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Resum

Els nombrosos avancgos realitzats en el camp dels lasers i de l’electronica
quantica durant les darreres decades ha potenciat la implantacié d’aquests
dispositius en moltes aplicacions que han passat a formar part de la vida quo-
tidiana. Cal anomenar d’entre elles, els sistemes de comunicacions optiques,
la gigant expansié d’'Internet, lectors de disc compactes, punters laser, im-
presores laser; sense deixar de banda les aplicacions mediques i industrials.
El desenvolupament dels lasers de semiconductor i la recerca de técniques
per al seu perfeccionament han fet d’aquests uns dispositius optims per la
utilitzacid, especialment en sistemes de comunicacions optiques. El disseny
d’estructures amb noves geometries i basades en nous materials ha donat
com a fruit lasers de semiconductor amb unes caracteristiques de funciona-
ment peculiars. Els lasers de cavitat vertical i emissié per superficie, també
coneguts com VCSELSs, han atret 'atencié de molts de grups cientifics, anant
desde el punt de vista més aplicat fins el de la fisica fonamental. Es sabut
que els VCSELs s6n millors que els lasers de semiconductor convencionals o
d’emissio lateral en diversos aspectes, encara que poden presentar inestabil-
itats associades amb la polaritzacio i I'excitacié d’estructures espacials d’or-
dre superior. Algunes aplicacions necessiten que la polaritzacié i la forma
transversal del camp eléectric en aquests aparells sigui estable i ben contro-
lada. Aquest fet motiva l'estudi, caracteritzacié i control de la polaritzacié i
de la dinamica transversal. En aquest treball s’aprofundeix en ’estudi de les
propietats de polaritzacié en VCSELs. En particular, s’estudia la repercusio
de les fluctuations de les components de polaritzaci6 sobre les caracteristiques
de 'emissié laser. Aquestes fluctuations provenen de processos quantics d’e-
missi6 espontania de fotons que s’acoblen al mode optic d’emissié. Les carac-
teristiques de les fluctuacions de la llum emesa reflecteixen de manera natu-
ral els mecanismes fisics involucrats, proporcionat una possible interpretacio
dels resultats experimentals quan sé6n comparats amb la teoria.

La memoria esta organitzada en quatre capitols. En el tema 1, es recullen
de manera esquematica alguns conceptes essencials de la fisica del laser.
Aquests es van introduint de manera successiva presentant-los dins d’un con-
texte historic. Amb aquestes eines, és possible presentar les caracteristiques
basiques de funcionament dels VCSELs al final del capitol. En el tema 2,
s’aprofundeix en qiiestions de modelat, posant especial interes en les fonts
de renou, les propietats de polaritzaci6 i els processos de relaxacié d’espi.
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S’introdueix el spin flip model (SFM), que en preséncia de renou d’emissio
espontania, representa un marc teoric per descriure la dinamica de polar-
itzacié en VCSELs. Al final del tema, presentam el model SFM linearitzat,
que constitueix el punt de partida per l'estudi de les fluctuations de polar-
itzaci6. En el tema 3, part fonamental d’aquest treball, es discuteix, desde
un nivell semiclassic, les fluctuations de les components de polaritzacié de
la llum emesa. Per tal d’entendre el comportament de les fluctuacions, es
necessari primer introduir alguns conceptes que provenen de I’analisi lineal
de les equacions SFM. Conceptes com anisotropies no-lineals, birefringencia
effectiva, i regims d’operacié son seqiiencialment introduits. També es dis-
cuteixen els espectres de poténcia, que mostren la magnitud de les fluctua-
cions a diferentes freqiiencies, de les components lineals i circulars del camp
electric. L'estudi es completa donant a coneixer 1’evoluci6 del I'estat de po-
laritzacié utilitzant la representacié de I'esfera de Poincaré. Aquesta esfera
és una projeccié de la dinamica sobre un sistema de coordenades esferiques
descrites per dos angles de polaritzacié. Els espectres de poténcia dels an-
gles de polaritzacié sén descrits en les diverses regions d’operacié. Tambe es
mostra la importancia d’alguns parametres relevants sobre la dinamica de po-
laritzacié i les seves fluctuacions. Al final del capitol es descriu la correlacié,
experimentalment observades, que existeix entre les distintes components de
polaritzacié. Finalment, en el tema 4 presentam les conclusions del treball i
algunes prespectives relacionades amb qiiestions de modelatge.

Palma, Octubre de 2001 Josep Mulet Pol
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The important advances in the laser field and quantum electronics, carried
out in the last decades, have lead to a variety of everyday life applications for
these devices. Some examples include: optical communication systems, the
explosive growth of Internet applications, CD players, laser pointers, laser
printers, as well as medical and industrial applications. The development of
semiconductor lasers and the techniques to improve their performance have
provided devices very attractive for applications, specially in optical commu-
nication systems. The design of new structures as well as the implementa-
tion of novel materials have lead to semiconductor lasers with rather pecu-
liar performance. Vertical-cavity surface-emitting lasers, hereafter VCSELs,
have sparked the interest of many scientific group, covering from the most ap-
plied point of view to that of the fundamental physics. It is well known that
VCSELs present a number of advantages with respect to the conventional
edge-emitting semiconductor lasers, although they may display instabilities
associated with the polarization and transverse degrees of freedom. In many
applications, it is crucial to achieve devices emitting in a well stabilized and
controlled polarization and transverse mode. This fact motivates the study,
characterization and control of polarization and transverse dynamics in VC-
SELs. In this work, we investigate the impact of polarization components
fluctuation in the characteristics of the laser emission. These fluctuations
arise from spontaneous emission processes governed by the laws of quantum
mechanics. The features of these fluctuations can be regarded as fingerprints
of the involved physical mechanisms, thus providing a natural interpretation
of the experimental results when comparing with theory.

This report is organized in four chapters as follows. In chapter 1, we sketch
some fundamental concepts required to introduce the laser physics. We intro-
duced them sequentially within an historical perspective. With the help of
these concepts, it is then possible to outline the working principles of VC-
SELs. In chapter 2, we focus on modeling issues, and particularly, on the
spontaneous emission noise sources, polarization properties, and spin relax-
ation processes. We introduce the spin flip model (SFM) that provides a the-
oretical framework to describe the polarization dynamics in VCSELs. At the
end of chapter 2, we introduce the linearized SFM, being the starting point
to study polarization fluctuations. In chapter 3, the main part of this work,
we discuss within a semiclassical framework, the fluctuations of the polar-
ization components. In order to understand the behavior of fluctuations, it is
first necessary to introduce some concepts that arise from the linear stability
analysis of the SFM. Concepts like non-linear anisotropies, effective birefrin-
gence, and regimes of operation are sequentially introduced. Thereafter, we
analyze the power spectra, that reflect the magnitude of fluctuations at dif-
ferent frequencies, of the linear and circular components of the electric field.
A complete understanding of the polarization dynamics is possible by intro-
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ducing the Poincaré sphere representation. The later is a projection of the
dynamics onto a spherical coordinate system described by two polarization
angles. The power spectra of the polarization angles fluctuations are also
shown in several regions of operation. We also give evidences of the role of
some relevant parameters that affect the polarization dynamics and its fluc-
tuations. At the end of chapter 3, we describe the correlation, that has been
experimentally observed, among different polarization components. Finally
in chapter 4, we present the conclusions as well as some perspectives related
to modeling issues.

Palma, October 2001 Josep Mulet Pol



Chapter 1

Introduction

1.1 A brief history about lasers

THE origins of the laser can be traced back to the Einstein’s concept of
stimulated emission, derived in 1917 from Planck’s law of radiation. The
presence of a photon, with appropriate frequency, can stimulate an excited
atom to emit a photon with identical phase, frequency and propagation di-
rection that the incident one. From this mechanism results the properties of
the laser light: large monochromaticity, optical coherence, directionality, and
brightness. It is surprising however that most of the light emitted by common
sources —bulbs, the sun, LEDs— arises from spontaneous emission. In order to
increase the probability of having stimulated emission in front of spontaneous
emission, it is important to achieve highly populated excited states with long
lifetimes (population inversion). From Boltzmman’s law, the population of an
energetic level, under thermodynamic equilibrium, decreases when increas-
ing the energy of such state. Therefore, population inversion must be achieved
by providing energy to the system from an external source (pumping). The
pump mechanism varies depending on the type of laser, being: electric dis-
charge in gas lasers, a flash lamp in solid state lasers, and current injection
in semiconductor (sc) lasers, etc. The light amplification understood as an
avalanche of identical photons can be generated by inserting the system in to
a cavity that feeds back the optical field (resonator). Therefore, three ingredi-
ents are fundamental in any laser: a pump that generates population inver-
sion, a medium providing gain/amplification, and a cavity confining the opti-
cal field. The first population inversion was attained in ammonia molecules
passing through an electrostatic focuser by Townes and Shawlow [1] in 1954.
The constructed device, originally called MASER, emitted light in the mi-
crowave range. The first successfully optical laser in the visible spectrum was
constructed by Maiman [2], and consisted of a ruby crystal surrounded by a
helicoidal flash tube. This advent was followed, at the ends of the same year,
by the experimental demonstration of working He-Ne gas lasers.

ILASER is the acronym of Light Amplification by Stimulated Emission of Radiation.
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1917 | A. Einstein: postulate of stimulated emission of photons

1954 | C. H. Townes and A. L. Schalow: the first N H; MASER

1960 | T. H. Maiman: demonstrates the first optical ruby laser

1962 | Experimental demonstration of the first sc laser

1965 | Melngailis: the first bulk InSb SE laser

1977 | K. Iga: heterostructure SE laser

1979 | H. Soda: first VCSEL pulsed lasing at 77K, with I;;, = 900mA
1984 | K. Iga: pulsed GaAlAs/GaAs VCSEL at room temperature
1985 | A. Chailertvanitkul: introduces sc multilayer reflectors

1988 | CW operation of VCSELs at room temperature

1989 | J. L. Jewell: QW and multilayer reflector, low threshold 1-2 mA
1996 | First commercial applications of VCSELSs

1997 | D. G. Deppe: introduces Quantum-Dot VCSELs

2000 | New materials for development of blue-UV VCSELSs

Table 1.1: Chronology of some significant advances in lasers and VCSELs.

However, semiconductors were too different to an “atomic” system, and too
poorly understood, to profit much from the success with ruby and gas lasers.
It was not until the mid-50s that experimental evidence emerged of the ex-
istence of both direct and indirect band-gap semiconductors, a difference de-
cisive in determining whether a material will be an efficient light emitter or
not. The feasibility of stimulated emission in semiconductors was considered
by the early 60’s but there was no motivation to explore the possibilities as it
was believed that the emission would be weak. However in 1962 a group from
MIT Lincoln Labs reported emission of radiation, using Zn-diffused GaAs p-n
junction, and transmission of the light over a considerable distance. This re-
port sparked great interest and before the year was out, four groups reported
working semiconductor lasers [3].

1.2 Semiconductor lasers

Semiconductor lasers are based on forward biased p-n junctions of sc mate-
rials —diode lasers—. The concept of a carrier in a sc laser is associated with
an electron in the conduction band and a hole in the valence band provid-
ing an electron-hole pair. The recombination of an electron-hole pair, that is
more efficient in direct band-gap sc, provides the emission of a photon. Pop-
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Figure 1.1: Sketch of an edge-emitting semiconductor laser.

ulation inversion is obtained by localizing in a spatial zone, known as active
region, a large number of electron-hole pairs. This can be achieved using an
heterostructure, i.e., by inserting the active region between two sc materials
of wider band-gap. In turn, this heterostructure provides lateral confinement
of the electric field due to the higher refractive index in the central region.
The most important class of semiconductor diode lasers are based on III-V
compounds, for instance GaAlAs/GaAs ﬂ The optical gain is accomplished by
injecting minority carriers into the thin active layer. However, optical gain
alone is not enough to operate a laser. The polished facets perpendicular to
the junction plane provides the optical feedback by forming a Fabry-Perot cav-
ity, which role is twofold. First, it selects a preferred direction for stimulated
emission and second, it introduces a frequency selective mechanism that leads
to the longitudinal cavity modes. The injected current has to exceed a certain
threshold current, situation in which the optical gain equals the losses, in
order to start the laser operation.

Depending on the geometry and dimensions of the cavity, lasers are classi-
fied in edge-emitting lasers (EELs) and vertical-cavity surface-emitting lasers
(VCSELSs). In an EEL, sketched in Fig. the light propagates in a rectan-
gular waveguide which longitudinal extent coincides with the active layer.
Their mirrors are formed by cleaving a wafer along the crystal planes to form
smooth facets. If necessary, dielectric materials are subsequently deposited
to reach the desired reflectivity. No external mirrors are in general required,
since cleaved facets of sc already provide sufficient reflectivity to allow laser
operation. On the contrary, mirrors with very high reflectivity are required in
VCSELs as we will show later.

2The notation Ga,_,Al,As/GaAs, with z the molar fraction of Al, represents the nature of
the materials forming the heterostructure, i.e. a “sandwich” of GaAlAs/GaAs/GaAlAs.
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Longitudinal modes

Let us consider a passive medium, which does not provide any amplification,
with refractive index n. filling the space between two partially reflecting mir-
rors, with internal power reflectivities R, », and separated by a distance L [Fig.
[1.2]. The optical field in the resulting Fabry-Perot cavity can be expressed as

E(z;w) = Efe'? 4 B e w7

where E* are the amplitudes of two counter-propagating plane waves. The
complex longitudinal propagation constant ¢, is determined from boundary
conditions at the two mirrors providing the roundtrip condition

(R, (w)RQ(w)}l/ze‘le%L ! (@1(w)+®2(w)+2Requ L) _ 1, (1.1)

where ¢, (w), ®2(w) stand for the frequency dependent (internal) phase reflec-
tivities of the mirrors. Standing waves in the cavity are only possible for a
discrete number of frequencies that define the longitudinal cavity modes. The
frequency mode spacing reads [4]

c

Av = m , (1.2)
ng = %(wne) being the group refractive index and c¢ the speed of the light in
vacuum. Typical values for EELs are n. = 3.5, n, = 4.0, and L = 250 ym which
provides Arv ~ 150 GHz. A larger mode spacing is obtained in microcavities
where L ~ 1 ym, and thus Av =~ 40 THz. The gain curve of the active material
has a bandwidth of ~ 2 THz, hence, in typical EELs, up to 20 longitudinal
modes can profit of the material gain. On the contrary, only one longitudinal
mode can by amplified in VCSELs. It is well known that multimode emis-
sion affects the performance of the device in data-transmission applications
because of an enhanced pulse dispersion during fiber propagation. For this
reason, VCSELs are attractive devices due to their single-longitudinal mode
emission. A drawback is that high-order transverse modes, that extend across
the lateral directions, are more easily excited in VCSELSs due to their higher
Fresnel number N = d?/(\L), d being the typical lateral length scale and A
the emission wavelength. In addition, the short cavity of the VCSEL strongly
affects the losses through the mirrors.

Rl' ch R2’ CDZ
E+
2 —= @
E_ ne Z
0 L

Figure 1.2: Counter-propagating fields in a Fabry-Perot cavity.



1.3 Surface-emitting semiconductor lasers 5

Since the mirrors are partially reflecting, a fraction of photons escape
through the mirrors leading to a decay of the electric field within the cav-
ity. Moreover, the electric field is absorbed in the different material layers
constituting the laser. Thus, the amplitude of the electric field decays at a

rate
c 1 1
= — | —1 1.
"= o, {O‘mﬁ o " (RlRQH ’ (1.3)

where «;,; represents the internal losses. Typical power reflectivities, in
EELs, of R, = Ry, ~ 0.3 and a;,; = 16cm™! leads to x ~ 300 ns~!. Since in
a microcavity L is much smaller, the reflectivity of the mirrors have to be
enhanced in order to maintain the same cavity decay rate «.

1.3 Surface-emitting semiconductor lasers

A VCSEL is a particular type of semiconductor laser in which the resonat-
ing cavity is perpendicular to a thin active layer. In contrast to conventional
EELs, the optical beam is guided and emitted in the vertical direction [See
Fig. [1.3(b)]. The thin active layer (~ 10 — 30 nm) is composed by one or several
quantum Wellfl providing high optical gain, low threshold current, high re-
laxation oscillation frequency, and improved temperature characteristics. It is
worth noting that the single gain-path length in a VCSEL is extremely small,
typically of 1% of the cavity length, i.e. four orders of magnitude shorter than
an EEL. Thus, to make a VCSEL, it is imperative to fabricate mirrors with
very high reflectivities, an active region with high optical gain, and a cavity
with very low optical losses. The VCSELs mirrors are created by growing a
stack of quarter-wavelength layers of sc materials with alternating refractive
indexes, forming a distributed Bragg reflector (DBR). The order of 20-40 pairs
are necessary to achieve high reflectivities (> 99.6%). The electric current is
injected in a disc or ring-shaped contact in bottom-emitter and top-emitter
devices, respectively. Carrier transport along the different layers determines
the lateral distribution of current density in the active layer, that in turn
delimits the lateral extension of the active region. The current is localized
close to the cavity axis by proton implantation in gain-guided devices while
oxide-layers are used in oxide-confined VCSELs. In the former, the lateral
confinement of the optical mode occurs through a combination of gain-guiding
and carrier antiguiding mechanisms [5], while in the later the oxide layer,
with lower refractive index, provides an index-step waveguide that confines
the electric field.

The typical dimensions, length xwidth xthickness, in an EEL differs con-
siderably with respect to a VCSEL, being in the first 250 x 300 x 10 ym? while in

3A thin layer of GaAs bounded on either side by GaAlAs, confine electrons and holes. If

the thickness of the GaAs layer is smaller than ~ 200 A, the confinement energies become
quantified and the heterostructure is known as quantum well laser.
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circular output beam

__—p-ring contact

p-DBR

oxide layer
active layer

1/~ n-DBR
GaAs substrate
n-ring contact

Figure 1.3: Sketch of a vertical-cavity surface-emitting semiconductor laser. The actual
configuration represents a top-emitting oxide-confined VCSEL.

the second 1 x 10 x 10 um3. An important consequence is that VCSELSs emit in
a single-longitudinal mode. In addition, the geometry of the VCSEL’s cavity is
circular, in contrast to EELs with a rectangular shape. As a consequence, the
polarization of the electric field in an EEL is determined by the structure, be-
ing transverse electric (TE) or transverse magnetic (TM) depending whether
the electric or the magnetic field is linearly polarized along the heterojunc-
tion plane. However, polarization in VCSELs is not so well stabilized due
to their circularly symmetric cavity. This fact motivates the understanding,
characterization and control of polarization in VCSELs. Since in many prac-
tical situations the polarization degrees of freedom in EELs are disregarded,
the description of polarization effects in VCSELSs requires of a thorough re-
vision of the involved microscopic processes. The next chapter is devoted to
introduce a model that accounts for the fundamental physical mechanisms
governing the polarization dynamics in quantum well VCSELs.

From an illusion to a reality

Certainly, VCSELs that are currently commercially available, have been the
fruit of the continuous development of the semiconductor technology and
growth techniques. The first surface emitting (SE) laser was experimentally
demonstrated by Melngailis already in 1965. The active material consisted
in a piece of bulk InSb, refrigerated at 10K and immersed in an intense mag-
netic field in order to confine the carriers. The concept of heterostructure in
SE laser was introduced by K. Iga (1977) as an alternative method to im-
prove the carrier confinement. Exploiting this idea, H. Soda in 1979 obtained
pulsed operation of GaInAsP/InP SE with threshold current of 900mA oper-
ating at 70K. The threshold current of these initial SE devices was so high
because the reflectivity of the metallic mirrors was insufficient. In 1984, K.
Iga replaced them by semiconductor mirrors obtaining pulsed operation of
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GaAlAs/GaAs VCSEL at room temperature. Important improvements were
achieved after the introduction of multilayer mirrors and also when replac-
ing the bulk active material by quantum wells. With this new technology,
Jewell et al. (1989) grew VCSELs with threshold currents as low as 1-2mA
operating continuous wave (CW) at room temperature. The first commercial
applications of VCSELs started to appear since 1996, being suitable for lo-
cal area networks (LANSs), optical interconnects, and for future applications
in the gigabit Ethernet as well. By a proper combination of materials it is
possible to construct devices emitting at different wavelengths [See Fig. [1.4]].
The importance of GalnAsP/InP VCSELs operating at 1.3 or 1.55um is in-
creasing, since their potential application in parallel lightwave systems and
parallel optical interconnects. Some commercial links are also available with
AlGaAs/GaAs VCSELs emitting near 0.85um. Red emitting VCSELSs, based
on GaAllnP/GaAs materials, are also attractive for their applications in CD
players and plastic optical fiber systems. Green-blue and blue VCSELs are,
in general, more difficult to obtain displaying high threshold currents, short
lifetimes and in many cases only pulsed operation. The applications of blue
VCSEL:s is huge, for instance, in full color displays, and high efficiency illu-
mination together with green and red devices.

A (um) Oi3 | 0|.5 9i8 1.|0 1|.3 1i5
GalnAsP/InP| UV | visible | IR —
AlGalnAs/InP | 1.3-13

GalnNAs/GaAs g i 1.3 mm
GalnAs/GaAs == 0.98
GaAlAs/GaAs | M 0.78~0.88

GaAllnP/GaAs | mmm 0,63-0.67

ZnSSe/ZnMgSSe —0.45-0.5

GalnAIN/GaAIN l—g—l o.3~o.5§ | | | |

Figure 1.4: Materials for VCSELs in a wide spectral band. Extracted from Ref. [6].






Chapter 2

Fundamentals of the VCSEL
Modeling

2.1 Quantum Noise

INCE the development of a modern semiconductor technology, it has been

possible to construct semiconductor structures in the nanometer scales
and reducing the laser size up to a single wavelength limit. Due to this con-
stant reduction of scales, quantum effects in the confinement of electrons and
in the light field have increased considerably. As consequence, the laser light
field is organized in random quantum fluctuations arising from spontaneous
emission processes. A correct treatment requires of quantization of the elec-
tric fields and dipole amplitudes [7]]. We instead consider that, in a sufficiently
intense field, the deterministic field dynamics is well described by the classi-
cal Maxwell’s equations [7,/8]. In any case, the sc material dynamics has to be
treated by using quantum mechanics. Within this semiclassical approach, the
quantum fluctuations are modeled by means classical Langevin noise sources.
Obviously, the strength of these fluctuations can only be determined from
quantum mechanical requirements.

This section is devoted to introduce some fundamental concepts of Langevin
equations, in which the chapter 3 is mainly based. Thereafter, the equations
describing the polarization dynamics of VCSELSs in presence of quantum noise
are considered.

Semiclassical Langevin equations

As an starting point, we consider that a complex dipole’s amplitude o, in
absence of electric field and decaying at rate v, is governed by the simple
Langevin equation

do

T ot f(@), (2.1)
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where f(t) is a rapidly fluctuating random term. A mathematical formulation
of such a highly irregular function, is that f(¢) and f(t') are statistically inde-
pendent when ¢ # t'. Hence, the correlation function (f(¢)f*(t + 7)) = 2D4(7),
D being the diffusion coefficient, is zero everywhere except at 7 = 0 where has
the rather pathological result of an infinite variance. Furthermore, we also
require that f(¢) has zero mean, i.e. (f(¢)) = 0, where (---) means average
over different noise realizations. An object with these properties is known as
complex white Gaussian noise.
The formal solution of Eq. can be expressed as

t
o(t) = o(0)e 7+ + / dt' f(t")e 1) (2.2)
0

If one assumes that the initial condition is deterministic or Gaussian dis-
tributed, then mean value and variance of ¢(¢) read

1) = (o(O)e ", (2.32)
var{o(t)} = (o(t)o”(t)) — (o))" =
D —2y1t 2
= (var{a(O)} - 7—L) e + o (2.3b)

Making use of these results, the correlation function of o(¢) can be expressed
as follows

(o(t)o* (t+7)) = [[{o(t)]* + var{c(t)}] e LI (2.4)

In the case of a stationary process o, being that in which statistical properties
are time independent, we have

D
(os(t)os(t+ 1)) = tlim (o(t)o*(t+ 7)) = —e I (2.5)
which describes an Ornstein-Uhlenbeck process that displays a more realistic
correlation function when comparing with a white noise f(¢). Note however
that the o, process tends to a white noise in the limit of large damping

Vi {os(t)ok(t + 7)) —— 2D (7). (2.6)

Y100

The consistent semiclassical description of quantum noise must be formu-
lated in such a way that the noise terms acting on the fields and dipoles always
preserve the uncertainty relations of the corresponding quantum operators.
Let’s assume that at ¢ = 0, var{o(0)} = 3. From Eq. (2.5), the variance of o,(t)
reads

var{os(t)} = —. (2.7)
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Hence, we assure that var{c(f)} = i only when D = v,/2. In dissipative
systems, the loss of quantum noise must be compensated by a corresponding
fluctuation of the time derivative. This rough justification can be rigorously
presented in terms of the quantum mechanical fluctuation-dissipation theo-

rem [9, [10], that determines

(@Ot +7)) =710(7) . (2.8)

In the case of an ensemble of V; dipoles providing a macroscopic material
polarization P = . 0;, Eq. is generalized to (F(¢t)F*(t + 7)) = v Nod(7).

In many calculations, it is useful to define the Fourier transform of a white
Gaussian noise f(t) as

[e.o]

Fw) = / dt f(t)e " 2.9)

—00

The Fourier transformed white Gaussian noise f(w) has a correlation

(f(w)f* (W) =2Ds(w — ). (2.10)

A more convenient way to describe a generic stationary noise process G(t)
is by means of the spectral density function at frequency w [11]

Sa(w) = /00 (Gy(w)GE (W) dw' = /00 (GGt + 7))e ™ dr, (2.11)

[e.o] —00

a result of the Wiener-Khintchine theorem. In the case of a white noise,
Gs(t) = f(t), the spectral density function reduces to Sy(w) = 2D, which im-
plies that Langevin noise sources have a white (frequency-independent) spec-
trum. Finally for the Ornstein-Uhlenbeck process o,

2D

= — 2.12
e (2.12)

So(w)

which display a Lorentzian lineshape function. The generalization of Egs.
(2.11) and to a linear system of n differential equations is given in Ref.
[11]. A review of stochastic processes and its application to physical systems
can be found in Ref. [12]. Finally, the It6 transformation from the complex
field amplitudes to power and phase representation is described in Appendix
B.

Spontaneous emission factor and rate

There exists a variety of definitions to give account of the amount of quantum
noise. In this section we summarize some important quantities related to
noise measurements.
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The spontaneous carrier lifetime 7,,, defined as the time required for a
carrier in a two level atom to decay to the ground state is [10]

1 1 4w4
-1 _ 0 12
T == ———>d 2.13
P i hwq 4me 3c3 ( )

where 7w, is the transition energy, ¢ = ¢g¢, the dielectric constant of the
medium and d., is the dipole’s matrix element.

The spontaneous emission rate, at resonance, can be expressed as (/7
where (3, < 1 is the fraction of spontaneously emitted photons that go into
the lasing mode. In addition, §yN/7,, represents the number of spontaneous
emission events during a second that couples with the lasing mode, N repre-
senting the degree of inversion. The spontaneous emission factor in a QW is
given by

&:9_3( o )Egéw, (2.14)

Tsp gan U_l AJ_ AN

vy being the volume of the elementary lattice cell, 0~ A, a geometrical correc-
tion that stands for the volume of the optical mode within the QW layer, and
go the dipole-field interaction rate

Wo

—|dey] -
2hev [dev|

go =

Since only a small fraction of the spontaneous emission processes successfully
couples with the field mode, we can define an effective dipole-field interaction
rate in QWs, at resonance, goi in analogy to Eq. (2.14)

Jow =7L750 - (2.15)

Typical values for these parameters at hwy ~ 1.5eV are 75, = v 1 = 107",
v o= 108s7, go = 2 x 1087, vy = 4 x 1072 m3, 0714, ~ 107“m3. Hence,
the resulting spontaneous emission factor is 3, = 1079, and the coupling rate
gow = 108s™!. With this choice of parameters, we get a correct order of mag-
nitude of 10"2s™! in the product 5, N/7,.

2.2 Polarization Dynamics

The light emitted by an EEL is usually transverse electric (TE) or mag-
netic (TM) linearly-polarized along the heterojunction plane of a rectangular-
shaped resonator. However, the polarization in VCELs in not so well stabi-
lized due to their inherent circular geometry. For this reason, it is known
that VCSELs display a number of polarization instabilities, such as polar-
ization switching when the injection current is increased and excitation of
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Figure 2.1: Band structure of a strained quantum well (a) conceptually replaced by a four-
level system in the spin flip model (b). Allowed transitions, recombination and mixing mech-
anisms are indicated in this figure.

transverse modes as well. These aspects motivate the investigation of the un-
derlying mechanisms governing the polarization mode selection in VCSELs.
Polarization fluctuations reflect themselves in the properties of the polariza-
tion dynamics. Consequently, a thorough understanding of the polarization
fluctuations induced by quantum noise should provide a valuable theoretical
prediction to be contrasted with experimental results.

The polarization of laser light is of quantum nature and it originates in the
spin sublevels of the lasing transitions between the conduction and valence
bands of the seminconductor material. In a surface-emitting laser the light
propagates along the quantization axis of the QW. Hence selection rules for
the optical transitions are restricted to changes in the total angular momen-
tum of AJ, = +1, corresponding to the emission of a right and left circularly
polarized photon, respectively. The band structure of a QW can be ideally
replaced by a plenty of coupled two level systems labeled by its transverse
electron wavevector k. A considerable simplification consists in analyze the
band structure of direct band-gap strained QW around k;, = 0. The original
spin flip model (SFM) [13] considers the optical transitions in this four level
system [See Fig. 2.1]. The SFM is based on a generalization of the gas laser
theory to the magnetic sublevels of the conduction and heavy-hole bands of
a QW. The conduction band is replaced by two levels populated by electrons
with opposite spin orientations and angular momenta J, = +1/2. In the same
way, the heavy hole band (HH) is replaced by two levels populated by holes
with opposite spin orientations and J, = +3/2. As already commented, due to
the quantum-mechanical selection rules, the interaction with the active ma-
terial is diagonal in the basis of circularly polarized states. It is then natural
to split the total carrier density into spin-up and spin-down carrier reservoirs.
The population inversion in the two spin channels is given by N, = N{ — N7,
where N¢ stand for the population in the conduction spin subbands while NV
in the valence spin subbands. The split-off band, with higher energy than the
heavy-hole band, does not become optically active until quite high inversion
densities, thus in first approximation it can be disregarded. In addition, it is
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Figure 2.2: (a) Polarization of the field vector in the VCSEL cavity. Arrows represent the
carrier transport from the top to the bottom electrical contacts. The oxide layer determines
the active region and the shape of the optical mode which is assumed Gaussian. (b) Standing
wave in the longitudinal direction.

assumed that the two spin channels are energetically degenerated.

The evolution of the electric field within the VCSEL cavity is governed by
the well known Maxwell’s equations [8]], that lead to the wave equation in
Fourier domain

w? . o 2o w? P w)
{V2 + = [n2(F w) + 0y (7 w)) } E(Mw)=——

. Rwl(m),  (216)

V? =92+ 0; 4 07 and ¢ = 1/(gop0). ne(7;w) stands for the refractive index of
the passive medium filling the cavity, while «;(7; w) represents the absorption.
75(77 :w) is the active region contribution to the material polarization being non-
vanishing only in the QW layer(s). The rectangle function Ry, (2) delimits the
position of the quantum well(s). We also assumdﬂ that the field is totally

polarized in the plane transverse to the cavity axis and propagating along the
longitudinal direction [Fig.

on
—~
i

S~
N—

Il

F(2) [Aa(FL )3 + Ay (FLs )] e (2.17)

f(2) describes the standing wave of the electric field between the top and
bottom Bragg mirrors. Since DBR mirrors are nearly perfect reflectors,
fn(2) = sin(g,z) with ¢, = nn/L, L being the physical separation between
the two mirrors. The QW layer has to be placed close to an anti-node of f(z)
in order to maximize the overlapping with the electric field. Q = cq,/n. is
the longitudinal cavity-mode resonant frequency. A, , stand for the slowly-
varying (with respect to 2) linearly-polarized components of the electric ﬁeldﬂ
Although the cavity is circularly symmetric, the constituent materials have a

IThis hypothesis is justified in gain-guided and in weakly index-guided VCSELSs, and being
the exact solution of Maxwell’s equations in the limit of weak lateral guidance.

ZNote that we have used the following criteria to define the Fourier transform, A(w) =
J25 dt A(t)et
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cubic symmetry. Thus, the unitary cartesian vectors 7,3 usually correspond
to the underlying crystallographic axes. It has been already commented that
the circular basis is the natural representation for the lasing transitions in
QWs. The electric field expressed in the circular basis reads

—

E(Fst) = F() (AL D, + A (Pt ]e™, 2.18)
where components and unitary vectors transform as

A +iA, e, TFié,

Ap =20y =
W2 Y

A further step in the VCSEL modeling requires to introduce the material
polarization which describe the interaction among the electric field and the
active material. The evolution of the slowly-varying components of the ma-
terial polarization P, and the evolution of the carrier populations N can be
determined using the density-matrix formalism [7] applied to a four level sys-
tem. In absence of transverse effects, the polarization dynamics of a single
longitudinal and transverse mode VCSEL is described by the spin flip model,
which original equations read [13]]

(2.19)

AL(t) = —kAr —igowPs — (Ya +i7,)Ax + Ga, (1), (2.20a)
Po(t) = —v.(1—i0)Py+igow (N £n)AsL + Gp, (1), (2.20b)
N@t) = —y(N —o0)+igow [A3P + A*P_ —cc] +Gn(t), (2.20c)
n(t) = —ysn+igow [ATPL — A*P_ —cc.] + Gy(t). (2.20d)

A4 are the complex slowly-varying amplitudes of the electrical field, written
in terms of the circular polarization components. P, are the complex circu-
lar components of the material polarization that show a diagonal form only
in this basis. N = (N, + N_)/2 is associated with the total population inver-
sion between the conduction and valence bands and n = (N, — N_)/2 is the
difference in population inversions of the two spin channels separately. The
total population inversion decay with rate ~, while the differences in popu-
lation inversions n relaxes with spin flip rate ~,, introduced at this level as
a phenomenological parameter. § = (w, — Q)/v, represents the normalized
detuning of the gap transition frequency w; with respect to the longitudinal
cavity mode resonance (). The material polarization decay rate is 7, and the
cavity decay rate is x given in Eq. (1.3). gow stands for the effective coupling
constant between the material dipole and the electric field given by Eq. (2.15).
The pumping parameter o is related to the injected current level.

The physical meaning of the different (deterministic) terms in Eqgs. (2.20a)-
follows from the general interpretation of rate equations. Eq. (2.20a)
basically represents a balance between the material gain, provided by ~
Im P, and cavity losses; while the imaginary terms such as ~ Re P induces a
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non-linear frequency shift. The balance between the decay of material polar-
ization and the excitation of dipoles (electron-hole pairs) due to the presence
of an electric field is described through Eq. (2.20b). In Eq. (2.20¢), the total
carrier population increases due to current injection, and it decreases due to
recombination of carriers, being either spontaneous or stimulated recombina-
tion. Finally, Eq. gives a detailed balance between the difference in
number of stimulated recombination processes that take place in each spin
channel separately; in addition, spin flip processes introduce a damping in
this difference.

In a real situation the VCSEL structure is not perfectly symmetric un-
der the interchange of the = and y directions due to, for instance, imperfec-
tions during the fabrication. This effect is accounted through the linear cavity
anisotropies. The amplitude anisotropy v, is referred as dichroism while ~, is
the phase anisotropy or birefringence. The effect of the dichroism is to intro-
duce different losses depending of the polarization orientation while birefrin-
gence introduces different refractive indexes. Several mechanisms contribute
to birefringence: mechanical strain [14], linear electro-optic effect [15], and
elasto-optic effect [16]]. On the other hand, the application of strain in the QW
plane introduces different gain for the two polarization components [17,, [18].
The repercussion of these two important parameters, v,, 7,, will be discussed
in detail in the next section.

The terms G4, , Gp,,Gn, G, represent semiclassical Langevin noise sources.
Gp. model the quantum fluctuations of the photon-dipole interaction. From
Sec. 2.1, we have that (Gp. (t)Gp, (t')) = 7.(N £n)i(t —t'), N» = (N £n) being
the dipole number in each spin channel. Alternatively, Gp, can be expressed
in terms of complex random numbers ¢/, (¢), with zero mean (¢, (¢)) = 0 and
correlation (& (¢)% (') = 20(t — t') by means

Gp. (t) =/ %(N +n) €L(1). (2.21)

(Ga. ()G, (t')) is proportional to the mean number of thermal photons that
is negligible around A = 0.85um. G and G,, include among others, the pump
fluctuations statistics and the shot noise from the time uncertainty in the
recombination processes. We neglect these fluctuations, i.e., do(¢) = 0; hence
the non-vanishing Langevin sources are only Gp, .

Spin-relaxation rate

A crucial parameter of the SFM in determining the polarization of the emit-
ted light is the spin-relaxation time 7,. Various spin-relaxation mechanisms in
semiconductor QWs have been proposed, [19, 20, 21] and therein references:
D’yakonov-Perel’ (DP), Elliot-Yafet (EY), and Bir-Aronov-Pikus (BAP). In the
DP process, the spin-orbit effect causes the splitting in energy of the conduc-
tion sub-bands that in conjunction with the lack of inversion symmetry causes
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the re-orientation of the spins. In DP, 7, ~ E; 2, with E|. the first electron con-
finement energy in the QW. The EY process leads to spin-relaxation due to the
mixing of the valence-band states into the conduction-band. Finally in BAP,
the spin-flip appears as consequence of an interchange of scattering interac-
tion between electrons and holes. In both EY and BAP processes, 7, ~ E;.,
although the relative importance of BAP is significant only below 100K. The
predictions of these models are contrasted with experimental determination
of the spin-relaxation time. One possible way consists in optically pump the
active media with circularly polarized pulses p.(t) and to analyze the circu-
larly polarized emission. In the case of optical pumping, we neglect the stim-

ulated recombination terms and we have

dN. 1
C () YN F (N, V), (2.22)
Ts
since n = (N, — N_)/2,
dn 1
2 = 5P+(t) = p-(1) — s,

and v, = v + 27, '. From experiments, the main contribution to 7, in GaAs
QWs at room temperature is the DP process with typical values of 7, ~ 40ps
(v, ~ 50ns~!) for electron confinement energies around £, = 100meV [21].
However, the most plausible candidate for the spin relaxation in InGaAs/InP
QWs (A =~ 1.5um) at room temperature is the EY process due to their smaller
band-gap. In this case, typical values at room temperature of 7, =~ 5ps (7, ~
400ns~!) for confinement electron energies £, = 50meV [20] were found.

It is important to remark that ~, correspond to the spin relaxation rate
for electrons in the conduction band. Spin flip for holes is usually neglected,
since sub-picosecond spin relaxation time is found at room temperature. The
implications of a finite spin flip rate for electrons in the polarization properties
of QW VCSELSs will be discussed along this work.

Adiabatic elimination

From experimental measurements of the spin relaxation rate in QWs, the
different rate constants in Eqs. (2.20a)-(2.20d) verify that

Ins '~y <y Sk y ~10'ns™t

From this time scale analysis, we conclude that the material polarization cor-
respond to the dynamical variable that relaxes with the faster time scale.
Hence, it is justified to adiabatically eliminate the material polarization as-
suming that reaches nearly instantaneously its steady state, i.e., P, ~ 0 in
Eq. (2.20D). In this limit, we obtain an expression for P, that reads

o (Nxm) G, (1
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Upon replacing Eq. (2.23) in to the remaining equations, rescaling the dy-
namical variables by

D

NS

N, d

2
g _ Jow

_n7 g: —7
K v (1 +62)

and performing a change of reference frame for the electric field from Q2 to

Q+ ko
/2 )
E:t = _ge—metA:t 7
Y

we arrive to the following rate equations describing the polarization dynamics
of single longitudinal VCSELs in presence of spontaneous emission noise

Ei(t) = w(14ia)[D+d— 1By — (Yo + i) B + Fi(t), (2.24a)
D(t) = —v(D—p) =D+ d)|E;[> = y(D - d)|E_|* = Fp(t), (2.24b)
d(t) = —~ed—~(D+d)|EL|)? +~(D —d)|E_|* — Fy(t). (2.24¢)

A correct description of the sc dynamics requires to identify the normalized
detuning ¢ with the linewidth enhancement factor of semiconductor lasers
a ~ 2 — 4. The a-factor is defined through

8NIH1X(W, N)
OnvRe x(w,N)’

o =

with x(w, N) the optical susceptibility of the active material, Py (w) = eox(Q +
w,N1)E+(w). The linewidth enhancement factor is the responsible of the
phase-amplitude coupling and plays an important role in phase induced insta-
bilities [22]. The rescaled injection current p is such that at threshold i, ~ 1.
This reduced verion of the SFM constitutes a non-linear system of 6 real ordi-
nary differential equations (ODEs). In contrast to the traditional formulation
of rate equations in EELs [4]], in the SFM phase and amplitude variables can
not be described separately, but they are directly coupled through the linear
anisotropies and through the a-factor. The Langevin noise sources resulting

from the adiabatic elimination of P, read

Felt) = \/Bar(D%d) Ex(t). (2.252)

Foy® = |0+ B
+1/Bpy(D —d) E_E (t) + c.c.] . (2.25b)

£+ (t) are two independent complex white noise terms with the same properties
than ¢, (t) in Eq. (2.21). The negative sign of the terms F ; in Eqgs. (2.24b) and
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(2.24¢) can be interpreted as the result of carrier burning when a spontaneous
event of I, takes place. In terms of the new variables, the rescaled fraction of
spontaneously emitted photons that goes into the lasing mode reads

_ Bo k
Bsp = Ttady (2.26)

Accordingly, the rescaled spontaneous emission rate is R,, = 4v03s,D¢, Dy ~ 1
being the degree of inversion. To get an impression of the magnitude of the
rescaling, a noise level in the original equations of (4A*)sg;, = 1/2 corresponds
to (EE*)sor = Bo/(1+ a?) = 107" in the new variables.

2.3 Linearly-Polarized Solutions

We start our discussion, by analyzing the steady-state solutions of Egs.
(2.24a)-(2.24¢). In particular, monochromatic linearly-polarized (LP) light can
be expressed by

Eu(t) = Qeititeo) (2.27)

where () is a real amplitude, w is the nonlinear frequency shift with respect
the longitudinal resonance (2, ¢ is an angle that describes the orientation
of the LP states, and ¢, is an arbitrary global phase for the electrical field.
There exist two different solutions: a LP solution along the Z (3) axis when
Y = 0 (p = 7/2). Therefore, LP states can be regard as phase locking of the
two circular components to a relative angle 2¢. In addition, D(t) = D, and
d(t) = dy in the steady state. Upon inserting these conditions in Eqs. (2.24al)-
(2.24¢), and neglecting the noise terms we find

w = _5(%)_@’7@)7
Dy = 1+ev,/k, (2.28)

¢ = 1(—1) when a % (9)-LP solution is considered. In addition

2 E(M_D())
Q - 2 DQ )
d = 0. (2.29)

The birefringence splits in frequency the two LP solutions, that are distanced
the order of 2v,. When v, > 0, & (9) is called the low (high) frequency mode.
It is worth remarking that for a perfectly symmetric VCSEL, i.e., 7, = 0 and
v, = 0, any polarization orientation i) provides a possible LP state.
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2.4 Linearized Spin Flip Model

In this section, we present the equations governing the linearized dynamics
close to an arbitrary LP solution. The resulting linear systems are the basis
for the study of fluctuations in chapter 3. Moreover, a fundamental question
is to understand the role of the spin flip in determining the stability of the
LP solutions. The stability and fluctuations of a LP solution are studied by
writing it as,

Ei(t) = (Q+ax(t)e™™),
D(t) = Do+ A(t), (2.30)
d(t) = do+4(1),
with Q, 1, Dy, dy given in Sec a+ are complex perturbations of the electric
field, while A and ¢ stand for real perturbations of the carrier variables. A
linear stability analysis for the perturbed LP solutions provides a system of

equations that decouple for the new variables, S =a, +a_and R=a, —a_ .
The first subset, {5, 5*, A}, describes the fluctuations of the total intensity

S 0 0 k(l+ia)Q S
s | = 0 0 k(l—ia)Q s | . (2.31)
A —yDo@ —vDo@  —yp/Do A

From this first subset, two eigenvalues determine the frequency and damping
of the relaxation oscillations (ROs) that undergo the the total intensity, i.e.,

A+ = —I'g £ iQg. Their expressions are
Tp= - Q% =2ky(u— Dy) —T%. (2.32)
2D,

The remaining [’ eigenvalue is zero and it is associated with the arbitrariness
in a global phase ¢, or equivalently, with the invariance in temporal transla-
tions.

The second subset, {R, R*,}, provides information about the polarization
stability.

R +2(7, + i) 0 2k(1 + ia) R
R | = 0 £2(y, — i) 2k(1 —ia) R* | . (2.33)
5 —7DoQ —7Do@  —(7s +27Q?) 0

An alternative way to study the polarization stability is to introduce the po-
larization orientation angle ¢ and the ellipticity angle x through the real and
imaginary parts of the complex amplitude difference R(t)

R+ R R—R*

=10 ,

3Note that under multitransverse mode operation additional RO frequencies of the total
intensity associated with different transverse modes might appear [23].

ox
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Figure 2.3: Linear stability of the linearly polarized solutions in the plane current-
birefringence. The regions are: x-LP state stable (x), y-LP state stable (y), both states stable
(bistable). The parameters are: a = 3,y = 1ns~?, x/v = 300, v, /v = —0.1, and ~, /v = 100.

In any case, the second subset provides a third order characteristic polynomial
that reads

D) = Nt (5 +29Q% F dy,) N +
4[24 92 + QDo F 7a (1. + 29QY)] A+
4[2 4792 (v + 29Q) F8K1Q%Dy (v + ) . (2.34)

The signs —, + are associated with the stability of z, y - LP states, respectively.
D()) = 0 determines the polarization stability, i.e., the state is unstable when
there exists at least one eigenvalue with Re A\ > 0, while the state is stable
when Re )\ < 0 for the three eigenvalues.

Polarization switching

Polarization switching (PS) takes place as consequence of a change in the sta-
bility of the polarization states, for instance, when increasing the injection
current. Let us consider that v, < 0, therefore the z-LP state has the lower
threshold and it is selected when the current crosses the threshold. Both z-LP
and y-LP states are stable below PS (coexistence region) except for currents
close to threshold, due to the presence of v,. Increasing further the injection
current, the 2-LP solution becomes unstable and a PS from the low frequency
to the high frequency mode takes place. This type of switching, is successfully
explained within the SFM [24, 25], and it is commonly referred as nonther-
mally induced PS since it occurs at constant active region temperature [26].
We remark that this type of switching is restricted to finite value of the spin
flip rate 75, and non-vanishing o and ~,. Another type of PS that is commonly
present in experiments [14, 27, 28], namely, the thermally induced PS arises
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from the temperature dependence of the gain difference between the two po-
larization states. An unified description of thermal and nonthermal induced
PS has recently been introduced in terms of an extended SFM in [29), 30].
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Figure 2.4. (a) Injection current increased in steps from below to above threshold. (b) Typ-

ical polarization switching from the low to the high frequency solution,taking place across

elliptical and dynamical states. The same parameters than Fig. except for v, = 3ns™'.



Chapter 3

Semiclassical Analysis of
Fluctuations

3.1 Introduction

MODE partition noise (MPN) in semiconductor lasers [31] is detected by
means of relative intensity noise (RIN) measurements and gives fun-
damental information on the dynamical properties of these devices. From the
point of view of applications in optical communications, the degradation of the
signal to noise ratio associated with MPN fixes limits on receiver sensitivity
and bit error rates. Vertical-cavity surface-emitting lasers (VCSELSs) operate
on a single longitudinal mode, but multitransverse mode operation is com-
mon. MPN among these transverse modes and anticorrelated fluctuations of
the modes have been described in different experiments and RIN measure-
ments [32]-[41]. They have also been theoretically characterized [42, |43, 44].
The basic physical mechanism for this phenomenon is the same as for MPN
among longitudinal modes of edge-emitting lasers, that is, spatial hole burn-
ing with modes competing for the same spatial carrier reservoir. The polar-
ization of the light emitted by VCSELs is not as well stabilized as in edge-
emitting lasers and VCSELSs are known to have a number of polarization in-
stabilities [24]. Transverse modes can have different polarization, but still
MPN among different transverse modes is mostly caused by spatial effects.
A more subtle form of MPN occurs in VCSELSs operating close to threshold.
In this situation VCSELs lase in the fundamental transverse mode, but MPN
arises from the competition of the two independent polarization components
with essentially the same spatial profile. The effect of polarization fluctua-
tions in the total intensity noise can significantly degrade the RIN character-
istics [45] in a system with polarization sensitive elements. The importance of
the fluctuations in the polarization component perpendicular to the dominant

IThis chapter is mainly based on the paper Polarization resolved intensity noise in vertical-
cavity surface-emitting lasers. J. Mulet, C. R. Mirasso and M. San Miguel, Phys. Rev. A 64,
023817 (2001).
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one has been characterized in detail [46, 47, 48, [49]. Evidence of anticor-
related fluctuations of the two polarization components of the fundamental
transverse mode has also been reported [49, 50] [See Fig. [3.1]].

Due to their high quantum efficiency, low threshold, and single mode op-
eration, VCSELs have been proposed as good candidates for the production of
quantum squeezed light. In fact, production of squeezed light from VCSELSs
has been reported by several groups [35], 41, 51]]. In this context an important
question that has been addressed is the relevance of polarization partition
noise (PPN) in degrading or achieving quantum squeezing [52]].

A standard model for the study of polarization dynamics of VCSELs is the
spin flip model (SFM), introduced in Chapter 2, and reduced versions of it
[563]. Two important parameters of the model that enter in to the description
of the dynamical coupling of the two polarization components are the cavity
birefringence and the spin flip rate. The latter measures the direct coupling
between the two groups of carriers with opposite spin that recombine into
photons of opposite circular polarization. Previous studies of polarization fluc-
tuations [46, /49, 52] take the SFM as a starting point. But, invoking the limit
of fast spin flip rate and large birefringence, the SFM is reduced to a sim-
ple model with one degree of freedom or to the rate equations for a two-mode
laser [31]]. However, for VCSELs with small birefringence there is experimen-
tal evidence of the role of the nonlinear anisotropies associated with a finite
spin flip rate. These effects are seen at least in three different characteri-
zations of polarization fluctuations: A polarization type of four-wave mixing
detected in the optical spectrum, polarization resolved intensity noise, and
difference in the frequency splitting of the two polarizations at both sides of
a polarization switching (PS) [46, 48]. In addition, and also for VCSELs with
small birefringence, there is evidence of polarization switching [54] caused
by phase-amplitude mechanisms of nonthermal origin described by the SFM
[24, 125] 26, 29]. These results motivate the detailed analysis of the complete
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Figure 3.1: (a) Intensity noise of the 5um device measured through a Glan-Thompson polar-
izer. (b) Normalized cross correlation between the two degenerate polarization modes in the
5um device. Extracted from Ref. [50].
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SFM presented here. Such analysis allows us to gain a full understanding of
the dependence of polarization fluctuations on birefringence and spin flip rate
in different ranges of values of these parameters.

In this work, we study the polarization resolved intensity noise of VC-
SELSs operating in the fundamental transverse mode. We investigate the dy-
namical origin of anticorrelated polarization fluctuations. Such correlations
emerge from mechanisms of polarization coupling and competition that are
independent of spatial mode profiles. Anticorrelated dynamics of the polar-
ization components also manifests itself in chaotic regimes caused by optical
feedback [55]. We consider here the polarization dynamics within a semi-
classical approach. This should give the necessary dynamical understanding
for detailed studies of the quantum properties [56]. Our analysis focuses on
the two circularly polarized components of the electric field. These are the
natural variables for the nonlinear dynamics of an active semiconductor ma-
terial. They are directly phase coupled by the cavity birefringence and also
coupled through the carrier populations mixed by the spin flip. Focusing on
the circularly polarized components, we are able to obtain explicit analytical
expressions for their power spectra (in the approximation of linearized fluctu-
ations). The competing roles of birefringence and spin flip rate become clear
from these expressions. Our results for the circularly polarized components
are discussed and compared with the polarization resolved spectra of the lin-
early polarized (LP) components obtained by a numerical analysis.

This chapter is organized as follows. In Sec. we discuss the regimes
with qualitative different dynamical operation in the SFM, associated with
different values of anisotropies and spin flip. In Sec. we present our
results for the polarization resolved intensity noise for the circular and linear
components on both sides of a polarization switch. In Sec. we present
the power spectra of the polarization fluctuations in the different regimes of
operation. In Sec. [3.5 we discuss the role of birefringence and spin flip rate
by visualizing the polarization fluctuations on the Poincaré sphere. In Sec.
3.6| we give a quantitative description of the anticorrelation of polarization
fluctuations for circular and linear polarization components. We analyze the
whole range of frequencies, from small frequency to frequencies beyond the
relaxation oscillation frequency.

3.2 Regimes of Operation

The dynamical behavior, in the approximation of linear fluctuations, of any
non-linear system is determined from the eigenvalues {\;} and eigenvectors
{C;} of the linearized system around a stable fixed point. Hence, we focus in
regions where at least one linear polarization is stable, Re{\;} < 0 V. Dif-
ferent domains of operation may be characterized by analyzing the eigenval-
ues and eigenvectors. For instance, a (negative) real eigenvalue determines
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the damping of the relaxation while a pair of complex conjugated eigenval-
ues determine the damping and oscillation frequency. In turn, the associated
eigenvectors determine the direction of faster contraction in the phase-space.
In presence of fluctuations (noise), the understanding of the deterministic be-
havior is useful to interpret the noise spectra in each of these regions, as will
be shown later.

A detailed analysis of the possible regimes of operation in the SFM has
been described in [24], 57]], discussing the effect of the spin flip relaxation rate,
birefringence, and current injection. The behavior of the total intensity is al-
ready understood. From Eq. (2.32), we have oscillations at frequency Q2 and
damping rate I'y. Hence, the main issue is to understand the polarization be-
havior described by the linear system in Eq. (2.33). Despite of narrow regions
where the polarization is unstable, and other ones without oscillations, two
qualitative different situations aris The first regime of operation, referred
as polarization relaxation oscillations (PROs) [24], is favored in the case of
small linear anisotropies. The second regime, referred as coupled oscillations
(COs), tends to dominate for large spin flip rates. Proceeding along the lines
described in [24], we summarize the behavior in each of these two regions. It
is worth remarking that the asymptotic analysis, given in this section, pro-
vides the understanding of each region separately; however the way in which
these two regions are connected is a matter of parameters. Some examples
can be found in Fig. where we represent the regimes of operation in the
current vs. spin flip portrait for different situation of parameters.

A. Small linear anisotropies

We start our discussion describing the limit of small linear anisotropies. In
this limit, the birefringence verifies that v, < v < 7, < k, while for simplicity
we take 7, = 0. Note that v, = 7, = 0 describes a perfectly symmetric VCSEL,
i.e., any linear polarization direction is allowed. The eigenvalues of Eq. (2.34),
D(A) = 0, can be expanded in power series of ~,, that at first order read

A = 2eay,,
o Oé’)/p
o+,

2The limits & > 7,7,,7s and ¥ ~ 75 > k,7, also correspond to qualitative different
regimes; however being unusual in sc lasers. In both cases the typical time scales for the
decay of the electric field x and those for the carrier variables ~, v, decouple. Consequently,
the exchange of energy between the two subsystems is unfavored avoiding the appearance of
oscillations.
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Figure 3.2: Regions of operation represented in the phase diagram current vs. spin flip. The
parameters are: o = 3,7 = 1 ns™!, x/y = 300, 7, = 7, = 0 in panel (a). a =3,y = 1 ns™ 1,
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(d). Meaning of the symbols: Polarization relaxation oscillations (PROs), coupled oscillations
(COs), absence of polarization oscillations (NOs), polarization switching current from LF to
HF solution (PS). Note also narrow white regions where no linearly polarized solution is

stable.

with ¢ = +1 for 7, §-LP solutions. \{, are the two non-vanishing eigenvalues
calculated at v, =0

o+ 2 2 .+ 27v(2)2
0 0 +27Q iZ.\/4/6%22_(7 +47Q) '

In the absence of birefringence, the eigenvalue )\, = 0 is associated with
the arbitrariness in the polarization orientation. In the presence of small
birefringence, this real eigenvalue becomes non-zero determining the stability
of the high frequency solution. The eigenvector associated with )\, lies in the
direction of the polarization orientation and decouples of the fluctuations of
the ellipticity and carrier difference d(¢). The remaining eigenvalues {\;»}
are complex when

Vs <7 = V8ky(u—1) —y(u—1),
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Figure 3.3: Evolution of the effective birefringence as function of the injection current in
the limit of small linear anisotropies. Polarization relaxation oscillations (PROs) dominate
the dynamical behavior at high injection currents. Since polarization switching occurs very
close to threshold 1 ~ 1, the effective birefringence corresponds to the stable high frequency
solution (§). Parameters: v = 1 ns~!, a = 3, k/y = 300, 7, = 0, and v, /v = 50.

which implies small to moderate values of v, and currents relatively far from
threshold. In such a case, |Im)\; 5| describes the oscillation frequency that
undergo the ellipticity angle and d(¢), known as polarization relaxation oscil-
lations (PROs). Fig. depicts the evolution of the imaginary part of the
eigenvalues )\, 5, for small values of the birefringence, when the current is in-
creased from threshold. Similarly to ROs, the PROs frequency grows with the
square-root of the distance to its threshold, ~ ( — p¢)'/2. Finally, for larger
spin flip, v, > ~¢, the polarization fluctuations experience damped relaxation
without any kind of oscillation.

B. Large spin flip rate. Non-linear anisotropies

Another interesting limit is when the spin flip relaxation rate is large, i.e,
v < 7 < kK < 7s. There exist two complex eigenvalues and a real one. The
real eigenvalue is \y ~ —v, and describes the damped relaxation of d(¢). The
two complex conjugated eigenvalues of Eq. (2.34), are expanded in power
series of 7, !. They have two different contributions

)\1,2 = >\lin + >\non .
The linear contribution, arising in the limitﬂ of 75 = 00, 18 Njjp, = 267, £ 12,

and represents oscillations whose damping and frequency are exclusively de-
termined by the linear anisotropies. The non-linear contribution )\,,, is the

3We note that the same result for )\;;,, is obtained close to threshold, where Q? is treated
as a small parameter, regardless of the magnitude of ~,.
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result of a finite value of +,. It is common to define the non-linear dichroism
and non-linear birefringence [47] as the real and imaginary parts of \,,,, i.e.
Anon = Ynon T iwnon. Finally, the two complex eigenvalues read

1
Ao = 287, £ 127, — 77m(u — Dy) [1 £ iaesign(y,)] - (3.2)

The imaginary part of these eigenvalues describes coupled oscillations (COs)
of the polarization angles. The approximate expression for the COs frequency
in the limit of large ~, is then

2
O = linhsal = 21,1 F Lawle = Do) +0 (l) | 33)

S S

where ()p decreases (increases) for the LF (HF) mode corresponding to the
sign —(+). In contrast to ROs and PROs, the COs frequency varies linearly
with the distance to threshold, i.e. ~ (1 — 1). From the last expression, the
Qp frequency E| can be identified with the birefringence splitting v, although
modified by the nonlinearities and the spin flip rate. It can be seen that the
nonlinear anisotropies obtained from the adiabatic elimination of d(t) [47, 48]l
coincide, at first order in v/v,, with those predicted by Eq. (3.2). Conse-
quently, these previous works, based on the adiabatic elimination of d(¢) are
unsuitable to describe the dynamical properties within the PROs region we
have described before. In contrast to PROs, where Re \j < 0 determines the
stability, the stability of the LP solutions is now determined by the complex
eigenvalues with Re \; » < 0. At threshold and in presence of dichroism, only
the HF polarization is stable. Increasing the injection current, the role of v,,,
is to stabilize the non-lasing polarization component and increase the damp-
ing of the lasing one.

In the limit of the adiabatic elimination of d(t), polarization switching is
not present. When analyzing the real part of the eigenvalues Eq. (3.2), we
go from a situation where only one polarization is stable to one of optical
bistability when the current is increased. Polarization switching occurs for
moderate values for ~,, reflecting itself in the expression of ~,,, when orders
(7/7s)? are considered. Hence, in this work, we deal with the dynamics of d(t)
being capable to describe, without any restriction, the fluctuations in both
PROs and COs regimes. When restricting the analysis to moderate values
of ~,, we observe in Fig. that Eq. still provides the qualitative evo-
lution for the real and imaginary parts of the eigenvalues \,,. However, a
polarization switching (PS) from the low frequency to the high frequency so-
lution is observed at finite injection currents. As a consequence, the effective
birefringence increases with a discontinuity at the PS current.

40 p is also referred as effective birefringence splitting.
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Figure 3.4: Effective birefringence (a) and effective dichroism (b) as function of the injec-
tion current for three different spin flip rates. PS denotes the position of the polarization
switching. Below PS we consider a low frequency LP solution, while above PS only the high
frequency solution is stable. For small v, and below PS, a transition from COs to PROs takes
place. Above PS and for large 7, the dynamical behavior is dominated by COs. Parameters:
y=1ns"',a=1,k/y=150,v,/v = —0.1, and ~, /v = 10.

Optical spectrum of the non-lasing component

The physical interpretation of the non-linear anisotropies becomes evident
when analyzing the frequency splitting between lasing and non-lasing com-
ponents of a LP solution. For instance, let us consider fluctuations around a
stable z-LP solution. The circular components of the optical field read

Ei(t) = [Q + ax(t)] e,

with w, = —v, + a7, being the frequency of the lasing z-component. Thus, the
non-lasing component of the electric field reads
— , .
E,(t) = — [ay(t) —a_(t)] e“"" ~ R(t) ™",
y(t) 7 a4 (t) — a—(t)] (t)

with R(¢) being solution of Eq. by proper addition of Langevin noise
termﬂ For the sake of simplicity and without loss of generality, we assume
that the characteristic polynomial associated with R(¢) have a real eigenvalue
Ao and two complex conjugated A\, = A, eigenvalues, as those described in
Sec. [3.2B.

A general solution of Eq. (2.33), to a perturbation applied at ¢ = 0, can be
written as

Ey(t) — [Aekot 4 (Beilmx\ct 4 Cefilmx\ct)eRe)\ct] eiwzt ) (34)

with A, B, C integration constants to be determined from the initial condi-

5For a description of the optical spectra in VCSELs see for instance [58]]
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Figure 3.5: Schematic representation of the optical spectra of the lasing (L.C) and non-lasing
components (NLC) of the electric field. NLS denotes the position of the orthogonal lasing
solution. The meaning of the other symbols is discussed in the text.

tions. The optical spectrum is obtained by Fourier transforming Eq. (3.4)

L X
(= wa)? + 2]

(3.5)

1
[(w—we — [ImA:])? + (ReA.)?)] [(w — we + |TmA|)2 + (ReA.)?)]

The optical spectrum of the non-lasing component (), represented in Fig.
displays two peaks symmetrically located around w, and distanced by 2|Im)\|.
In the absence of non-linear anisotropies, for instance close-to-threshold or for
very large ~,, one of these peaks is located at the position of the orthogonal
lasing solution. As soon as the non-linearities start to play a role, the non-
lasing peaks approach one to each other by an order of 2w,,,. Finally, when
|Im)\.| = 0 lasing and non-lasing component fluctuations merge into a single
peak located at the lasing frequency w,. This last stage is usually linked to
the appearance of elliptic states followed by a polarization switching [25]].

3.3 Fluctuation of the Intensity Components

In order to better understand the intensity fluctuations of the polarization
components, Eqs. (2.24a)-(2.24c) can be translated from the field description
E.(t) to equations for the circular intensities P, (¢) and the phase difference
o(t) = ¢, (t) — ¢_(t) through E.(t) = \/Ps(t)e’*+®. The stochastic transforma-
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tion in the It6 sense [Appendix B] of Eqs. (2.244a)-(2.24¢c) reads

Pi(t) = 2k[D=4d—1]Ps — 2y/ P P_[y,cos ¢ & 7, sin ¢]

+20spy[D £ d] + Fp, (1), (3.6a)
, P , P, .
o(t) = 2kad — (| —=—[Vpcosd — Y,sin¢| + 4| =—[7p cos ¢ + 7, sin ¢
\ P; \/ P
+F(1), (3.6b)
D(t) = —v(D—p) =D +d)Py — (D —d)P- — Fp(t), (3.60)
d(t) = —~d—~(D+d)Py+~(D —d)P_- — Fyt), (3.6d)

with the Langevin terms

Fp, = \/4B,7(D £d)Psép,, (3.72)

F, = 1/58” (D+d), ,/537”7 D—d), (3.7b)

o = %Wﬁsw@w)ﬂfmimsww—d)zﬂ_gp], (3.7¢)

d

ép,, &4, being real white Gaussian random numbers with zero mean and cor-
relation (£,(¢)& (1)) = 0ap0(t — t').

In order to calculate the power fluctuations of the total intensity and cir-
cular components, we linearize Eqgs. (3.6a)-(3.6d) around their steady states.
We have P, = Q% dy = 0, and Dy = 1 & ~,/x when ¢, = 0, 7. For convenience,
we calculate the fluctuations for the total intensity 0 P(t) = § P, (t)+dP_(t) and
the intensity difference dq(t) = §P.(t) — P_(t). The linearized equations can
be straightforwardly solved via Fourier transform, yielding the expressions

[iw +~] &p

s _ 2
0P (w) 2Q*R,y [w— Qg + TR [w—l—QR—FiFR]’ (8.82)
0q (W) = /2Q?R,, x

[£4aQ2 vy, + (iw — €27,) (Vs + iw)] & — 2 (Vs + 27Q2 + iw) o (3.8b)

D(iw)

where I'; and j are given by Eq. and D()) is given by Eq. (2.34); ¢ =
1(—1) stands for a = (y) LP solution. The Fourier transformed noise sources
Ep(w), &,(w) and &y (w) verify that (&;(w)&; (W) = i, 0(w — ') for i, j = P, q, ®.

Power spectra of the total and difference intensities can be straightfor-
wardly derived from its definition in Eq.
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and from Egs. (3.8a)-(3.8b) yielding

_ 2 (W2 + 72)
SP(W) = 20Q R5p [(w _ QR)2 N 1—%} [(w T QR)Q I F%:L] ) (3.9a)
S0 - g, ) FB() .90

C(w)

The functions A,, B,,C are given in Appendix A and R,, = 4v0,,Dy. We note
that the relative intensity noise is defined as the power spectrum divided by
the square of the mean value of the total power, P = (20Q?)%

The power spectrum of the circular components S, (w) can be obtained from
Eqgs. (3.9a) and by taking into account that the noise terms appearing
in the fluctuations 6 P(w) and d¢(w) are independent,

0P + dq
2 Y

Sp(w) -+ Sq(w) .

(SPiE 1

Si(w)=95(w) = (3.10)
It is important to remark that the contribution to the noise of the circular
components arises from the linear superposition of the total intensity noise
Sp and the polarization fluctuations S,. This separation is possible in LP
states because the total intensity fluctuations and the intensity difference
fluctuations decouple (at first order). However, for other states (elliptical [59]
and dynamical states [25]) the decoupled description is not valid requiring, in
principle, the study of a five-dimensional system.

Let P, and P, be the power of each orthogonal component (v = +, v =
— for the circular components, or alternatively u = z, v = y for the linear
components). Since the fluctuation of the total intensity is an scalar we can
express it in any of the two basis

§P =06P, + 0P = 0P, +6P,.

However, this result does not hold for the power spectra. Instead one finds

Sp(w) = Sy (w) + S, (w) + /00 2Re(6 P, (w)d P (W) dw' . (3.11)

—0o0

In the particular case of the circular components and making use of Eq. (3.10)
we obtain

Re / T 0P ()P (o)) do = 2E) . Sulw) (3.12)

[e.o]

which implies that the fluctuations of the circular components 6P,,P_ are
correlated when Sp(w) > S,(w), anticorrelated when Sp(w) < S,(w) and uncor-
related where Sp(w) = S,(w). In the Sec. we will insist on the correlation
between polarization components.
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In this section we present analytical and numerical results of the polar-
ization resolved intensity noise. Since the circular basis is the natural basis
to study the optical transitions, we start investigating the power fluctuations
of the circular components followed by the power spectra of the linear compo-
nents for LP states when crossing a nonthermal polarization switching. We
consider the situation where d(t) relaxes exponentially with time constant !
while coupled oscillations (COs) of the ellipticity and polarization orientation
appear at frequency Qp.

Fluctuations of the circular components

Two mechanisms are responsible for the coupling between dynamical vari-
ables. On one hand, the carriers with spin up and down are coupled through
the spin flip rate, and the limits 7, — oo and v, — 0 correspond to the fast
spin relaxation and slow spin relaxation rate, respectively. The second mech-
anism is the birefringence. Microscopically, the birefringence transforms left
polarized photons into right ones and vice versa. The macroscopic effect is
to provide LP states with a well defined polarization orientation. Therefore,
we expect that both the spin flip rate and the birefringence play an impor-
tant role in the origin of noise anticorrelations of the polarized components.
Finally, dichroism introduces different losses between the two LP states, se-
lecting the mode with highest (unsaturated) gain at threshold. Experimental
determination of fluctuations of the circular components can be performed by
using \/4 plate techniques [47]. We concentrate our study on finite values
of the spin flip rate and relatively small birefringence which corresponds to
COs regime. We investigate the power spectra for different values of the spin
flip rate and birefringence while maintaining the rest of the laser parame-
ters fixed. The dichroism is set to 7, < 0 in order to select the low frequency
mode (z) at threshold. A nonthermal PS takes place from the low frequency
mode (z-LP) to the high frequency one (y-LP) when the injection current is
increased.

In Fig. we plot the power spectra obtained for 7, = 100 ns™', v, = 1
ns~Y; u = 1.04 <y, in panels[3.6(a,b), while ;= 1.5 > 1, in panels [3.6{(c,d).
Analytical results obtained from Egs. and are plotted in Fig.
[3.6(a,c) with solid thin lines. As can be seen, they are in very good agreement
with the numerical results. The spectrum of the total intensity has a single
peak located at the relaxation oscillation frequency vy = Qr/(27). This peak is
due to fluctuations in the total photon number. In contrast, the power spectra
of the circular components coincide and display an additional peak at the CO
frequency vp, which moves toward ~,/m when 7, — oo, in agreement with Eq.
(3.3). We note that the height of the CO peak is larger and it appears at lower
frequency before the PS, in qualitative agreement with Ref. [47]. It can be
clearly seen that the noise in the two circular components is much larger than
the total intensity noise at low frequencies, a sign of anticorrelation between
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0P, and §P_. This anticorrelation is interrupted at higher frequencies due to
the peak associated with the fluctuations in the total intensity. In fact, we
find maximum correlation at vz, as will be discussed later.

Fluctuation of the linear components

When a LP state is considered, there is a linear component that captures
nearly the total intensity (lasing component), with mean power level P;, and
one with very small intensity (nonlasing component) with P,,;. Although a LP
state is considered, we find that fluctuations in the nonlasing component are
relevant. On the other hand, we have shown that the circular components
phase-lock to a relative phase ¢ = ¢, — ¢_. However, phase-locking among
linear components is not possible because they operate at different frequency
due to birefringence. By expressing the linear components of the electric field
through FE, , = \/P, e v, the relative phase ¢, — ¢, evolves at a typical time
scales of ~ 2v,. It is then possible that by invoking the limit of large v, to
eliminate the information carried by the phase dynamics and to reduce the
SFM to equations describing a two-mode laser [46), [52].

It is illustrative to analyze the way in which the fluctuations are dis-
tributed among different polarization components. The probability density
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Figure 3.6: Power spectra in arbitrary units for currents below PS (a,b), and above PS (c,d).
Solid thin lines in (a) and (c) represent the theoretical predictions given by Eqs. (3.9a) and

(3.10). Parameters: v = 1 ns™!, k/y = 300, a = 3, v, /7 = 1, 75/7 = 100 and 3, = 10~°.
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function (PDF) of a intensity component P is computed through

P[P0<P<P0+dpo]
dF, ’

where P[Py < P < Py + dP,| is the probability that the intensity takes the
values within the interval [P, P, + dFy]. We approximate this quantity by the
fraction of data points within [Py, Py + dP], i.e. N[Py < P < Py + dP,]/N. The
PDF of circular components p.d.f(P:), in Fig. [3.7(b), coincides and display a
Gaussian shape with a maximum around its mean value. In the same panel,
we plot the PDF associated with the total intensity that is also Gaussian but
with narrower width as a result of anticorrelated fluctuations between circu-
lar components [See Fig. [3.7(a)]. The PDF of the lasing component, in panel
(d), and the total intensity are similar. Hence, the fluctuations of the total
intensity, circular components, and the lasing component can be described
by Ornstein-Uhlenbeck stochastic equations, which their associated Fokker-
Planck equations have Gaussian distributions as stationary solutions. How-
ever, we observe in Fig. [3.7(c) that the fluctuations of the non-lasing com-
ponent prefer intensity levels lower than the mean value. In addition, the
associated PDF displays a single-sided exponential decay, like that of “ther-
mal” fluctuations.

p.d-f(Po) =

0-50F (a) P; (c) P,
0.4.0 Bt ssstiosiosstpiotseh et sl oo
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0.20 M}{WW www s WMK WWV x50 P,
e M”M ﬂ«’\M/ \
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Figure 3.7: (a) Temporal trace of the total intensity Pr and the circular components P.. Note
that the P_ has been vertically shifted to aid the eye. (b) Probability density function (PDF)
for Pr, Py. (c) Temporal trace of the lasing P, and nonlasing fluctuations P,. (b) Probability
density function (PDF) for P,, P,. The same parameters as in Fig. [3.6(a,b).
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The power spectrum of the total intensity and the linear lasing component
has a peak located at the RO frequency, as can be seen in Fig. [3.6(b, d). How-
ever, the CO peak is not present in this case. While the lasing component
captures nearly all the noise at high frequency, the power spectrum of the
nonlasing component has a small peak close to the frequency beating between
Qr and Qp. The power spectrum of the nonlasing component has a small con-
tribution to the total noise at high frequencies, displaying a clear Lorentzian
decay [49]. The power spectrum of the total intensity results from the su-
perposition of the fluctuations of the lasing and non-lasing components. The
behavior at low frequencies requires a more subtle study. The noise in the two
polarization components can exceed the total noise by several orders of mag-
nitude at low frequencies. This particular behavior occurs in LP states with
important fluctuations in the polarization orientation, yielding relative high
values of the parameter M = P,,;/P,. Below the PS, in the coexistence regime,
strong anticorrelated fluctuations appear at low frequencies [Fig. [3.6(b)]. On
the contrary, above the PS, M decreases and anticorrelation nearly vanishes
as can be seen in Fig. [3.6(d). A possible interpretation of polarization anti-
correlations will be given in Sec. in terms of the carrier reservoirs. PPN
has been claimed to be sensitive to the parameter M [31]. An approximate ex-
pression for M can be determined from a one-dimensional version of the SFM
based on a high-friction or low mass limit Kramers’ problem. In this limit, the
expression for M reads [47]

VsBep

M~
K — Do)

which tells that the noise in the non-lasing component increases when the
noise strength is increased, when the operation is restricted close-to-threshold,
and when large values of the spin flip rate are considered.

3.4 Fluctuation of the Polarization Angles

In order to study polarization fluctuations, it is convenient to express the elec-
tric field in terms of the polarization orientation ¢ and ellipticity y angles

—

E = VP[(cosxcos¢—isinysing) X
+ (cos xsin ¢ + isin x cos ¢) § ] e'“Heo), (3.13)

or alternatively in the circular representation|

—

P , , .
E =4/ 3 [(cosx +siny)e e, + (cosx —siny) e’ é_ | eilwtteo), (3.14)

6The unitary circular vectors read é. = % (x Fiy).
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P being the total power and ¢, an arbitrary phase. The meaning of these two
angles is more explicit by introducing the Stokes parameters S; defined by the
following relationships

So = |ELP+|E_|*P=|E)+|E,)* =P, (3.15a)
S; = 2Re(E E*) = |E,]*—|E,|* = Pcos(26) cos(2x), (3.15b)
Sy = —2Im(ELE") = —2Re(E,E,) = Psin(2¢) cos(2x), (3.15c¢)
S = |E.)?—|E_|?=—2Im(E:E,) = Psin(2x). (3.15d)

Hence S;/5, for j = 1,2, 3 describes the Cartesian components of a unit sphere.
The spherical coordinates are the polarization angle 2¢ € [0, 27] and the ellip-
ticity angle 2y € [—7n/2,7/2]. The polarized light is such that the relation
S2 = S% + 52 + S2 is fulfilled at any time.

Figure 3.8: Poincaré sphere: z(y)-LP state along the #(j) direction; ¢t are right and left
circularly polarized states, c* are right and left elliptically polarized states. Shaded circles
represent fluctuations around these states.

In the steady state, ¢ = 0(¢ = 7/2) for a 2-LP (y-LP) and x = 0. Fluctua-
tions of the polarization angles around LP states are obtained by linearizating

Eq. (3.14). We find that

R+ R” R—R*
_W75¢_7’ 4Q )

where 1R and R* were defined in Sec. Equation (3.16) reveals the connec-
tion between the ellipticity fluctuations and the notation used in this work in
terms of power fluctuations of the circular components. Hence, fluctuations of
the circular components are linked to movements orthogonal to the equatorial
plane of the Poincaré sphere.

5x (3.16)
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The fluctuations in §¢ and dy are governed by

06 +2v, T2 —ak 5 F,
5.X =| £2v, +2, K ox |+ | Fy , (3.17)
) 0 —4vDy@* —(vs+279Q?) § Fy

which is directly obtained from Eqs. (2.33) and (3.16). The real Langevin
terms obey

(FOF) = (RORE®) =555~ o),
EOEE) = (1) 28,0007,
(FL(OFs()) = @(sa—t'), (3.18)

(FAOF () = (Fy)Fs(t)) = (Fy() B (t)) = 0.

Equation (3.17) is the starting point of other works that invoking the limit of
large ~,, i.e. § = 0, the dimensionality is reduced to two. In this limit, the
fluctuations of ¢ are slaved to the fluctuations of §y

_ —4vDoQ?
T e+ 29Q2

F5(t)
Ys + 27Q%

o(t) ox(t) +

It is worth noting that such an approximation is only justified well within the
COs region. In spite of generality, we maintain the dynamics of (), which
allows us to analyze fluctuations for any value of v, and to extend the investi-
gation of polarization fluctuations into the PROs region.

The spectral density of the polarization fluctuations is obtained by solving
the linear system of Eq. (3.17) in the Fourier domain. The result is

(3.19)

S=(w) = 7%1270 lAs(w) - Bg(w)]

where = = ¢, v,0 and A, B,C are polynomial functions of w defined in the
Appendix A.
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Figure 3.9: Power spectra (in arbitrary units) of the polarization fluctuations, (a) S,(w),
(b) Sy(w), (c) S5(w) and (d) the ratio Sg(w)/Sy(w). The same parameters as in Fig. [3.6(a,b),
corresponding to a COs region and when crossing a PS. Meaning of the symbols: (%) 1 = 1.047,

(no symbol) u = 1.083, (¢) pp = 1.120, (A) p = 1.15, () p = 1.20. The LF solution is considered
below PS while the HF solution is the only stable above the PS.
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Figure 3.10: Power spectra (in arbitrary units) of the polarization fluctuations, (a) Sy (w), (b)
Sy (w), () S5(w) and (d) the ratio Sy (w)/Sy (w). The parameters correspond to the situation de-
scribed in Fig. b), taking 7,/v = 40. The HF solution is considered for different currents:
(¥) p = 1.1, (no symbol) p = 1.72, ({) p = 2.12, (A) p = 3.56, (O) p = 5.00.

Some other interesting relationships can be obtained by the linearization
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of Egs. (3.15a)-(3.15d)

Sy(w) = 4(20%)28,(w), (3.208)
S, (w) = S_(w):%Sp(w)+(2Q2)QSX(w), (3.20D)

M o= <%>”<|6¢<t>|2>+<|6x<t>|2>=

S0 + Sy o (3.200)

T or oo

First, we consider a situation where a PS takes place within a region of
COs. The power spectra of the polarization fluctuations, S,(w), Sy (w), Ss(w)
in Fig. display a single peak at the COs frequency 2p. Note that the
peak at 2y is absent in all the cases, since these variables only describe po-
larization fluctuations onto the Poincaré sphere. When increasing the current
from threshold to PS, the LF solution lases and the frequency ¢2p decreases
while the effective dichroism increases reflecting itself in broad peaks in the
power spectra. Below the PS, the fluctuations in the ellipticity angle are con-
siderably larger than in the polarization orientation, being reflected in the
ratio S,(w)/Sy(w) shown in Fig. [3.9(d). Once the PS takes place, the HF so-
lution starts to lase and the frequency 2p increases linearly when increasing
the current level. We also note that in this situation, the peaks are much
narrower and that the polarization fluctuations prefer the polarization orien-
tation angle. In a second instance, the Fig. illustrates the behavior of
the polarization fluctuations in the limit of small linear anisotropies. No PS
occurs in this case and the VCSEL always emits in the HF solution. Close-to-
threshold there exists a narrow region of COs that leads to a similar behavior
to that already mentioned in Fig. For higher injection levels a region
of PROs appears, where the fluctuations in the polarization angle ¢ decou-
ple and experience damped relaxation without oscillation. Consequently, the
power spectra of S;(w) does not display any peak, while S, (w), Ss(w) have a
peak at the PROs frequency, rather broad due to the relatively large effec-
tive dichroism. It is worth remarking that the fluctuations in polarization
orientation are large because of the weak birefringence.

3.5 Role of the Spin Flip and Birefringence

Since our theoretical description is valid for arbitrary values of the birefrin-
gence and spin flip, in this section we give a complete description of the role of
these parameters. We look at the power spectra while the polarization state
is followed on the Poincaré sphere.

Power spectra for small and large values of v,, in the absence of birefrin-
gence, are shown in Fig. As expected, the CO peak is absent in the
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Power spectra [arb. units]

Figure 3.11: Study of the effect of 7, in the absence of birefringence, in the power spectra
of the circular (a,d) and linear components (b,e). Evolution of the polarization state on the
Poincaré sphere (c,f) for small values of the spin flip rate 7, = 10 ns~! in (a,c), v, = 100
ns~! in (d,f). The normalized current is u = 1.8. The meaning of the symbols is: (T) = Sp,
(+/-) = Si, () = 5, and (y) = 5.

power spectra of the circular components [See Fig. [3.11(a,d)]. The main dif-
ference between the two cases appears at low frequency: while P, have large
anticorrelation for large ,, this anticorrelation is reduced for small ~,. This
effect can be understood as follows: for slow spin flip rates each of the two
circular components burns carriers from its own reservoir N, separately. In
this case there is no competition and therefore small anticorrelated fluctua-
tions are observed in Fig. [3.11(a). On the other hand, for fast spin flip rates,
the two circular components have to share almost the same carrier reservoir
since NV, =~ N_. The latter causes strong anticorrelation because of PPN [Fig.
[3.11(d)]. The power spectra of the two linear components are similar for small
and large values of v, [Fig. [3.11[b,e)]. They show pronounced anticorrelations
at low frequencies linked to important fluctuations of the polarization orienta-
tion. Both lasing and nonlasing power spectra display a peak at the relaxation
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Power spectra [arb. units]

Figure 3.12: Study of the effect of v, on power spectra of the circular (a,d) and linear (b,e)
components when v, = 50 ns~!. Evolution on the Poincaré sphere for small birefringence
7 = 0.1 ns™! (a,c) and 4, = 10 ns~! (d,f). The normalized current is y = 1.1. The meaning of
the symbols is the same as in Fig.

oscillation frequency.

The role of the birefringence is shown in Fig. for a fixed value of the
spin flip rate. For small birefringence, 7, = 0.1 ns™!, we observe large anticor-
relation of circular and linear components at low frequencies [Fig. [3.12(a,b)].
This fact indicates important polarization fluctuations. The main role of the
birefringence is to fix a polarization orientation, reducing consequently the
polarization fluctuations. For a larger birefringence, 7, = 10 ns™', we observe
that the anticorrelation of the circular components has been considerably re-
duced [Fig. [3.12(d)] being negligible for the linear components [Fig. [3.12(e)].
We note that a PS occurs when the birefringence is increased and the fluctu-
ations on the Poincaré sphere move to the opposite direction on the equator
of the sphere. In addition, the CO peak appears at larger frequency than the
RO peak.

It is also illustrative to analyze the evolution of the polarization state on
the Poincaré sphere [Fig. [3.8]. We observe that for small ~, the fluctuations
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prefer the equatorial direction [Fig. [3.12(c)]. In the limiting case of 7,=0, there
is a zero eigenvalue of Eq. associated with the arbitrariness of the polar-
ization orientation, and the polarization diffuses along LP states with differ-
ent orientation angles due to the presence of noise. The polarization evolves
along the equator of the sphere with small ellipticity fluctuations controlled
by 7, [Fig. [3.11[c,N]. When 1 is large, the two remaining eigenvalues become
real. One of them approaches to zero when v, — oo, describing diffusion of
the ellipticity angle. In the latter, there is no preference for any polarization
state and the fluctuations cover the whole surface of the Poincaré sphere [60].
When v, # 0, the eigenvalue that describes the diffusion of the polarization
orientation angle becomes nonzero, providing the stability of the steady state.
For moderate to large values of v,, we observe that the polarization orienta-
tion is fixed and the fluctuations on the Poincaré sphere have a rather circular

shape [Fig. f)].

3.6 Polarization Anticorrelations

To better characterize the correlations among two orthogonal components we
compute the normalized crosspower spectral density [50] which reads

Caplw) = Sarp(w) — Salw) = Sp(w) (3.21)

2¢/S4(w)Sp(w)

where A(t) and B(t) are two given signals, while S, and Sp represent their
respective power spectra. Cyup(w) = 1 (—1) corresponds to perfect correla-
tion (anticorrelation) in the fluctuations of the two signals. The normalized
crosspower spectral density between the power fluctuations of the two circular
components § P, and 0 P_ can be obtained from

Sp() - 5,(v)
Sp(w) + Sy(w)
Re [% (6P (w)dP* (")) dw’

B ffooo<5]5i(W)5j5;(w/)> do' (3.22)

Ch-(w)

On replacing the expression for Sp(w) and S,(w) from Eqgs. (3.9a) and (3.9b)
into Eq. we obtain the exact expression for C, _. This expression can
be simplified at low frequencies in the case of close to perfect anticorrelation,
ie,Ci (wx0)~ —1,to

1 [%’T—ea]Q
2Q" [o? +17]

Ci (w=0)~—1+ (3.23)

with ' = 23222. It is easy to see from Eq. |D that the fluctuations are corre-

lated at the frequency where Sp(w) > S,(w), close to Q2x, and the fluctuations
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are anticorrelated when Sp(w) < S,(w), near the CO peak (2p. We can inter-
pret these two limits with the help of the Poincaré sphere. The fluctuations
of the total number of photons are linked to movements toward the inside
and outside of the Poincaré sphere surface [Fig. [3.8]. These movements are
equivalent for all the points on the sphere, and therefore provide correlation
between circular components. Anticorrelations between components are asso-
ciated with movements on the Poincaré sphere, i.e., polarization orientation
and ellipticity fluctuations.
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Figure 3.13: Normalized crosscorrelation of the circular components C, _ (a,c) and of the
linear components C,,, (b,d) corresponding to the same situation as in Fig. Dotted lines
in (a,c) represent theoretical prediction given by Eq. (3.22).

In Fig. we show the results for the normalized crosscorrelation func-
tion, Eq. (3.22), under the same conditions as in Fig. In the circular
basis C,_, we find close to perfect anticorrelations for low frequencies, and
strongly correlated fluctuations (C,_ ~ 1) for frequencies close to the RO
peak. In the linear basis, C,, displays partially anticorrelated fluctuations at
low frequency (v < 1 GHz) due to PPN [31] |61l above the PS, and large anti-
correlation below the PS which corresponds to the two LP states being stable.
The lack of anticorrelation above PS might be attributed to the modification
of the effective birefringence due to the nonlinearities when the injection cur-
rent is increased. Below the PS, the effective birefringence ()p/m, reaches
a minimum. This fact leads to preferential fluctuations of the polarization
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orientation, and consequently anticorrelated fluctuations of the linear com-
ponents. On the contrary, above the PS, the effective birefringence gradually
increases with increasing distance from the PS leading to a reduction of the
anticorrelation.



Chapter 4

Summary, Discussion and
Perspectives

HE polarization field vector of vertical-cavity surface-emitting lasers (VC-

SELs) has been investigated within a model that focuses in the allowed
optical transitions among the magnetic sub-levels of the conduction and va-
lence bands of a semiconductor, namely, the Spin Flip Model (SFM) intro-
duced by San Miguel-Feng-Moloney in 1995. We put forward the governing
equations that apply for single longitudinal VCSELs operating in the fun-
damental transverse mode. We derived, from quantum mechanical require-
ments, the semiclassical Langevin noise sources that arise from spontaneous
emission processes. The linearization of the SFM, when considering fluctu-
ations around stationary linearly polarized solutions, was introduced as the
starting point for a later investigation of intensity and polarization fluctua-
tions. We concentrated our discussion in those physical parameters that may
be relevant in the polarization mode selection and in the determination of
polarization fluctuations.

In chapter 3, we presented analytical and numerical investigations of the
polarization resolved power spectra of linearly polarized states based on a
semiclassical framework valid for arbitrary values of the spin flip rate and
birefringence. It constitutes a generalization of previous studies where the
adiabatic elimination of the spin dynamics was taken. A proper classification
of the regimes of operation in terms of the eigenvalues and eigenvectors of the
linearized systems has been useful for the subsequent formulation and inter-
pretation of the polarization fluctuations. Two qualitative different regimes
of operation were observed, namely polarization relaxation oscillations of the
ellipticity angle and carrier difference (PROs), and coupled oscillations of the
polarization angles (COs). Most of the reported results apply to VCSELSs op-
erating the COs regime but the access to the PROs is just a matter of param-
eters, basically current level and spin flip rate. We presented specific results
for the power spectra of linearly polarized states when the VCSEL was driven
across a nonthermal polarization switching. The power spectrum of the total
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intensity fluctuations displays a peak at the relaxation oscillation frequency.
In the regime of coupled oscillations, the power spectra of the two circular
components coincide and show an additional peak associated with the effec-
tive birefringence splitting. When analyzing the evolution of the polarization
state on the Poincaré sphere, we were able to separate the effects of the bire-
fringence and the spin flip rate. In the absence of birefringence, the spin flip
rate controls the ellipticity fluctuations that are related to the fluctuations of
the circular components. On the other hand, for a fixed spin flip rate the bire-
fringence controls the polarization orientation fluctuations. The frequency
dependence of the normalized cross-correlation function for both linear and
circular components was also presented. In particular, we found that the
two circular components are strongly anticorrelated at low frequencies while
they display a nearly perfect correlation close to the relaxation oscillation
peak. The linear components (lasing and nonlasing) present a nonvanish-
ing crosscorrelation function at low frequencies. Linear components display
partially anticorrelated fluctuations below the polarization switching which
correspond to the two linearly polarized states being stable. Above the polar-
ization switching, the anticorrelation nearly vanishes being attributed to an
abrupt increase of the effective birefringence that reduce the magnitude of the
polarization fluctuations. Further investigations of the polarization resolved
power spectra of elliptical and dynamical states, where the total intensity and
polarization fluctuations do not decouple, should provide a more complete un-
derstanding of the noise properties of vertical-cavity surface-emitting lasers.

Although our semiclassical analysis of fluctuations is consistent with quan-
tum noise sources, there are several aspects that become important when es-
tablishing the limits to achieve quantum noise levels, such as the standard
quantum limit and quantum squeezing. They include shot noise in the car-
rier recombination, statistics of the pump fluctuation and interference of the
vacuum field entering in to the VCSEL cavity (input-output formalism [9]).
Notwithstanding, the semiclassical approach have led to valuable theoreti-
cal predictions that successfully compares with the experiments, namely: po-
larization switching from the low frequency to the high frequency mode of
nonthermal origin, existence of anticorrelated fluctuations between the po-
larization components, interpretation of the characteristic frequencies in the
power spectra, nonlinear anisotropies, etc. Hence, our study should establish
the elementary concepts for further investigation based on sophisticated fully
quantum-mechanical models.

Outlook

There exist however several hypothesis when deriving the SFM rate equa-
tions, some of them already commented, that fix the limits of applicability.
Some of the more restrictive include: flat gain spectrum, unrealistic a-factor,
absence of transverse and thermal effects. It is possible to account for some
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of these effects by extending the SFM to a model for the VCSEL dynamics
proposed by S. Balle in 1999 [62]. This model allows to include: a realistic
gain and refractive index spectra, a realistic a-factor, transverse and thermal
effects. Some results based on the analysis of the extended SFM have been
presented [63, 64] an it is currently being matter of research.

Hypothesis when deriving the Spin Flip Model

e Flat gain spectrum: When replacing the band structure of the semicon-
ductor material by a four-level system, we loose the contribution of the
possible optical transitions at electron wavevectors k£, # 0. As a conse-
quence the gain spectrum that results has a Lorentzian shape —typical of
an atomic system—. This spectrum becomes flat when invoking the limit
of large 7, , and the material polarization is adiabatically eliminated.

e a-factor: The a-factor in a two-level system has to be artificially intro-
duced as the normalized frequency detuning with respect to the gain
peak. Operation on the blue side of the gain spectrum (2 > w,) lead to
negative values for the a-factor and to carrier-guiding, being in contra-
diction with the basic properties of sc lasers. The a-factor in a quantum
well semiconductor laser is not a constant, but in general, a function of
the frequency and the carrier inversion.

e Transverse effects: The standard SFM assumes fundamental transverse
mode operation. However, it is commonly observed that higher-order
transverse modes start to appear when the VCSEL is driven far from the
threshold current. Transverse effects inherently occur in a quite broad
frequency-band and involving inhomogeneous carrier distributions; thus
it is imperative to incorporate a correct description of the gain and «-
factor spectra.

e Thermal effects: The SFM assumes constant active region operation,
however two thermal effects appear when the injection current in-
creases. First, when the current flows through the VCSEL structure,
predominantly heats the spatial zone close to the cavity axis, which leads
to an inhomogeneous temperature distribution across the lateral direc-
tion. This effect provides a lateral waveguide that focuses the optical
field. And second, the cavity modes and gain curve redshifts due to the
temperature dependence of the materials composing the VCSEL.

Improvements of the Spin Flip Model

e Realistic gain and refractive index spectra of QWs, including a correct
frequency and carrier inversion dependence. Since different modes, both
polarization and transverse modes, operate at different frequency, this
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contribution lead to different modal gains and refractive index for each
of them.

e Realistic o — factor for the quantum well, being a function of the fre-
quency and carrier inversion. In addition, the material is intrinsically
carrier-antiguiding, i.e., the index of refraction decreases when the car-
rier density increases. Despite other guiding mechanisms, this effect
provides self-defocusing of the electric field.

e Thermal effects can be easily included through the thermal lensing and
thermal shift effects. Within this model, it has been demonstrated that
thermal mechanisms of polarization switching and that coming from
phase instabilities, explained by the SFM, can coexist depending on the
VCSEL characteristics [29].

e Transverse and polarization dynamics are described in an unified way,
by including electric field diffraction and carrier diffusion.
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Appendix A

Definitions

The following functions define the power spectra of the polarization com-
ponents as was described in Sec. 3.4}

C(w) = D(iw)D(—iw) =
= [0 2e0)w® = {(€2 + e, F b(ea + ag,) }] (A1)
b2 2 b

Ap(w) = [wz — b+ eaFS}Q +w? [l F ga]2 ,
By(w) = wiacTFey)?+[abFe, s +cle, —ag,)]’ . (A.2)

AX(W> = 812;(("}2 + Fg) )

B (w) = w?(vsFea)® + (W’ £ vsea F acey)?. (A.3)

As(w) = (epb)?/r?,
Bs(w) = [{c(el+e)—w?) Fbea} +w’(bF 2ceq)?] /K% (A.4)
In order to simplify the notation, we have defined these new quantities
Cap = 2Vap, Ls=7+29Q%, b=4kyDyQ*, c=27Q?.

In Chapter 3, we defined the power spectra of polarization fluctuations
through

= 92 C(w) (A.5)

where = = ¢, x,d. The asymptotic behavior of the power spectra in the limit
of large frequencies is

S=(w) = VB Do {Aa(w) + Bg(w)]

1
w \2’
1 (3

K

So() = S(w) = (£) S5(w) A6)
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Appendix A

that behaves like the spectra of an Ornstein-Uhlenbeck process [Eq. (2.12)]

with correlation time

Tz Aw =\ T2 -2 b))

Another interesting aspect is to analyze the shape of the fluctuations onto the
Poincaré plane ¢ — x. At low frequencies we find that

Ss
SX

w=0

b? + [ab F gpys)?
512) 2 + a?c?]

2

— (14 a? 1
p— 1+« >5§F§ >
— 1.

u— Do

Fluctuations display a circular shape in the ¢ — x plane close-to-threshold,
while they preferably follow the ¢-direction for small birefringence.



Appendix B

Ito Transformation

Let us concentrate in Eq. (2.244a) for the complex slowly-varying amplitude
of the electric field

dE, = {k(l+ia)[DEtd—1Ey — (4 + i) Ex} dt

where we have introduced the complex Wiener process as dW. = £, (t)dt. We

are interested to know which stochastic equations verify the amplitudes and
phases of the electric field, P.(t) and ¢.(t), with E.(t) = /Py(t)e**®. For
these purposes, we introduce an auxiliary variable p, = %ln Py, then

d(pi + Z¢i) = d(h’l Ei) = h’l(Ei + dEi) — 1H<Ei) .

We expand the right hand of the above equation at first order in dt. Making
use of the It6 rules for a generic real Wiener process dWW,(t) [11}, [12], are that
dW,(t)? = dt and dW,(t)>*™¥ = 0 for N > 0, we arrive to

| P
dps = k(D +d—1)dt — (v, cos ¢ £ 7,sin @) Pidt
+

YBsp(D £ d)
Py

17985 (D = d)

3 [dWgs +idW; 4]* , (B.2a)
2 E:t ’ ’

AWp, —

/P
dpr = ar(D+d—1)dt = (7,005 F Yasing) | | 5-dt
+

AW (B.2b)

with ¢ = ¢, — ¢_. It is worth noting that since dWy 1, dW; ., representing
the real and imaginary parts of dI/., are independent, then the last term
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of Eq. (B.2a) vanishes. The second remark is the also the Wiener processes
dWp,,dWy, are independent, being defined through the orthogonal transfor-
mation

dWPi (t) = COs (bi dWR’i(t) + sin (bi dW]i (t) , (B3a)
dW(ﬁi (t) = —sin (bi dWRi(t) -+ cos gbi dW[i (t) . (B3b)

As a final step, we apply the It6 rules to the variable p.

APy = d[e**] = 2prtdps) _ 208 _ 9p, (d/)i +dp: + - ) )
Introducing Eq. in to this last expression, we arrive to

dPy = 2r(D+d—1)Pidt — 2 (y,cos ¢ % v, sin @) /Py P_dt

+29B,(D % d) dt + /4B, (D % d) PdWp, . (B.4)

that is nothing else that Eq. (3.6a). The interesting result, from this stochas-
tic transformation, is the term 2v0,,(D £ d) in Eq. (B.4), that accounts for
the mean value of spontaneously emitted photons in each circular polariza-
tion. The remaining equations in Sec. can be straightforwardly derived,
by defining {p, = dWp, /dt and &,, = dW,, /dt.
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