of additional patterns -some with quasi-periodic rather than periodic long range
order- have been observed, as for example, hexagonal, eightfold and tenfold patterns
[118, 119]. For example, the case of square pattern could be expressed as

((z,y) = a[cos(kzx) + cos(ky)] , (5.1)

where the local surface height is denoted by h(z,y,t) = ((z,y)sin(wt), plus higher
harmonics. In the linear approximation, the waves obey a dispersion relation, which
relates the wave frequency w to their wave number &

w” = [gk + ;/@ | tanh(xh) (5.2)

where ¢ is the surface tension, p is the fluid density, g is the local gravitational
constant, and h is the mean fluid depth. For a deep fluid (h — o0) the relation
simplifies to

w? = Zi3 + g (5.3)
p

For long wavelengths, i.e. for small wave numbers (as long as the approximation
tanh(kh) &~ 1 remains valid), the gravitational force on the displaced fluid (displaced
away from the flat surface, equilibrium) acts as the restoring force of the wave. In
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(a)

(b)
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Figure 5.3: Instantaneous and time-averaged images for square geometry. (a) Shadowgraph
image of the time-independent wave pattern near onset (¢ = 0.05). The wave pattern is
approximately a mixed mode with mode numbers (29,6). (b) Instantaneous image of a
chaotic pattern (¢ = 0.10). (c) Time average over 12 800 images (¢ = 1.0). the average
reveals the probability distribution of antinode positions. High intensities are shown dark.
(From [117])



66 Time averages

(a)

{b}

Figure 5.4: The instantaneous and time average for circular geometry. (a) Shadowgraph
image of time-independent wave pattern near onset (¢ = 0.01). (b) Instantaneous image of
a chaotic pattern. (c) Time average over 12 800 images (¢ = 0.5). (From [117])
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Figure 5.5: Instantaneous [(a) and (c)] and time-averaged [(b) and (d)] images in a cell
with ellipticity 0.02. [(a) and (b)] € = 0.15; [(c) and (d)] € = 0.50. The asymmetry of the
resultant image is amplified at the lower drive amplitude, and is less pronounced at higher
e. (From [117])

that case the first term in (5.2) dominates. Such waves are called gravity waves.
w? = gk. (5.4)

In the opposite case of short wavelengths, the effect of gravity can be neglected, and
the restoring force due to the surface tension dominates, i.e. the second term of (5.2)
dominates. For these waves, called capillary waves, the dispersion relation is

2_ 9 3

w pli . (5.5)
When the amplitude A is slightly increased, the surface pattern becomes some-
what disordered by the occurrence of moving defects. These defects result from the
transverse amplitude modulational (TAM) instability. For example, for water this
happens at such a small increase of A that, in reality, a perfect square pattern is
not seen. Nonlinear wave interactions become important and the defects dominate.
The wave pattern becomes random in appearance and the flow is spatio-temporally
chaotic. However, on time averaging the motion of the surface over many oscillation
periods, the square pattern remains discernible. This indicates that the long-range

correlations of the capillary waves are not destroyed.
It is worth noting that the wavelength selected in the first instability can be
changed varying the frequency of oscillation w, thus changing at the same time the
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Figure 5.6: Enhanced time-averaged image observed in a triangular cell (e = 1.5). (From

[117])

aspect ratio I' = %, being A = 27” Changing the container or the fluid is thus not
needed in order to change the aspect ratio. The second important aspect we want
to stress is that the control parameter is given by the amplitude of acceleration. For
a harmonic oscillation of amplitude A and frequency w, it is @ = Aw?. Once the
frequency is selected, the control parameter is simply the amplitude of oscillation A.
It is useful to define the distance to threshold as € = %, where a. corresponds to
the critical amplitude of instability.

The experimental method to get the instantaneous images is based on screenless
shadowgraph optics [120]. Basically, a collimated beam of white light is sent vertically
from below trough the fluid surface. The light is collected and imaged onto a video
camera. The resulting images are bright only where the local surface slope is close to
zero. The condition for a ray to reach the camera is | B | < A, where E = V(, all other
rays being lost. It is important to note that the instantaneous optical images obtained
with this technique are not linear in the surface wave field. The images are sharply
peaked functions which highlight the local extrema of the surface. An algorithm that

approximates this optics is given by the following formula:
I(%,t) = IyA*/(A* + B%) (5.6)
where 82 =3 - 3.

5.2.2 Experimental observations

As stated before, our interest is focused on the time average of the wave patterns
in the spatio-temporal chaotic regime. The main results of these experiments are
summarized in the figures. The most striking observation is that structure is found
in the time-averaged images of chaotic wave patterns.

e The symmetry of the average patterns is determined by the symmetry of the
boundaries, despite the fact that the instantaneous patterns are similar, as
explained in page 8. See Fig. (5.1,5.3-5.6)
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Figure 5.7: Rotating thermal convection. The instantaneous (left) and time-averaged
(right) pattern in rotating Rayleigh-Bénard convection in (a) a cylindrical container and
e = 0.053 with water; (b) hexagonal container and ¢ = 0.08 with carbon dioxide. (From
[108])

e The system continually fluctuates about the mean, but never becomes fully
ordered.

e The amplitude of the average image is a decreasing function of the degree of
disorder in the instantaneous pattern; as the drive amplitude is increased, the
contrast in the average images decreases.

e The profile of the average pattern is oscillatory and thus, the number of oscil-
lations for a given parameters is an integer. This number of oscillations has
the same value for a range of the control parameters but suddenly jumps to the
next integer when a new oscillation appears. The jumps correspond to integral
changes of the total phase difference of the base pattern across the cell. This
magnitude is plotted in Fig. (5.2), where the number of oscillations is the wave
number ¢ divided by the length L of the domain. The mean wave number of
the average images is observed to have non-hysteric jumps as a function of drive
frequency.

e Not only these features apply to the Faraday experiment, but very similar results
have been obtained in rotating thermal convection [108] (see Fig. (5.7,5.8)) and
electro-convection [109]. Thus giving some clue about a universal signature.

Given the general features of average patterns suggested by experiments, it seems
surprising that their possible existence and characterization have not been addressed
within the standard model equations displaying spatio-temporal chaotic states [53].
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Figure 5.8: The instantaneous (top) and time-averaged (bottom) patterns in rotating
Rayleigh-Bénard convection in a cylindrical container, € = 0.10 with CO4. The time average
is obtained from 720 images. Note that the local orientation of the rolls close to the
boundaries is perpendicular in the instantaneous image and they form concentring rings in
the average. (From [108])

One possible reason for this is that periodic boundary conditions are usually con-
sidered in theoretical studies. In such situation spatial translational invariance ho-
mogenizes out any time average (unless some unexpected ergodicity breaking takes
place). Boundary conditions breaking translational symmetry, as in the experiments,
are thus needed to obtain nontrivial average patterns. Motivated by this fact, in the
next chapter we will consider the Kuramoto-Sivashinsky equation, one of the proto-
type equations showing spatio-temporal chaos, in bounded one and two dimensional
domains.
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5.3 Time averages on the Kuramoto-Sivashinsky
equation

In this chapter, we will consider the Kuramoto-Sivashinsky equation, one of the pro-
totype equations showing spatio-temporal chaos, in bounded one and two dimensional
domains. We show that ordered average patterns do appear, despite the strong fluctu-
ations, and we discuss the universal aspects of wave number selection and amplitude
variations. More directly, our analysis of average patterns may be relevant and sug-
gestive for experiments on phase turbulence in convection cells [121], fluids flowing
down an inclined wall [122], and flame front propagation [123, 124].

5.3.1 The Kuramoto-Sivashinsky equation.

The Kuramoto-Sivashinsky equation [121, 125] is perhaps the simplest partial
differential equation exhibiting spatio-temporal chaos. The mechanism for generating
the chaotic behavior is the combination of a linear instability and a nonlinear term
which tends to bring energy from the long wave length modes to the small wave length
modes where it is dissipated. The linear instability is responsible for creating ‘cells’
with lengths centered around the maximally unstable scale and the nonlinear term
causes ‘tip splitting’ of large cells with subsequent squeezing out of small cells. The
equation in one dimension has the form:

where h = h(z,t) is a real function, = € [0, L], and the subscripts stand for derivatives.
In two dimensions the spatial derivative is replaced by a gradient and the second
derivative by a Laplacian. The only control parameter for the equation is the length
of the domain L; prefactors to the terms in Eq. (5.7) can be scaled out. It is shown
to describe the temporal phase of coupled chemical oscillators [121]. Tt also describes
the behavior of other extended pattern forming systems, such as flame fronts [125]
and fluid interfaces [122]. An equivalent equation for v = h, can be obtained by
taking the derivative of Eq. (5.7) with respect to z,

Up = —Ugy — Ugggs + 2UU . (5.8)

In this form the model is reminiscent of the Burgers equation, but in contrast with
the Burgers equation, it displays a sustained chaotic behavior.

Equation (5.7) possesses translational symmetries (h — h + ho, £ — = + Zo)
a reflexion symmetry (h — h, £ — —z), and an infinitesimal Galilean symmetry
(x = =+ 2vt, h — h + vz). The asymmetry of the equation under h — —h
induces growth of h predominately in one direction (that depends on the sign of the
nonlinear term). In large systems with homogeneous initial conditions the system
evolves to an ‘equilibrium’ state in which the interface, in the case of flame fronts or
fluid interfaces, moves upward (or downward, depending on the sign of the nonlinear
term) with a constant velocity and with fluctuations of a typical width proportional
to VL. Equation (5.8) is also invariant under translations (v — u, z —  + )
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Figure 5.9:
Dispersion relation for the Kuramoto-Sivashinsky equation. The mode corresponding to
kg is the one with maximum linear growth.

and under a Galilean symmetry . A different reflexion symmetry is valid in this case
(u — —u, T — —x).

As an example, we will present what we mean by a Galilean invariance of u (z — = + 2vt,
u — u + v). The corresponding change of variables is

r = z42ut (5.9)

' = (5.10)

u(z,t) = wu(@',t)+v (5.11)

We suppose that u is a solution of the KS equation uy = —ugryr — Ugigrgrer + 2uu, . Differentiation
with respect to the primes variables

Ht = Uy + 2’U/wl’l) (512)

—TUpy — Upgpze T2 U Uy = —Upigr — Ugrgigrg’ + 2(U + 0)ug (5.13)

and letting equal the two equations we arrive again to the KS equation
U = up + 2uz’v = —Ugtgt — Ugtgrgrgr + 2(” + U)u:c’ = —Ugy — Ugges + 2w Ug (514)

The corresponding exact Galilean invariance of h is  — z + 2vt, h — h + vz + v?t)

The stability of the laminar solution &~ = 0 [u = 0] is analyzed by linearizing
Eq. (5.7) [Eq. (5.8)]. For commonly used periodic boundary conditions the growth rate
p for the Fourier mode of wave number k is u = k* — k* (Fig 5.9). In two dimensions
k? is replaced by |k|?. The laminar solution is unstable for all modes within 0 < & < 1.
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Figure 5.10: Results from simulations of the one-dimensional Kuramoto-Sivashinsky equa-
tion with stress-free boundary conditions. System size L = 70. a) A characteristic front ¢
at time ¢ = 1000. b) The time average of the front ¢, c¢) of u and d) of Yz, = us.

The fastest growing mode has a wave number k; = 1/v/2 corresponding to a wave
length Ao = 2v/27 ~ 8.89. The wave length )\, serves as a basic length scale, and
the system size L is naturally measured in units of this scale, L/)q, which is called
the aspect ratio. Beyond the linear range, the nonlinear term becomes important and
produces growth (linear in time) of the mean value of h, while the mean value of
u saturates. For L large enough to permit a sufficient number of unstable Fourier
modes, the solution exhibits spatio-temporal chaotic behavior that can be associated
with a disordered evolution of a cellular pattern.

Many studies have been devoted to the bulk behavior of the Kuramoto-Sivashinsky
system [53]. In relation to average patterns however the boundaries are of paramount
importance, as discussed above. Here, we consider two types of boundary conditions.
One of them is the rigid boundary conditions, where

u(0,t) = u(L,t) = uy(0,t) = ux(L,t) =0, (5.15)
or equivalently,
ha(0,t) = he(L,t) = hea(0,1) = hae(L, 1) = 0. (5.16)
Our other choice of boundary conditions is

u(0,t) = u(L,t) = tz4(0,t) = uge(L,t) =0, (5.17)
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or equivalently,
hy(0,t) = hy(L,t) = hyys(0,t) = hype(L,t) =0, (5.18)

which we call stress-free boundary conditions, with reference to similar conditions in
hydrodynamics.

We integrate the Kuramoto-Sivashinsky equation using explicit finite-differences
of first order in time, second order in space for the linear terms, and fourth order
in space for the nonlinear term. The time step is chosen sufficiently small to avoid
any spurious behavior. The number of grid points used is 128 in one dimensional
simulations and 64 x 64 in two dimensions. In all cases, the simulations were started
from random initial conditions.

5.3.2 Results.

We are interested in the average pattern of u and the average pattern of the front ¢

of h,
L

o(z,1) = h(z, 1) —% " b, 1) (5.19)

Due to the linear growth of i, and as we are interested in averages we have to substract
the instantaneous spatial average to follow the growth of A in order to get a good
average. This is not needed in the average of u because it does not grow. To optimize
the measurements of the average, the sampling was first started well beyond the initial
transient behavior. For the system sizes considered, the typical transient time was
limited to approximately 20 time units, and we discarded the first 100 time units.
Then, averages where taken from configurations sampled every 5 time units. A total
of 10, 000 configurations per run were included, and further average over 10 runs with
independent random initial conditions was performed. This is a large sample, but
was necessary to compensate for the slow convergence of the averages produced by
the long-range time correlations present in the KS equation.

In both one and two dimensions and with both rigid and stress-free boundary
conditions we obtain non-trivial and ordered time-averaged patterns from the spatio-
temporally chaotic evolution (Figs. 5.10-5.14), emphasizing that the formation of
average patterns in spatio-temporal complex systems is general despite the presence
of very large fluctuations. The presence of boundaries breaks the translational sym-
metry of the equations. The boundary conditions (5.15)-(5.18) respect however its
reflection symmetries (for reflexions with respect to the center of the domain). As
in the experiments, here we find that the average patterns display these remaining
symmetries. In the two-dimensional case the average pattern recovers also the square
symmetry of the integration domain (Fig. 5.12). Except for the one-dimensional case
with stress-free boundary conditions (Fig. 5.10), an overall parabolic profile of the
average front is obtained (see Figs. 5.11-5.13). For the derivative v a mean slope is
obtained [126]. This parabolic profile is a peculiarity of the Kuramoto-Sivashinsky
equation and we do not expect this shape in other systems. It can be removed by
considering the second derivative of the front ¢ instead of ¢ itself; for this variable
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Figure 5.11: The same as Fig. 5.10 but for rigid boundary conditions.

Figure 5.12: Results from simulations of the two-dimensional Kuramoto-Sivashinsky equa-
tion with stress-free boundary conditions. System size Lx L = 70x70. Left: A characteristic
instantaneous image of the front ¢ (¢t = 1000), different values of ¢ are coded with different
gray levels. Right: The average of V2¢, showing the square symmetry. The average of the
Laplacian instead of the front itself is shown to eliminate the dominant parabolic shape of
the average, thus improving the visibility of the sidewall oscillations.

(and for the Laplacian in two dimensions) the discussion for all the cases is very sim-
ilar to the one-dimensional stress-free situation, that we address in further detail in
the remaining of the section.

Figure 5.14 shows the average patterns for L = 60 and L = 100. The number
of oscillations increases with the size of the system, although only those close to the
boundaries are large. The amplitude of the oscillations decays abruptly when moving
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Figure 5.13: a) A central horizontal cut of the configuration shown in the left panel of
Fig. 5.12. b) Solid: a central horizontal cut of the time average of the front ¢ for the same
parameter values; dashed: the same cut for the time average of ¢,.

away from the boundaries. Thus for system sizes bigger than L = 100 the oscillations
in the bulk are less evident and more statistics is needed. Furthermore, the distance
between consecutive maxima is close (but not equal, see below) to the characteristic
length scale Ay =~ 8.89. Similar observations were done in the experiments referred
to at the beginning. In Fig. 5.15 the number of local maxima N in the average front
is shown for increasing values of the aspect ratio L/)g. N is written in terms of the
average distance A\ between two consecutive minima, N = L/A. The line where A = )
is also indicated in Fig. 5.15. Plateaus are obtained at every integer N between 6
and 11 for system sizes L between 59 and 112. The average distance A is consistently
larger than \g. Consistent deviations (positive or negative) are also known from the
Faraday wave experiments [9)].

If only the central region is considered, the plateaus fall off. More specifically,
consider the ‘central region’, defined as the domain ranging from the second local
minimum to the second last local minimum of ¢ (see Fig. 5.14). The rest of the
the pattern is thus considered the ‘boundary region’. We now determine the average
distance A\, between consecutive minima in the central region for various system sizes
L, and find the number of maxima L/A. characteristic for the central region. The
results are shown in Fig. 5.15. Intriguingly, the plateaus now fall off, an observation
also done in experimental studies of the central region [9] (compare for example with
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Fig 5.2). At first sight the comparison of the two graphs (Fig. 5.15 and Fig 5.2) seems
clear. However a deeper insight can bring us some doubts about the correspondence
of the magnitudes plotted. In the Faraday experiment, the frequency of oscillation is
varied. The frequency selects the wave number trough the dispersion relation, and
thus changing the aspect ratio. In the Kuramoto-Sivashinsky the only parameter
present in the system is the size of the domain that changes the aspect ratio. So in
both cases we are plotting related measures.

In order to explain this ‘fall off’ effect, we determine the average distance A,
between minima in the boundary regions. Over the entire range of system sizes
considered, these distances changes very little, not more than 4%, so that to a first
approximation we can consider )\, independent of L. For the central region we now

have
L _ L (N — 4N

The last approximation is valid for Ay/L small. For ), constant, it is seen that
L/). falls off as ~ L™! within a given plateau characterized by N. Thus an almost
constant value of )\, serves as a generic explanation for the generally observed fall
off of the plateaus. The overall picture is that when L is increased the total number
of oscillations tends to remain constant, as well as Ay, so that ). increases. This
situation continues until the local wave length in the central region is far enough
from )y, moment at which a new oscillation is accommodated and a jump in N
occurs.

From Fig. 5.14 it is clear that the amplitude A(z) of the average pattern in general
decays with increasing distance from the boundaries [127]. Experimental studies show
the same behavior [9, 107, 108, 109]. To quantify this observation, we consider the
spatial average (A2) = L' [[" A%dz. The variation of A, = \/(A2) with system size
is shown in Fig. 5.16, showing a power-law dependence as Ayms ~ L™2.

We explain this fact by noting that Fig. 5.14 indicates that A,.,s receives its
largest contribution from the boundaries, so that the integral in the definition of (A?%)
becomes a constant for system sizes larger than the boundary region. Thus the factor
L~! in the definition of (A?) becomes the dominant L-dependence thus providing the
observed behavior of A,,;.

5.3.3 Discussion and conclusion.

Our main goal in this work is to show that the phenomenon of time-averaged pat-
terns from spatio-temporal chaos is a universal boundary effect in nonlinear extended
dynamical systems, which we exemplify with a study on the Kuramoto-Sivashinsky,
equation. Our work shows that a simple model of spatio-temporal chaos reproduces
much of the experimentally observed behavior of averaged patterns.

e The symmetry of the average patterns is strongly influenced by the imposed
boundary conditions. Compare Fig. 5.10.c and 5.11.c. For the square domain,
Fig. 5.12
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0 20 40 60 80 100

Figure 5.14: Average patterns of the front ¢ for the one-dimensional Kuramoto-
Sivashinsky equation with stress-free boundary conditions. a) L = 60. b) L = 100.
The arrows indicate the ‘central region’, as defined in the text.
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Figure 5.15: +: The number of maxima N = L/X in the average front versus the
aspect ratio L/)g, A being the average distance between consecutive minima in the
entire region. ¢: the number of maxima in the central region, given by L/A.. The
solid line corresponds to A = ).

e The system continually fluctuates, but never becomes fully ordered. As can be
seen from the several instantaneous images shown.

e The amplitude of the average pattern is a decreasing function of the distance
to the boundary and of the system size. Fig. 5.16

e The existence of plateaus in the wave number of the patterns are easily checked
against experiments.

e The presence of structured averages in the KS equation? enhances our belief

that many of the effects found in this work and in other experiments have a

universal character, and that they are not specificities of the systems involved.

One objection that could be raised against our results is that apparently the exper-
imental results present a ‘stronger’ contrast than our numerical results. The ‘strong
coherence’ displayed in some experimental pictures is often due to observational arti-
fices used to sharp the structure of the averages. For example, in the case of Faraday
waves experiments, the shadowgraph technique artificially amplifies the contrast of
the instantaneous images, enhancing the apparent coherence of the average. How-
ever, qualitative aspects of the pattern such as its symmetry are not distorted by the
recording technique. We are not claiming that we reproduce every single aspect of
the experiments, but the generic features reported in this work, namely the recovery
of the global symmetries in the average pattern, the decay of its structure from the

2We have strong evidence that structured average patterns can also be found in the complex
Ginzburg-Landau equation, which is another model equation describing spatio-temporal chaos.
This appears not only in extended dynamical systems, but also in two-dimensional simulations
of molecules interacting via a Lennard-Jones potential. See for example Figs. (1.5) and (1.6).
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Figure 5.16: Variation of the root mean square amplitude A,,,; over the range of
system sizes 59 < L < 107. The solid curve is the function C/v/L, with C fitted to
the data

boundaries to the bulk, as well as the wave number plateaus, squarely match the
experimental behavior of many different systems.

One possible picture that could, in principle, explain both the coherence of the
averages near the boundary and the decay towards the bulk, is the following: the pat-
terns should be dominated by the structure of the linear modes within the instability
band, and coherence at the boundaries should be expected from the necessary lock-
ing of the modes to satisfy boundary conditions. This picture is probably part of the
truth, but we note that it is not a complete explanation since it misses a fundamental
fact: within the instability band there are some linear modes that carry the global
symmetries of the nonlinear system and some that do not. It is obvious by simple
observation that the non-symmetric modes are present in the instantaneous configu-
rations, and therefore, this simple picture does not explain the symmetry properties
of the average. A good experimental exmaple is given in Fig 5.8. The instantaneous
rolls are all perpendicular to the boundary. However, the average is formed by rolls
of circular symmetry being parallel to the boundary.

We could also wonder whether a simple stochastic model can reproduce some of
the results, for example a model of the form dp/dt = L - p + noise. A very simple
analytical calculation shows that the time average of the field satisfying the equation
proposed for zero-mean noise does not give any structured average pattern: Take any
linear model of the form previously proposed, average it to obtain d < p > /dt =
L- < p> +0. If L has a stable spectrum the average decays to zero, otherwise, the
average explodes.

In conclusion, we have established the formation of ordered time-averaged patterns
in the Kuramoto-Sivashinsky equation, in one and two dimensions, and with rigid as
well as stress-free boundary conditions. The average pattern recovers the symmetries
which are respected by both the equation and the boundary conditions. The am-
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plitude is strongest at the boundaries and decays with increasing distance to them.
The law of decay has been found and explained. We have determined the selected
wave length ), its variation with system size L, and interpreted the different behavior
between the central and boundary regions. Most of these observations are also found
in experimental systems for which the Kuramoto-Sivashinsky equation does not ap-
ply, thus indicating its generic, mainly geometrical, origin: What is relevant for these
phenomena to occur is the occurrence of strong enough chaotic fluctuations in the
presence of non-trivial boundaries.



82

Time averages



Chapter 6

Boundary Effects in The Complex
Ginzburg-Landau Equation

The effect of a finite geometry on the two-dimensional complex Ginzburg-Landau equa-
tion is addressed. Boundary effects induce the formation of novel states. For example
target like-solutions appear as robust solutions under Dirichlet boundary conditions.
Synchronization of plane waves emitted by boundaries, entrainment by corner emis-
sion, and anchoring of defects by shock lines are also reported.

! This Chapter corresponds to Boundary Effects in The Complex Ginzburg-Landau Equation, by
V.M. Eguiluz, E. Herndndez-Garcia and O. Piro, to appear in Int. J. Bifurcation and Chaos (1999).
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6.1 Introduction

The complex Ginzburg-Landau equation (CGL) is the generic model describing the
slow phase and amplitude modulations of a spatially distributed assembly of coupled
oscillators near its Hopf bifurcation [128]. It contains much of the typical behavior
observed in spatially-extended nonlinear systems whenever oscillations and waves are
present. After proper scaling it can be written as:

A =A—(1+iB)APA+ (1+ia)V?A (6.1)

where A is a complex field describing the modulations of the oscillator field, and «
and (3 are two real control parameters. The first two terms in the r.h.s. of Eq. (6.1)
describe the local dynamics of the oscillators: the first one is a linear instability mech-
anism leading to oscillations, and the second produces nonlinear amplitude saturation
and frequency renormalization. The last term is the spatial coupling which accounts
both for diffusion and dispersion of the oscillatory motion.

The power of our analytical tools to study non-linear partial differential equations
in general, and the CGL equation in particular, is very limited. Roughly speaking,
only relatively simple solutions satisfying simple boundary conditions, usually in in-
finite domains, are amenable to analysis. Examples of these are plane and spiral
waves. Nevertheless, sustained spatiotemporally disordered regimes have been found
and thoroughly investigated numerically. Detailed phase diagrams displaying the
transitions between different regimes have been charted for the cases of one and two
spatial dimensions [129, 130, 131]. However, we want to stress that most of these nu-
merical studies have been performed only under periodic boundary conditions, with
the underlying idea that in the limit of very large systems the boundary conditions
would not influence the overall dynamics. As a consequence of this belief, and despite
its importance for the description of real systems, a systematic study of less trivial
boundary conditions has been largely postponed. This is the case not only for the
CGL equation but also for other nonlinear extended dynamical systems, and only few
aspects of this problem have been collaterally addressed so far [132, 133, 134]. The
purpose of this paper is to report on the initial steps of a program aiming towards
such a systematic study. We will focus here on the behavior of the two-dimensional
CGL equation on domains of different shapes and with different types of boundary
conditions (Dirichlet or Neumann for example).

For the purpose of comparison we first summarize the behavior observed numer-
ically on two-dimensional rectangular domains under the commonly used periodic
boundary conditions. Let us remind that in the so called Benjamin-Feir (BF) stable
region of the parameter space defined by 1 4+ af > 0, there is always a plane wave
solution of arbitrarily large wavelength that is linearly stable. In particular, for pa-
rameters in that region, and initializing the system with a homogenous condition (a
wave of wavenumber k = 0) it will remain oscillating homogeneously. If we now vary
the parameters slowly towards crossing the BF line, all the plane waves loss stability
and small perturbations bring the system to a spatiotemporally disordered cellular
state (the so-called phase turbulence). It is known that the behavior close to the BF
line can be approximated by the Kuramoto-Sivashinsky equation.
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Further change of the parameters to go deeper inside the BF unstable region
eventually leads to generation of defects, i.e., points where A = 0, and a kind of
turbulent evolution characterized by the presence of these defects sets in. This is the
so called defect or amplitude turbulence. If we now trace back to the initial parameter
values from the state dominated by defects, the system does not recover the initial
uniformly oscillatory state. Spontaneous generation of defects ceases at parameter
values still inside the BF unstable region. At these parameter values, the system
usually reaches a state consisting of a spiral wave whose core is a defect. This spiral
occupies most of the domain and it is limited by the shock-lines where the arms of
the spiral meet themselves. Defects without spiral arms appear at the crossings of
such shock-lines. In this regime, the amplitude of the field is time independent and
its phase evolves quite regularly in time. In general, the configurations that share
these two properties are called frozen states. These states persist while we vary the
parameters all the way back to the BF stable region. Starting at values corresponding
to a defect-dominated evolution, and suddenly setting the parameters to values in the
stable BF regime, the stationary solution will be also a frozen state but in this case
several domains, each one containing a spiral wave, may form. The size of these
domains vary with the initial conditions, but the typical scale is controlled by the
parameters. Shock lines where the arms of different spirals collide now proliferate
and non-spiral defects are usually present at the crossings between them.

6.2 Boundary effects

Let us consider first parameter values such that with periodic boundary conditions
the long-time asymptotic states are frozen and look at how the behavior is modi-
fied by changing the boundary conditions. We apply null Dirichlet (A = 0), and
Neumann (vanishing of the normal derivative of A) boundary conditions. For the
former, we consider three different boundary shapes: square, circle, and stadium-
shaped domains. Comparison between square and circle will allow us to investigate
the influence of corners. On the other hand, our interest in the stadium arose from
considerations of ray chaos, but it will be presented here as a combination of circle
and square geometries.

In the Dirichlet case, the zero amplitude boundaries facilitates the formation of
defects near the walls. Starting from random initial conditions, defects are actively
created in the early stages of the evolution. After some time however all the points
on the boundaries synchronize and oscillate in phase so that plane waves are emitted.
Defect formation ceases, and the waves emitted by the walls push the remaining
defects towards the central region of the domain. There the defects annihilate in
pairs of opposite charge and as a result of this process a bound state is formed by the
surviving set of equal-charge defects. The orientation of the waves emitted by the
boundaries also changes during the evolution. The synchronized emission of the early
stages proceeds, obviously, perpendicular to the boundary but later the wavevector
tilts to some emission angle of approximately 45 degrees. This angle depends on both
the parameter values and the geometry of the boundaries. The fact that this angle
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is not exactly 45 degrees is made evident by a mismatch of the waves coming from
orthogonal walls. Finally the system reaches a frozen state of the type displayed
in Fig. (6.1). The defects are confined in the center of the domain forming a rigid
static chain. The constant-phase lines travel from the boundaries towards the center
of the domain. Shock lines appear where waves from different sides of the contour
collide. The strongest shocks are attached perpendicularly to the walls. If for a
particular initial condition all defects annihilate the asymptotic state is a defect-free
target solution. This kind of solutions is not seen seen in simulations with periodic
boundary conditions.

It is known [135] that the phase velocity of the usual spiral waves in infinite systems
could point either inwards or outwards the defect core depending on the parameter
values. In our simulations in the square geometry with Dirichlet conditions, however,
the direction of the phase velocity is always from the boundary to the core. We
can understand this better by applying null Dirichlet conditions to only one of the
walls. The synchronized emission that we observe is a straightforward generalization
to two-dimensions of the one-dimensional Nozaki-Bekki emitting hole solution [136].
We have verified [137], for instance, that the direction of the emitted waves (inwards or
outwards) can be changed with parameters as predicted by the analytic computations
[135]. However, when several of the walls are lines of zeros (the four sides of the square,
for example) the direction of the phase velocity becomes determined by the angle
between these lines. In other words, corners effectively entrain the whole system.

In a circular domain (Fig. (6.2)), the frozen structures are either targets (no
defects) or a single central defect. Groups of defects of the same charge can also
form bound states, but instead of freezing they rotate together. This contrasts with
the behavior of the square domains and is correlated with the absence of shock lines
linking the boundaries to the center in the case of the circular domains. These links
are probably responsible for providing rigidity to the stationary configuration in the
square case. Tiny shock lines associated to small departures from circularity in the
lines of constant phase can be observed also in the circle but these lines end in the
bulk of the region before reaching the boundaries. On the other hand, the constant-
phase lines reach the boundaries nearly tangentially in contrast to what we observe
in the square. In addition, we observe that for circular domains the phase velocity
direction can be changed controlling the parameters. This is probably a consequence
of the absence of the corners that synchronize the emission from the boundaries in
the square case.

The stadium shape (Fig. (6.2)) mixes features of the two geometries previously
studied: it has both straight and circular borders. In this case, the curves of constant
phase arrange themselves to combine the two behaviors described above. On one
hand the lines meet the straight portions of the border of the stadium with some
characteristic angle, as it happens in square domains. However, these lines bend to
become nearly tangent to the semicircles in the places where they meet with these
portions of the boundaries. A typical frozen solution displays a shock line connecting
the centers of the circular portions of the domain. This shock line usually contains
defects. It is also possible to find defect-free target solutions as in the case of the
circle, and the behavior of the phase velocity is also similar in the sense that its
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Figure 6.1: Frozen structures under null Dirichlet boundary conditions in a square of size
100 x 100. Parameter values are a = 2, § = —0.2 (a-d), and a = 2, § = —0.6 (e-h).
Snapshots of the modulus |A| of the field are shown in the left column and snapshots of the
phase in the right column. Color scale runs from black (minimum) to white (maximum).
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Figure 6.2: Frozen structures under null Dirichlet boundary conditions in a circle (a-d) of
diameter 100 for parameter values « = 2, § = —0.2, and in a stadium (e-f) of size 200 x 100,
for parameter values @ = 2, § = —0.6. Snapshots of the modulus |A| are shown in the left
column and (e) whereas the phase is shown in the right column and (f). Color scale as in
Fig. (6.1).
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(@) (b)

(d)

(f)

(h)

Figure 6.3: Snapshots of the field |A| (left column) and phase (right column) in color
scale as in Fig. (6.1) at times ¢t = 2.5 x 10* (a-b), t = 5. x 10* (c-d), t = 7.5 x 10* (e-f),
and t = 10. x 10* (g-h) under Neumann boundary conditions in a square domain of size
100 x 100. Parameter values are a = 2, § = —0.2.
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direction can be changed by modifying the parameters.

The behavior under Neumann boundary conditions is rather similar to the case
of periodic boundary conditions. However, the Neumann conditions induce several
subtle features to the dynamics. For example, shock lines are now forced to reach
orthogonally the boundaries. In addition, defects can be irreversibly absorbed by the
boundaries, a process that is obviously impossible with periodic boundary conditions.
During the evolution a spiral defect behaves as if it were interacting with a mirror
image of itself with opposite charge located outside the domain [138]. This reflects in
few characteristic phenomena. On one hand an isolated defect tends to move parallel
to a nearby Neumann wall. On the other hand, mutual annihilation of a defect and
its image is also possible accounting for the absorption of this defect by the boundary.
Finally, when a defect closely approaches a corner, its evolution ssibly as a result of the
mutual interaction with two different images. Fig. (6.3) displays a typical evolution
of the pattern. Initially starting at random, a number of dynamically active spiral
defects is created. These move around eventually annihilating mutually or sometimes
being absorbed by the walls while the dynamics progressively slows down. Normally
one large spiral wave grows until it fills the whole domain at the expense of the smaller
ones that are pushed out of the boundaries.

Finally, we have studied the changes induced by the boundaries for parameter
values such that active spatiotemporal chaos (i.e., non-frozen states) is found for
periodic boundary conditions. Far from the boundaries spatiotemporally chaotic so-
lutions behave similarly to those satisfying periodic boundary conditions. However,
a boundary layer with different behavior shows up near the borders. In Fig. (6.4) we
can see plane waves emitted by the boundaries and rapidly fading inside the domain
where spatiotemporal chaos evolves. In small domains the boundaries could synchro-
nize the whole system. However, as the system size increases, full synchronization
ceases.

For other parameter values, Dirichlet boundary conditions lead eventually to a
dynamics characterized by the coexistence of regions dominated by defect turbulence
and regions dominated by plane waves (constant |A|) whose shape and position nor-
mally evolve in time. We have found this behavior in all the domain shapes studied
except for circular case.

For these parameter values, Neumann boundary conditions do not produce a dy-
namics sensibly different than the one induced by periodic boundary conditions. The
only noticeable difference is that in the Neumann case the shock lines are forced, as
pointed out before, to meet orthogonally the boundaries.

6.3 Conclusions

In this paper, we have presented important features of the dynamics of the CGL
equation which depend strongly on the type of boundary conditions imposed, as well
as on the geometrical shape of the boundaries.

Dirichlet boundary conditions play a double role. On one hand, the walls naturally
behave as sources (or sinks) of defects. On the other hand, a wall with null Dirichlet
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Figure 6.4: Dynamical solutions under Dirichlet boundary conditions. Snapshots of the
field |A| are shown in the left column and (e) whereas the phase is shown in the right column
and (f). (a-b): square, parameter values @ = 0, § = 1.8; (c-d): circle, parameter values
a =2, = -1 (ef): stadium, parameter values a = 2, § = —0.75. System sizes and color
scale as in Figs. (6.1) and (6.2).
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conditions shows a tendency to emit plane waves. The interplay between these two
properties of the boundaries gives rise to interesting behavior.

In the case of frozen states, the character of the walls as wave emitters dominates.
Some geometrical features of the boundaries have a strong influence on the details
of the phase synchronization. Corners, for instance, tend to act as pacemakers. In
circular domains, on the other hand, the emission is definitively dominated by the
internal spirals. Correspondingly, the internal structure of the frozen states is also
influenced by the shape of the boundaries. In a square, defects form a chain which is
anchored to the boundaries by a set of shock lines; in a circle, on the contrary, the
asymptotic state is usually a bound state disconnected from the boundaries.

Neumann boundary conditions seem to have a much weaker influence on the overall
dynamical behavior of the CGL equation. However some differences are evident: One
is the orientation of the shock lines, perpendicular to the boundaries. The other is
that defects can be ejected through the boundaries, thus favoring states dominated
by a single spiral in situations where under periodic boundary conditions a glassy
state with several spiral domains would be formed.

Since the CGL equation appears naturally in a variety of contexts, we believe
that the phenomena found in our preliminary explorations are likely to be relevant
in many theoretical and experimental situations. Some of the phenomena reported
here have intrinsic interest and deserve further analysis.



Chapter 7

Self-organized evolution in
financial systems.

One of the universal characteristics that evidence the analysis of financial-price data
s a scale-free distribution of intra-day returns. Different models have been proposed
to explain these characteristics and can be divided in two different groups: physically
motivated models based on the interaction of a large number of units, and models
based on multi-agent interactions Here we propose a simple financial market model
which includes the dispersal of information and formation of opiniton clusters, as a
fundamental ingredient to account for scale-free returns. FEach cluster is assumed to
act asynchronously with the same collective action of buying or selling, after which
the opinion becomes irrelevant and disappears. The only parameter of the model is
the ratio of trading activity vs. information dispersal a. For sufficiently low a the
system organizes in clusters of all sizes (bounded by system size) and displays power-
law distribution of returns for all the possible range. However for a sufficiently high,
the activity is sufficient to inhibit large fluctuations, turning the returns distribution
with fat-tails and asymptotic exponential cutoffs'.

!This Chapter corresponds to Self-organized evolution in financial systems, by V.M. Eguiluz,
M.G. Zimmermann, submitted for publication (1999).
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7.1 Introduction.

Financial stock market prices have been found to exhibit some universal character-
istics similar to those observed in physical systems with large number of interacting
units [139, 140]. One of such features is the fat-tail distribution of the logarithmic
changes of the market price, the so-called returns. Empirical evidence points that
the excess kurtosis should bo of order 1-100, substantially different from the normal
distribution which would give zero. Also for most assets it has been reported that
the distribution have exponential tails [140].

Several models have been put forward which phenomenologically shows the fat-
tail distributions. Among the more sophisticated approaches are dynamic multi-agent
models [141, 142] based on the interaction of two distinct agents populations, (“noisy”
and “fundamentalists” traders) which reproduces the desired distributions, but fails
to account for the origin of the universal behavior. On the other hand it has been
suggested that herding behavior may be sufficient to induce the desired distributions
[143, 144]. This behaviour takes place when a group of traders coordinate their
actions. This approach has been recently formalized by Cont & Bouchaud [145], as
a static bond-percolation model. In their original formulation, bonds are initially
randomly distributed in a network of agents, so that on average each agent has ¢
bonds. Next, agents are able to buy/sell or wait and those in a connected component
of the network are assumed to act likewise (herding). Assuming a simple rule between
the trading volume (size of the cluster) and the price change, they show that power-law
distribution in the price returns arise at a critical density ¢* = 1, known as percolation
threshold. For ¢ < 1 the distributions shows instead an exponential cut-off. In this
approach c is an external fixed parameter with a difficult economic justification. Also,
and more important, why the market would choose the critical or a nearby value, is
a point which deserves further study.

In this work we extend the model of Cont & Bouchaud proposing to focus onto the
underlying information network the agents may be handling, as a possible foundation
to account for the herding behavior. Our main assumption relies on how rumors are
born, transmitted, or vanishes among a single population of agents. As a first ap-
proach to model this complicated social behavior we consider: (i) a random dispersal
of a either a “buy!” or a “sell!” rumor, which guides and coordinates the agents
actions between those who share the same information, and (ii) rumors die after they
have been used. Finally we assume that the agents are completely governed by the
information they posses, and cannot do otherwise. With these very simple ingredients
we find that the distribution of the number of agents sharing the same information be-
haves as a power-law, when the trading activity is small against the rumor dispersal.
Using a simple rule for the price change in terms of the order size (proportional to the
cluster size) the price returns also exhibit the universal feature. On the other hand
when the dispersal becomes faster a smooth transition to truncated exponential tails
is observed. However a large portion of the distribution remains on the power-law.

In our approach rumors drive the connectivity of the network in a dynamic way,
and the desired distributions are observed even when the time-average density c(t) is
far from the critical threshold. In Section 2 we present the model, while on Section 3
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we present the numerical simulations. Finally in Section 4 we discuss our results and
open perspectives.

7.2 Evolution of agent’s information network.

Lets consider that the agent’s trading actions are completely governed by the un-
derlying information network they perceive. This accounts for the agent’s bounded
rationality, as he does not have perfect information: only part of the network will
be available to him at any time. Lets assume that agents are allowed to disperse
information. This can be in a form of rumor on the to-be-announced firms quarter
results, on the suspicion of a mayor devaluation in an developing country, and even an
agent’s simple opinion on a particular stock shared with his personal contacts, which
would result in a “buy!” or a “sell!” order to that agent. Mayor broadcasted news are
excluded here, because they will influence all traders more or less equally. Therefore
we are interested only in the dispersal of certain concealed information, which will be
represented by a (bidirectional) link between the intervening agents. All agents who
share the same information are connected in the information network, and constitute
an information cluster or group of opinion. This can be easily accommodated in a
random network, where agents are the nodes and the links the connections among
them.

The other important dynamical process we introduce is the aging of rumors. Due
to the random dispersal of information in the network, clusters grow and increase their
connectivity until the information contained in the group is contrasted: the rumor
“expires”. The actual quarterly results are publicly announced, the devaluation in
the developing country is decided, or your opinion is evaluated against facts. In all
of these cases it is safe to assume that all the links corresponding to that rumor
should disappear, inducing in turn the same action (buy! or sell!) to all traders in
the cluster (recall we are assuming that the agent actions are completely determined
by the information network).

A more detailed account could include for example an external source of infor-
mation, where agents in the same cluster are constantly checking. Whenever the
source clearly validates the rumor, all agents will drop almost instantaneously their
links and perform the action. Another possible mechanism at an individual level,
involves imitation. In this case agents are constantly and expectantly evaluating the
concealed information they posses, in order to determine if its true or false. This
tense situation will translate in an imitation process: whenever an individual agent
drops his links (because he was impatient or he validated the rumor as above), all its
neighbors will do likewise, propagating through the whole cluster. This will also be
assumed to be very fast due to their expectant behaviour, resulting once again in the
total annihilation of that information cluster together with the coordinated market
action.

In this way the herding behaviour will be explicitly exhibited due to the underlying
information network. The triggering might be an external source or the agent’s
own impatience. For simplicity, we only consider in the follows an instantaneous
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disappearance of the links.

7.3 The model.

Initially the random network of N agents has no links, i.e. no information content.
We use an asynchronous update of the network, selecting at each time step a random
agent, which may exclusively make one of two possible actions: decides the rumor is
true with probability a, or disperse information with probabilities 1 —a. In the former
case, the rumor expires by instantaneously dropping all the cluster links, and triggers
all members of the cluster to put a market order for one stock. The latter case is
done by selecting randomly another agent from the whole network and establishing
a new link. If both agents had previously no links, a new rumor is born (randomly
buy! or selll). If one of the agents had no link, then it will join the opinion of the
other agents cluster. If both agents already belonged to different clusters, merging of
the clusters occurs. At this stage we do not take into account opinion conflicts: just
one opinion in the new bigger cluster prevails.

When a buy or a sell order are to be executed, they are assumed to be posted
to an external centralized market-maker, which actually performs the operations and
sets the new price. Note that as all agents in the cluster act simultaneously, the size
of the order is the cluster size. We use the following rule P(t + 1) = P(t) exp(s/})
to update the price. s is the size of the agent’s cluster, and X is a measure of the
liquidity of the market which controls the influence on the price changes due to the
order size [146]. With this simple rule, the price returns R(¢) = In(P(t)) —In(P(t—1))
is proportional to the order size. So how the distribution of sizes is affected by a is
of fundamental importance for the observed returns distribution. Other nonlinear
suggestions exist for the price update [147], which will modify slightly the exponents
below. However we stress that power-law features observed in this model persist with
this modification.

7.4 Price dynamics.

In our presentation the time unit corresponds on average to the addition of a new
link or information unit to the network per iteration. Therefore 1/a controls the rate
of rumor dispersal vs. trading activity, and appears as the only adjustable parameter
of the model. For a = 1 only trading activity takes place. Starting with some
randomly dispersed links, the evolution will asymptotically approach that of single
agents trading in the market, and no herding behaviour. On the other hand, for
small a, dispersal of information occurs on most of the time steps, increasing the
internal connectivity. Intuitively in this limit the network will evolve in a cascade
of phenomena. Initially the empty network has time to build many clusters, then
eventually merge them into even bigger clusters, and finally it will be dominated by
a single big cluster. When an order arrives, an agent of this super-cluster will surely
be chosen, inducing a large impact on the market. Although an extreme scenario, we
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Figure 7.1: (a) Time series of the typical evolution of the market price P(t), (b) the returns
corresponding R(t) = In P(t) — In P(t — 1), and (c) the connectivity c(¢). The mean value
of the connectivity is (¢) = 0.78 and the standard deviation o = 0.14. Number of agents
N = 10*, herding parameter a = 0.01.

can estimate that this should occur when a < O(1/N). From the above discussion
we would like to label parameter a as the “herding parameter”: for ¢ = 1 no herding
occurs, while for ¢ < 1 herding is observed.

To obtain more quantitative results for intermediate values of a, we have performed
numerical simulations for a population of N = 10* agents. In Fig. (7.1a), we show
a typical evolution of the market price P(¢) following our model. The value of the
herding parameter a = 0.01, corresponds in average to a buy or sell order every 100
iterations, or in other words the rumors propagation velocity is 99 links per order. The
corresponding returns R(t) are shown in Fig. (7.1b). The evolution of the connectivity
¢(t) (average number of links per agent) is shown in Fig. (7.1c), with a corresponding
time average {c¢) = 0.75 and some fluctuations overshooting the critical value ¢* = 1.

In Fig. (7.2) we show the distribution of returns for three different herding pa-
rameters ¢ = 0.30, 0.10 and 0.01. Power laws prob(R) ~ R~ are fitted to the
well averaged region, with the exponent varying from 1.5 to 1.6. Note that in all
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Figure 7.2: Log-log plot of the distribution (in arbitrary units) of returns R for different
herding parameters (squares) a = 0.30, (diamond) a = 0.10, and (triangle) a = 0.01. The
solid line shows a power-law R® with exponent a = —1.5.

cases one observes power-law decay in a range of returns. For sufficiently small a’s,
a relative increase in the probability of extremely high returns is observed, giving a
significant weight to “large” events of the order of the system size. In this case the
time-average c(t) lies very close to the critical threshold. Decreasing a there is a
continuous crossover to an exponential cut-off, where the time average c(¢) is far from
c*. We conjecture there is an intermediate value of a where a power-law will be fitted
for the whole range.

The distribution of returns is related in this model to the distribution of cluster. In
fact, if 5 is the exponent for the distribution of cluster sizes and « is the exponent for
the distribution of returns, then the distribution of returns is equal to the distribution
of cluster times the probability to chose a given cluster that is proportional to its size:
prob(R) ~ R~ ~ ss~?. Heuristically, the exponents are related by a = 3 — 1. We
plot in Fig. (7.3) the averaged distribution of clusters. The solid line represents a
power law with exponent 8 = 2.5. This result agree with the previous calculation
and with theoretical results on stationary random graphs that predict an exponent
of 5/2 at the critical point [145]. Recently, this exponent was found by D’Hulst and
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Figure 7.3: Log-log plot of the averaged distribution of cluster sizes for (squares) a = 0.30,
(diamond) a = 0.10 and (triangle) a = 0.01. Solid line shows a power law s~ ? with exponent
B = 2.5.

Rodgers [148] in a mean-field analysis of our model?. They also extended the model by
allowing multiple rumors to be dispersed at a single time-step, finding the exponent
is robust.

7.5 Discussion.

Recently Stauffer & Sornette [149] proposed a similar herding model inspired also in
Cont & Bouchaud [145], in order to account for a fluctuating connectivity. First they
consider a site-percolation model, where agents sit on a lattice with possibly empty
sites. Next they propose a mechanism which randomly “sweeps”the connectivity
parameter c. This mechanism effectively works to produce a fluctuating connectivity
and still have the desired distributions. We, however, try to focus in giving a simple
basis for the origin of these fluctuations, based on the information the traders might
be handling.

2The analysis presented in [148] does not reproduce the transition shown in Fig. (7.2). in our
opinion, this is because they forget a term in their evolution equation
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It is interesting to compare the approach to bounded rationality present in our
traders, to that of the multi-agent models [141, 142] based on the interaction of
two distinct agents populations, the so-called “noisy” and “fundamentalists” traders.
While the former group tries to make short term capital gains based on the actual
trend of the price of the asset, the latter group uses an estimation of the fundamental
value of the asset to decide on his future actions. This estimation arises from a
continuous random exogenous source, which simulates the news arrival process [142].
It has been observed [141] that using a single population of “noisy” traders the returns
do not exhibit the expected power-laws regimes. It is only when both populations
interact, that the universal features are achieved. Our agents population, instead,
comes as a hybrid population between “noisy” and “fundamentalist” traders. On the
one hand they are “noisy” in the sense they may symmetrically buy or sell, without
any fundamental estimation of the assets value. On the other hand the rumor aging
process may arise due to an external source of information, as for the “fundamentalist”
traders.

Also in these multi-agents models [141, 142] it has been reported that at times
where large variations in the price are observed, most of the traders belong to the
“noisy” population. The small remaining “fundamentalist” are needed to recover the
market after large crashes, for they will surely buy when the price has collapsed.
It is not difficult to incorporate this effect in our description, by adding a feedback
mechanism between the actual price trend and the rumors the agents have. In this
way it may be possible to model a financial market with a single agents population
which behaves responding to the information network.

Our approach to model herding behavior has several open modifications worth
mentioning:

e At this stage of the model, there is no acceleration mechanism for the price by
which “speculative bubbles” may form [150]. We could relax the assumption of
a sequential addition of a single rumor, and instead let a fraction of the agents
of a cluster disperse his opinion on the same time step. There would be clearly
an acceleration of the rumor dispersal as the size of the cluster increases, which
could modify the statistics of the returns.

e Also at times when a rumor ages, one could consider that only a fraction r of
the traders in the chosen cluster will be impatient enough, drop their links and
trade. Note that for a initially random network the limit 7 = 0 and ¢ = 1 would
contain the CB model exactly. We have numerically studied the case r = 1/s,
where s is the size of the chosen cluster, and found that the distribution of
cluster sizes has the same behavior as in figure...

e Also one can include a global parameter which controls the mood (“optimistic”
or “pessimistic”) of the market, similar to Lux & Marchesi [142]. Consider a
single agent or cluster which is receiving a dispersed rumor. If the global market
is optimistic one would most probably adopt the receiving rumor. Otherwise if
the global market is pessimistic, then he may choose the contrary opinion and
not merge.
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e A more realistic handling of the merging of clusters would be desirable. For
example one could consider the process by which when two clusters merge,
the one who adopts the others opinion will be fragmented in smaller clusters,
because the new incoming opinion is not welcomed. This could be done by
introducing a new parameter f, which would correspond to the fraction of links
destroyed in the cluster. If the cluster had a very high connectivity, this would
correspond to strong believe in their opinion and would be harder to fragment
it.

We have presented a model for the propagation of information in a financial mar-
ket, based on the formalization by Cont & Bouchaud [145] of the herding behaviour.
We suppose that the propagation of information within the network follows a ran-
dom process, and the traders can be classified into groups (clusters) having the same
opinion. In our description the size and number of clusters evolves in time reflect-
ing the information content of the market. This is controlled by the rate of rumor
dispersal 1/a. For high rumor speed, herding behavior is very strong and the prob-
ability of creation of a large cluster becomes notoriously high, leaving the system in
a highly propensive state for crashes to occur. However for low rumor speed, the
market always behaves with larger than normally distributed returns, but otherwise
exponential tails.
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Appendix A

Numerical simulations in arbitrary
domains

In this Appendix I describe the numerical code used to solve the time evolution of
the complex field A(x,?) in the complex Ginzburg-Landau equation in two dimensions
for general geometries with null Dirichlet boundary conditions.

The CGLE can be writen in the following way

BA = A+ (1+i0)V2A — (1 +iB)|AA (A1)

where A(x,t) is a two-dimensional complex field, and «, 8 are real parameters. The
evolution equation is defined inside the two-dimensional domain of integration D.
The specification of the boundary conditions is necessary to have a full description
of the problem. Typical boundary conditions are periodic, Dirichelet and Neumann
boundary conditions. Periodic boundary conditions imply the equivalence of the
ending points, and a rectangular domain subjected to periodic boundary conditions
is equivalent to solve the problem in a torus. Nemann boundary conditions consist
in giving the value of the normal derivative (e.g. null derivative) of the field at
the boundary, and it can take other names as null flux boundary conditions (if the
derivative is zero). Finally, Dirichlet boundary conditions indicates that the value of
the field at the boundary is known. Thus, null Dirichlet boundary conditions indicate
that the value of the field is zero at the boundary. More complicated boundary
conditions can be specified. However, in this Appendix, I will focus on null Dirichlet
boundary conditions in general geometries (see Fig. A.1).

The first step is to discretize the space using a rectangular grid. In the following
I asume that the discretization in both spatial dimensions is the same Ax = Ay. If
the discretizations are diferent some of the formulas used below need to be rewriten.
Each point in the lattice can be writen in the form P, ; = P(iAz, jAy), and the value
of the field in that point A; ; = A(iAx, jAy,t). Thus the Laplacian takes the discrete
form
Aiprj+Aijm +Aim + A — 44

(VEA);,; = (Ar)?

(A.2)
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Figure A.1: Domain of integration is the shaded region. The lattice points that are inside
the damain (i.e. in the shaded region) will follow the evolution equation (A.1); lattice
points outside the domain will remain at value zero A = 0.

The discrete version of the complex Ginzburg-Landau equation takes the form

ORi; = Rij+V’Ri;— oV’ — (R +1};)(Ri; — BL;) (A.3)
Oy = ILij+ VL +aV’R;; — (R}, + ID,)(Li; + BRi;) (A.4)

where R(x,t) and I(x,t) are the real and imaginary part of the complex field A(x, t).

Equations (A.3) and (A.4) are solved using a Runge-Kutta method.

The method explained above will work properly (with the correct time and space
discretization) in a rectangular domain with periodic boundary conditions where the
ending points connect.

Let’s first study the case of a rectangular domain with the field zero at the bound-
aries. In this case the equation is discritized in the same way for all the internal
points. The points that belong to the boundary are simply fixed to zero, A4; ; = 0, for
all P; ; that belong to the boundary.

In the case of a boundary that does not fit in a rectangular grid, we proceed in
the following way. Take the domain and superimpose a rectangular lattice with the
appropiate spacing. All the points that are inside the domain, internal, will follow
the evolution equations (A.3)-(A.4). However, the points that are at the boundary or
outside the domain will remain fixed to zero, as in the previous case of a rectangular
domain with null Dirichlet boundary conditions. In this way, what we are doing is
to approximate the boundary by rectangular mosaics. In order to have an accurate
solution, we should have a good resolution of the boundary.
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Figure A.2: Snapshot of the modulus of the complex field under the time evolution of the
CGLE in a domain with the shape of the Majorca Island with Dirichlet boundary conditions.

Color scale runs from black (minimum) to red (maximum).

With this method we can solve the evolutionary equation for any geometry and
for Null Dirichlet boundary conditions.

As an example of the flexibility of our approach we show in Fig. (A.2) a simula-
tion of the CGLE in a domain with the shape of the Majorca Island with Dirichlet
boundary conditions.
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