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Spatial behavior of light in second-harmonic generation

Pierre Scotto and Maxi San Miguel
Instituto Mediterraneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Campus Universitat llles Balears,
E-07071 Palma de Mallorca, Spain
(Received 31 October 2001; published 29 March 2002

We investigate the spatial behavior of nonclassical light produced by type | second-harmonic generation in
the traveling-wave configuration. An input-output transformation for the system of fundamental and second-
harmonic field is derived in the framework of a linearization approach and used to investigate the properties of
an optical system, which consists of a crystal with a quadratic nonlinearity pumped at frequeacsg
enclosed in a two-lens telescopic system. If a faint input image at frequendy iBjected into this device, for
a sufficiently large interaction length, the output displays a pair of symmetric amplified versions of the input
image at both fundamental and second-harmonic frequency. The analysis of the quantum fluctuations in the
output images shows that under certain conditions, this optical device operates noiselessly with respect to the
output at frequency», whereas the output images at frequeneay &e affected by a slight degradation of the
signal-to-noise ratio.
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[. INTRODUCTION classical quantum correlations between the corresponding
spatial frequencies of a parametrically amplifisggna) im-
Nonclassical states of light have been the object of intenage and its generate@dler) image, as was demonstrated
sive studies over the last decade not only because of thexperimentally in[16]. When enclosed in a classical two-
interest they represent from a fundamental point of view, butens telescopic system, the OPA is able to generate two am-
also because they can be used to circumvent standard qugplified copies of a given input image, which are symmetric
tum limits in optical precision measurement and informationwith respect to the mean light propagation direction, and
technologieg 1]. A new field of applications of nonclassical which are expected to be locally much better correlated than
light has emerged, since it has been realized that it is possibl@assical copies, not only with respect to intensity fluctua-
to produce light with reduced quantum fluctuations not onlytions [8], but also to “phase” fluctuation§9]. Finally, the
in time, but also in space, i.e., in the transverse cross sectigperfect quantum correlations of the twin photons created in
of the bean{2-5]. New developments appear in the field of each photon down-conversion process can be used to am-
image processing, with the possibility of noiseless amplificaplify a faint optical image without deteriorating its signal-to-
tion of a faint optical imag¢6,7] or of image clonind8], as  noise ratio, as was predicted [ifi] and realized experimen-
well as in high-precision optical measurement: here, greatally in [17].
precision enhancements with respect to standard methods In this paper, we suggest going one step further along the
based on the use of coherent light beams were predicted fdines of optical image processing and propose an optical de-
the measurement of very small displacements of a light beaice capable of frequency down-converting a given input
[10,11], of very weak spatial phase modulatidd®-14, or  image first, and then cloning and amplifying it. If an optical
in the reconstruction of fine details in images in diffraction-image is injected at frequency.2 this device is expected to
limited optical system§15]. deliver in the output a pair of amplified versions of this input
Such light states with a higher spatial order are generateiinage, symmetric with respect to the mean light-propagation
using nonlinear optical media. As a matter of fact, any opti-direction, not only at frequencw, but also, as a detailed
cal nonlinearity is associated with the simultaneous absorpanalysis will reveal, at frequency«® In addition, we will
tion or emission of photons. On a macroscopic level, ancgshow that, under certain conditions, this image processing
under suitable conditions, this can result in spatial correlacan be carried out in a way that preserves the signal-to-noise
tions beyond the standard quantum limit, i.e., beyond thoseatio. The realization of these optical operations turns out to
corresponding to a random distribution of photons. From thide possible using, again, a crystal with a quadratic nonlin-
point of view, perhaps the simplest process that is likely toearity. But unlike the OPA, for which the pumping is per-
generate nonclassical spatial correlations is the decay of farmed at 20, we propose here to pump this crystal at the
photon of a given frequency into two photons of lower en-fundamental frequencyw. This new image-processing
ergy, which is, in principle, possible in any medium present-scheme exploits the well known process of second-harmonic
ing a susceptibility with a quadratic nonlinearity. This is pre-generationSHG): during propagation through the nonlinear
cisely the mechanism on which is based the opticakrystal, the fundamental pump field undergoes a conversion
parametric amplifie(OPA), a y(®-nonlinear crystal illumi-  into second-harmonic fieldl8]. The technical advantages of
nated by a strong monochromatic pump field at frequencysHG for the generation of squeezed fields have been pointed
2w. In the crystal, the pump photons may decay either sponeut in [19,20. Among others, the simplicity of the experi-
taneously or in a stimulated process into a pair of perfectlymental setup and the possibility to create nonclassical light at
correlated twin photons. This mechanism gives rise to nonboth fundamental and second-harmonic frequencies moti-
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= EF E We restrict ourselves to the simplest case of perfect phase
matching. As can be seen from Fig. 1, several regions can be

T E T e distinguished in the crystal, according to the relative intensi-
P T o E ties of fundamental and second-harmonic fieldhereas in
the part of the crystal close to the input plane, the dominant
AAYAATS IAAA 4 MWW . . . | v .
Pump at W —— A field will be the fundamental pump fieldegion I in Fig. 1;
freq. o WN S A an increase of the propagation length leads to a higher con-
A WA e version of the pump into second-harmonic field through the
AVAYAA .
ol P e N ” m output SHG process, so that at some depth—provided that the non-
plone X_nornedr cryste plane linear crystal is long enough—we will reach a regida-
z beled as region Il in Fig.)lin which the field at frequency

FIG. 1. Second-harmonic generation. Upper part: The intensit);w.w'” Ibe t(;“?l st'rl?naer one. Iéf!fs eas;g tﬂ show th?‘t the
of fundamentaldashed lingand second-harmonic fiel@dolid line) regions 'an will's O,W very '_ erent behaviors W't_ re-
inside the crystal as a function of the propagation length in theSpeCt to |mag_e pr_ocessmg._T_o this purpose, we C_onS|der_ the
perfect phase-matched casek{2 ks=0). Lower part: Schematic general Hamiltonian describing the three-wave interaction
representation of the different regions of the crystal. The horizontal€diated by the quadratic nonlinearity of the crystal,
axis corresponds to the direction of beam propagation, whereas
(x,y) defines the transverse plane. The slighiyrongly wavy Hint:i)\ z [a;(E1+E2)aF(|Zl)aF(|22)
arrows represent fundamentakcond-harmonjcphotons. Ky ko
vated an extensive investigation work at both experimental —ag(ky+kp)at(ky)at(ky)], 1)
and theoretical levels. Now, there are good reasons to believe
that the advantages of SHG for squeezing generation coulgh,ore o_(k) [ag(K)] annihilates a fundamentabecond-
translate into new possibilities for image processing. As
matter of fact, the investigation of the properties of the non-
classical light produced by an OPA showed that squeezin

armonig¢ photon with wave vectok and\ is the coupling
onstant of the interaction. The two down-converted photons

and noiseless amplification are closely related to each oth e considered to have the same polanzatlon,_ which corre-

[2]. These aspects, which to our knowledge have not beeﬁponds to a type-| phase |_'natch|n_g. A parametric approxima-

investigated so far, are relevant in the actual context of th jon allows fo m_ake meaningful S|mpl|_f|cat|ons. In region Il,

increasing importance of “quantum imaging” for practical 1S apprloxmatlon amounts to _rep_lacmg the operators asso-

applications. ciated with thg second-harm_onlc field by the correspondln_g
Technically, image-processing problems are solved by incomplex amplitudes. Assuming a ho_mogeneous pumping in

vestigating the spatial behavior of the fields generated by th@e. transverse plane, we are left with an effective Hamil-

optical system under study2]. Our first objective will be tonian

hence to generalize previous investigations devoted to the

propagation of quantum fluctuations in SH20,21], in or- Neff s " v atvati_

der to include the transverse spatial dependence of the fields. Hint I)\"Eg: [ae()ae(—l)—ap(as(—k)]. (2

This analysis, carried out in Sec. Il, allows to derive an

input-output transformation for the system of fundamentalhich coincides with the Hamiltonian of an OPA. As a mat-
and second-harmonic fields. In the second part of this papeer of fact, it describes the creation or annihilation of pairs of
(Sec. 1), we will use these results to investigate SHG-basedwin photons propagating in opposite transverse directions.
image processing. First we will focus on the phase-in region I, the situation is quite different, because now the
iESEHISitiVe confighuration, which will give a plreC(ijS_e pithUffe of “strong” field is at frequencyw. In the spirit of the paramet-
the elementary three-wave processes involved in the formas - - % >

tion of the obsﬁrved output ilranages. We will then concentrat?erIC aPprOX|mat|on, we - can wrlteap(k) as ceo(k)
on the phase-sensitive regime and explore the noise prop T—aF(k)|k¢0' wherec represents the amplitude of the strong

ties of this optical device, which plays a central role in quan- omogeneous fundamental pump field. Inserting this EXpres-
tum imaging. sion into Eq.(1) and neglecting the terms that are quadratic

in the small quantityar(k)/cg, we obtain, apart from two
contributions describing the creation/annihilation of a
second-harmonic wave with vanishing wave number, the in-
teraction Hamiltonian

Il. FIELD-OPERATOR DYNAMICS
IN SECOND-HARMONIC GENERATION

A. General picture

The interesting possibilities offered by SHG in the field of Aeff =N [aL(E)aF(IZ)—aS(IZ)aE(IZ)], 3
image processing can be understood from the following ' K

simple considerations. Figure 1 shows schematically the

physical system we are consideringy®-nonlinear crystal,

which is ideally infinite in the transverse plane, is illumi- The intensities plotted in Fig. 1 as a function of the propagation
nated by a strong monochromatic pump field at frequency length are calculated from Eq7) and (28).
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which obviously describes a frequency converter: a photon athe wave numbers of fundamental and second-harmonic
either frequencyw or 2o with a given wave vectok is ~ Wwave in the nonlinear mediunke andks, depend on the

annihilated and a photon with the same wave vektdiut at ~ Wave frequency through the dispersion relatios (k). In

the other frequency, is created. This Hamiltonian is the muI-EqS'(4) and(5), the prefactors

timode generalization of that considered #2] and analyzed

in [23] _ u(ko)v(ka)
Combining these two mechanisms gives an idea on how 7 c2cosp(k,)

to exploit best SHG for image-processing purposes: An input

image at frequency @, superposed to the pump at frequencyinvolve the group velocitu(k,), the phase velocity (k,),

w, is expected to first undergo a frequency down-conversiorand some generalized anisotropy angf&,). They describe

since it has to cross region |. The result of this first step, i.e.the strength of the electric field in the medium, as compared

the frequency down-converted version of the input imagelo that in the vacuune is the coordinate on the longitudinal

arriving then in region Il, should be amplified and cloned axis, which is defined as the beam axis, efnds the two-

according to the predictions of the theory of the OFA8].  dimensional coordinate vector in the transverse plane.

We conclude that injecting an optical image ab,2ve end To describe the dynamics of these two fields i@

up with two symmetric amplified versions of this input at nonlinear crystal, we choose, followir@], a Hamiltonian

frequencyw. formulation, based on the following Hamiltonian operator:
Of course, this simple argumentation does not take into

account, to begin with, the intermediary crystal region, in H=Hge+Hog+Hin (7)

which both fields generated by the pump inside the crystal

have comparable strengths, and hence both mechanisms Ganvhich H, ¢ andH, s are the free-field Hamiltonians for the

occur simultaneously. This makes a full calculation necesfyndamental and the second-harmonic field in the medium,

sary, which will be the object of the remaining of this sec-\;paready.  describes the interaction between the two fields
ngenerated by the nonlinearity of the crystal. In terms of the

lowly varying operators4(,(z,,3,t), o=F,S, the free-field
amiltonians are given by the expressi@j

(6)

[2], we will first derive a set of two nonlinearly coupled
operator equations, which describe the propagation of th
fundamental and second-harmonic field in the nonlinea
crystal. They will be solved in the framework of the linear-
ization approach developed [i81,20, based on the assump- A
tion that the pumping generates strong monochromatic fields

inside the crystal. The main result of this analysis will be an, ) ) o
input-output transformation for the system of fundamentaln Which the space integration is extended to the whole vol-
and harmonic field, connecting the field operators at the out!™me ~ of ~ the  crystal. ~ The  expectation  value
put plane of the crystal with those at the input plane. This Al (z,p,t)A,(z,p,t)) can be interpreted as the energy den-
transformation will encode the quantum spatial behavior ofity per unit volume, scaled by a factbw,,/c. The interac-

the light produced by second-harmonic generation. tion partH;,, describes a three-wave interaction, which, un-
der the usual assumption of a instantaneous and local
nonlinear response of the mediy2¥], is given by

how,
T c

| edpalzsnacin,  ®

0,0

B. Propagation equations

The main difference of our analysis with the treatment of . @) ()0 = v e(=)2m =
the OPA developed ifi2] is that in the OPA case, it is gen- Hine=x Jvdz FpES (2,0, EE %(2,p,1)
erally justified to work in the approximation of a classical

undepletedsecond-harmonjcpump field, whereas in SHG, - () > nm($)2 0 2

pump depletion cannot be neglected and both the fundamen- +Xx JVdZ FpEs (zp,OEE % (z,p,1),  (9)

tal and the second-harmonic field have to be treated simulta-

neously at a quantum-mechanical level. and can be rewritten in terms of the slowly varying field

First we begin by defining thealowly varying photon- operators
annihilation operatorsfor the fundamental and second- '

harmonic field Ax(z,p,t) and Ag(z,p,t) from the positive L _ B, B,
frequency part of the electric fiZId, Hine=1h\ de Fpexiakzl ALz p ) AR(zp.t)

- . hw . - - -
EC ) (zp.t)=ige \/?Ozexp[l(kpz—wpt)]AF(z.p,t), —fvdz fp exd —iAkz] Ag(z,p,t) ALA(z,p,1) |,

(4) 10

with a coupling constanfi\ = x(?)(#i/2eqc) %2 £\ w2 ws

[hw

(F)5 o ty=i Z%s i — o

Es (zp.D)=iés 2€4C exili(ksz— ) 14s(z,p, ). proportional to the susceptibility constagt? of the me-
(5) dium. Ak=2kr—Kg is generally referred to as the collinear
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phase mismatchH;,, is the sum of two contributions that Ag(z,a,Q)zgUJn—Uexp{_i[ka(d,Q)_kg]z}Ag(z,d,Q),
display the two basic and complementary processes, which

connect the fundamental and second-harmonic fields in a (16)
x?-nonlinear crystal: the first term in ELO) is responsible

for second-harmonic generation, whereas the second contighere kZ(g,0)= vVk(w,+Q)2—q2 which involves the
bution, which has to be present because of the Hermiticity, ;e nul;nberk(w(ﬁ—ﬂ) associated with the frequenay,
requirement imposed oflj,, will induce the process of +() through the dispersion relation, represents the longitu-
photon down-conversion. The dynamics of the two field op-dinal wave number of a wave with frequenay,+Q and

erators are described by the Heisenberg equations transverse wave vectoy. Clearly, the exponential phase fac-
i tor in Eq. (16) is chosen so as to absorb, in the free-
OA(Z,p ) =0, A (Z,pt)+ %[Q,Ao(z,ﬁ,t)], (11)  propagation case, the exactlependence of the wave with
frequencies (ﬁ,w(;l—ﬂ) associated with the field operator
which, for the Hamiltonian defined by Eq®) and(10), take ~ A,(2,9,£2). The additional prefactog,\n,= \u,/c, with

the following explicit form: u, defined as the group velocity of a wave with frequency
., allows to identify(A’(z,p,t)A,(z,p,t)) with the mean
IA(Z,p,0) =i 0pAs(Z,p t)_inf dz' d2p’ photon flux density in the medium in (photons/tseg.
\Y

Moreover, it can be shown th#t-(z,q,Q) andAg(z,q,Q)
fulfill the standard commutation relations
><G,:(z—z’,p—ﬁ’)AF(z’,p’,t)—ZcAJdz’ R . R . o
v [Ao'(ziqiﬂ)vAz-'(Z!q’19,)]:(277)3500’5(2)(q_q’)
xXd?%p'Ge(z—2',p—p')exp—iAk Z') X8(Q-Q"). (17)
12 Toor 2o N N
XALZp" D AR(Zp"1), (12 In the standargbaraxial [|q|<k%(q,Q)] andquasimono-
chromatic (A<w,) approximation and under the assump-
atAS(ZaI;at):inAS(ZvI;ut)_inf dz' d2p’ tion of a slowz dependence of the field operators, it can be
v shown that the propagation-corrected Fourier amplitudes
R ;- A(z,9,Q) and Ag(z,q,Q) obey the following set of
XGg(z=2",p=p")As(Z',p" 1) coupled propagation equations:

+cN | dZ d%p'Gy(z—2Z',p—p’ d . - R . ..
fv p'Gelz=2'p=p’) EAF<z,q,m=—2Kfdzq'dn'AHz,q',n')As(z,q

. ’ 2.5 "1 N I
X expiakz) AR b, 13 +4,0+0)expli[kYG+4',0+Q)
ith - TP
. ~KE(6,0)~kE(q",.0")]2}, (18)
o R _Jdkdeq o(NKE+g?) « 5
Az=2",p—p')= (271.)3 P exfi(k,—k,) 5AS(Z,q.Q):+KJ dzq’dQ’AF(z,q"Q’)AF(Z’q
X(z—=2')+iq(p—p")]. (14 —q",0-0")expli[K4(q",Q")
To make further progress, we first have to derive from Egs. +kz(a_a, Q-Q")- z(d’ Wz
(12) and (13), more transparent propagation equations. F ' s '
Rather than working in real space, it is convenient to intro- (19

duce quantum operators associated with waves with a givenh ) *3\/T2_ < th i fih
transverse wave vect(ﬁ and temporal frequency offsé€d whereK =(2) ¢*/UgUsh Is the coupling constant of the

(with respect to the corresponding carrier frequency. As intera_ction. The_senonlinearly coup_led differential-operator
in the OPA case, starting from the Fourier transform of thecguations descr_lbe. the propagation Of. fundamental and
field operators §econd-harmon|c field through the nonlinear medium. The
right-hand side(rhs) of Egs. (18) and (19) represent a sum
over all three wave processes that are able to generate a

Ag(z,ﬁ,Q)=f dzpe"q"’J dte™A (z,p,t), (15  fundamental and a second-harmonic wave, respectively, with
frequencies (ﬁ,Q). The only physical constraints are energy
it is advantageous to separate the effects of free propagati@nd transverse and longitudinal momentum conservation,
through the crystal from the effects of the interaction inducedvhich Egs.(18) and (19) can be shown to fulfill. Equations
by the nonlinearity of the crystal. This is achieved by defin-(18) and(19) generalize the propagation equations derived in
ing, for each field, a propagation-corrected Fourier amplitud¢21] without considering the transverse spatial dependence of
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the fields, as well as those considered[20], in which a  where cg(z) and cg(z) are the amplitudes of the strong
single temporal mode for each field was taken into accountmonochromatic waves at frequenciesaind 2» generated by
Furthermore, specializing Eg&l8) and (19) for the special the pump inside the crystal, which, for simplification, are

case of a strong undepleted classical field at secont:onsidered in the plane-wave approximation, ap(k,g,Q)

harmonic frequency, one retrieves the equation describingnd 2 - s :

. o . . ag(z,q,Q)) are the quantum field operators associated
the propagation of the fu_nda_mental field in an OPA, either Mwith tks1(e t\?vo f)ields. Thege take into accgunt the propagation
the pl?nle(j—v(\ga\/tgba?prr%);ganat|o[2] or for a more general of any field distribution injected into the crystal in addition
purgp_— 1€ bl 'St” ullo £ '18 4(19) in th | to the strong pump field. In particular, they encode the propa-

€ing able 1o solve q$ ) and(19) N the generaicase, - oaiinn of the vacuum guantum fluctuations entering the crys-
one could express the field operators in the output pla_ne | through its input plane, which are responsible for the

plane, which would finally allow to calculate, for any arbi- tquantclzjm fluctuations in-the output fields, as analyzed in
’ ! 1,2 .

trary quantum-mechanical state of the electromagnetic fle|52 Inserting Eqs(20) and (21) into Eqs.(18) and(19), and

illuminating the crystal, the state of the outcoming radiation. ) ) ~ N
Of course, due to the nonlinear nature of these equation§€€Ping only the terms up to the first orderip(z,q,€}) and

some suitable approximation scheme is needed, as describ@d(z,d,{2), we find, equating the zeroth-order terms, that
below. ce(2) and cg(z) have to fulfill the well-known classical

propagation equation of nonlinear optics

C. Two-field input-output relations d )
o _ —Cp(2)=—2KcE(2)cg(z)e 12K (22)
In the context of SHG, the standard linearized-fluctuation dz
analysis is generally justified by considering that the strong
incoming pump beam of monochromatic light at frequency d B 2 i Akz
w generates inside the nonlinear crystal a strong second- gzCs(9 =+ Kep(2) e (23

harmonic beam at frequencyw2[21,20. The strong inten-

sity assumption allows, in principle, to treat the quantumDefining a dimensionless characteristic interaction length
fluctuations of the fields around their mean values as small

perturbations, and to linearize Eq{$8) and(19) with respect {=\2WKz, (24)

to A,(2,9,0)—(A,(2,9,Q)). In fact, a close inspection of . ) .
Egs. (18) and (19) reveals that in the case of SHG, it is which is proportional to the square root of the input power

enough to require the quantum fluctuations to be mucIW:|CF(0)|2+2|CS(O)|2 |n]ectec_i into the nonlinear crystal
weaker than the field mean amplitufter the fundamental and to the strength of the nonlinearky Egs.(22) and(23)
field. This observation justifies the validity of the lineariza- can be conveniently rewrltte~n in terms of the foIIo~vvmg di-
tion procedure in the neighborhood of the input plane, inmensionless field amplitudes:(z) =cq(2)/ VW and cs(2)
spite of a vanishing second-harmonic amplitude. But this re=cs(z)/VW/2 as

quirement is no longer fulfilled, as can be seen from Fig. 1,

in the limit of large propagation lengths, provoking a break- d-

u- - —iAs¢
down of this approach, as will be discussed in some detail dch(g) Ce(des(de : (29
below.
Going along the lines of the linearized-fluctuation analy- - - A
sis, we consider here a slightly more general situation, which d—gcs(§)= +CE(Q)e'v%, (26)

corresponds to image-processing problems: we assume the

field distribution in the input plane of the crystal to be given where As=Akz,, zy=1/(y2WK) being the typical length
by the superposition of a strong uniform pump field at fre-gcaje jnyolved in Eq(24), represents the dimensionless col-
quency » and some “weak” coherent signal at freqUency |inear phase mismatch. It can be easily checked that the

2w, with an arbitrary space-time distribution representing anquantity|?:,:(§)|2+ [S(2)|2=1 is a constant of motion. This

input optical image. The propagation of this signal through. the well-known Manley-Rowe relation, which expresses

the nonlinear crystal can be described in the framework Oﬁ]e conservation of eneray flow in the lossless crvstal. The
the linearization approach, provided that at any point inside gy ystal.

the crystal the fundamental field generated by the input sigCoupled equation£25) and (26) can be solved analytically

nal remains weak with respect to the depleted pump field. [si)?a.ti?ntihse (f;?i?:u?;r? vsa}ms:gngn%h(ae;edgnsmmo, the
Following [21] and[20] we hence write the propagation- P y P

corrected field operators associated with fundamental and ~ 0
second-harmonic field as Cr({)=¢€'7F secht?), 27
Ae(2,0,Q)=Ce(2) 82(Q) 8(0) +a¢(2,6,Q),  (20) T =2 tann 0). 28)

. R R . R where¢(F°) is the phase of the pump field. These expressions
Ag(z,0,Q)=c4(2)52(q)5(Q) +ag(z,q,Q), (21 correspond to the profiles plotted in Fig. 1.
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Collecting now the terms at first order, we obtain the fol- (4  (@Q (a.£2)
lowing equations of propagation for the quantum field opera-

torsar(z,q,Q) andag(z,q,Q):

q,Q) Q. — (q.€2)

J . R - . R -
—ap(£,0,0)=—cg(Dak(¢,—q,— Q)e 1HEN<
¢ FIG. 2. Different three-wave processes involving one photon of
_ %7 2 > —iD(q,0)¢ one of the two strong homogeneous fields generated by the pump
\/EEF(g)aS(g'q'Q)e . (29 inside the crystal. The slightl¢strongly) wave-shaped arrows rep-
resent waves at fundamentakcond-harmonjdrequency. Process

iés(g“ (i Q)=+ \/EEF@)&F@ a Q)eiﬁ(&,n)g (30) | represents twin-photon emission, procesélll) is a down-(up-)
4 w w ’ conversion process at wave humigewhich occurs under radiation

o . ) ) . (absorption of a fundamental pump photon.
which involve two different dimensionless phase-mismatch

functions, crystal may split into two fundamental photons with opposite

Z(a.ﬂ)=[k|2:(d,ﬂ)+ k,Z:(—ﬁ, —Q0)—kdz, (3D frequerjcy o_ffsetﬂ and —Q_ ant_d transvgrse wave vectais_
and —q. This process, which is described by the effective
5(5.9)=[k§(5,9)+kp— é(é,ﬂ)JZO- (32) HamiIEoniarl (2), gen?rates a coupling betwe.e.n. the ampli-
tudesag(z,q,Q) and aE(z,—q,—Q). The specificity of the
Before analyzing the physical content of these equations, it iSHG scheme is entirely due to the presence of a strong uni-
important to discuss the range of validity of the linearizationform field at fundamental frequency, which, as already men-
approach. As a matter of fact, in the perfect phase-matchetioned, dominates in region | of the crystake Fig. L This
case, the linearized-fluctuation analysis predicts that the furstrong fundamental field stimulates the process labeled Il in
damental field should evolve, in the limit of large interaction Fig. 2, which describes the frequency down-conversion of a
lengths, into a perfect amplitude-squeezed vac[@th This  second-harmonic wave witlg(Q) into a fundamental wave

linearization approach that at frequeney the amplitude of With (0,02) and hence translates into a coupling between the

the fluctuations should be much smaller than the mean valueld operatoree(z,q,Q2) andag(z,q,Q2). This is the physi-

of the field[26]. This observation was the starting point of an C&l content of the second source term in E2f), which, in
extended work in which the predictions of the linearized!®Ms of a Hamiltonian formulation, can be traced back to
theory for traveling-wave SHG were compared to the resultn€ effective Hamiltonian3). Energy conservation implies
of the stochastic integration of the full nonlinear propagationth@t this frequency-changing process occurs under the radia-
equations obtained in the positive representation. This ton of a fundamental pump photon. The reversed process
study was carried out with respect to the field mean value§Process Il in Fig. 2 acts as a source of second-harmonic
[26], squeezing propertid®7], and quantum nondemolition Photons, as displayed by the rhs of E§0). _
criteria [28], with the following main conclusions: as far as AS_can be seen from the structure of the propagation
the field mean values or the quadrature squeezing either féauations29) and(30), two factors determine the efficiency
each field separately or for their sum and difference are cor2f @ given elementary three-wave process: the amplitude of

cerned, the linearization approach was found to give very’® Strong homogeneous wave involved in that particular
accurate results for interaction lengths 4. For the squeez- Process and the phase-mismatch function, which is the effec-

ing in intensity, its range of validity slightly shrinks to fiVe phase mismaich within the crystal along the beam-
¢=<3. Finally, with respect to a description of the behavior of ProPagation direction. A large phase mismatch results in fast
the fields in terms of standard QND criteria, it was shownSPatial oscillations of the source term, which reduces the
that the breakdown of the linearization approach occurs fopfficiency of this particular process. For this reason, process
even smaller interaction lengttfs-2. For these very sensi- | will be important provided thad (q,()){<1, whereas pro-
tive quantities, not even the truncated Wigner representatiooesses Il and 1l will be efficient iﬁ(&,ﬂ)§<1. In the
was found to reproduce the exact res(iz8,29. Since our paraxial and monochromatic approximation, the longitudinal
analysis is based on linearization, it is important to keepyaye numbekZ(q,Q) can be expressed as
these results in mind. As will be clear from the remaining of
this paper, the quantities we will mainly be interested in are
calculated from the squeezing spectra for given field quadra- ké(ﬁ,ﬂ) =k, +
tures. We can hence estimate the upper bound of validity of
the analysis presented hereas4.

With this restriction, we can now turn to the interpretation With k)= 3°k/ dw? andn, = on/ dw for w=w,,, o=F,S. Us-
of Egs.(29) and (30). Inspecting first Eq(29), two sources ing this expansion, we can show thkfq,2) andD(q,Q)
of fundamental waves with frequencies,2) can be distin- can be written in terms of a common typical spatial fre-
guished. The first source term on the rhs of E&29) reflects quency q,=+Vkg/z, and two distinct temporal
process | of Fig. 2: photons of the strong homogeneoufrequencies Q;=[(w/c)(2n5—n})zo] ! and Q,
second-harmonic wave generated by the pump inside the (|k{|z,) Y2,

(rn(,r krr Q lk,,Qz q2 33
L LR L T (33
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A(q,Q)=As+sgnki)—— 5, (34)
02 q?

D(q,0)=A @ 1 Ak 35

(0,Q)= S_Q_l 2 Z_qu_g (35
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Equation(36) describes the parametric amplification of a sig-
nal at fundamental frequency through down-conversion of a
second-harmonic pump field, the strength of which depends
on the position on the longitudinal axis, whereas E2y)
indicates that a signal at second-harmonic frequency would
cross the nonlinear medium without modification. With re-
spect to spatial frequencies, the scales for the frequency-
changing and the parametric down-conversion processes are

&f the same order of magnitude, as can be seen from Egs.
834) and (35), so that one does not expect to be able to

bandwidths for amplification and squeezing in the fundamenrdentify a g-value domain in which one particular process

tal field in terms of temporal and spatial frequer&y. Q4

will be clearly dominant.

comes in through the first-order dependence of the phase The solution of Eqs(29) and (30) can be expressed in

mismatch functiorD(q,Q) on Q, and determines, as can be
seen from Egs(29) and(30), the bandwidth for the coupling

terms of aninput-output transformation for the system of the
two fields

between the second-harmonic and the fundamental field. . N - . N -
Since this coupling is responsible for squeezing generation in @F(£,4,2) =W1,(£,9,0)a¢(0,9,Q) +W2(£,9,€2)

the second-harmonic field, as pointed ou{2i], {2, coin-
cides with the bandwidth for intensity squeezing at. 2t is
interesting to recall that in the practical case of a KNbO
crystal considered if21], the two temporal frequency scales

Xal(0,—q,—Q)+W;4£,q,Q0)ag(04,Q)

+W14(§1(_i!‘0’)ag(01_d)1_‘0’)7 (38)

1, and Q, were found to be separated by two orders of 3 (s g ,0)=Wa(£,q,0)a(09,0)+Wax(£,q,Q)

magnitude:},/Q,~400. Different regimes can be hence
distinguished according to the value 6f. For Q<Q,,

xal(0,—q,—Q),+Wsy{,q,02)ag0,9,0)

propagation through the nonlinear medium generates a cou-

pling between fundamental and second-harmonic field

through all processes represented in Fig. 21 lis increased
to a value such tha€); <0<, processes Il and lll be-
come inefficient and Eq$29) and (30) simplify to

+Wa,(£,0,Q)al(0,—q,—Q), (39)

which connects the field operators at the exit plane of the
crystal with those at the input plane. The coefficients

W;;(£,q,Q) are the elements of a>44 matrix W({,q,Q)

a . R - . . . defined as the solution of the following first-order differential
2ar(£,A.Q)=—Cs(Dar(s,—q, - Qexid ~iR(d,0)¢],  equation:
(36) d R R R
) &—gw(é,q,QF—A(é,q,Q)W(é,q,Q) (40
a—gas(§.q.ﬂ)=0- 3D ith
|
A(£,0,Q)
0 cs(Oexd —iA(q,0)¢] V2et (exd —iD(q,0)¢] 0
| cs(OexiA(—a,~Q)¢] 0 0 V2Ce(Q)exiliD (—g,— Q)¢]
— JZ8e ()P 0 0 0
0 —V2ct(Qexd ~iD(~a,~ Q)] 0 0
(41)
|
and the initial conditiorW(gzo,(i,Q)zl, | being the unit case, however, no analytical solution is known, and the re-

matrix. In combination with Eqs(40) and (41), Egs. (38)

sults presented in the following section were obtained by

and(39) are the central result of this section and generalizé"eans of a numerical integration of Eg0).
for the case of two coupled fields the multimode squeezing

transformation derived if2] for an OPA in the undepleted

pump approximation. Analytical expressions for the coeffi-

cients of the input-output transformatiori88) and (39)
could be derived if21] for g=0 andQ=0. In the general

IIl. QUANTUM IMAGE PROCESSING

Following the general ideas §6,7], we now consider the
optical device represented in Fig. 3: tg€)-nonlinear crys-
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Object plane fmege plene as(0.0, )| ain) = atin(q, )| tin)
Tnput Signal (20) utput (w) Output (2w)
‘@' ﬂ " @ ar(0,0,Q)|a;n)=0. (43)
\<
. @ As will become clear in the following, the symmetry prop-
Pump (w) \_Y_J \_Y_J erties ofe;,(q,Q), exactly as in the OPA ca$d], determine

y the operating regime of the SHG-based optical device: one
- L sHE t distinguishes between thghase-insensitive regimevhich
corresponds to an input signal confined to one half of the
FIG. 3. Scheme of an optical device based on second—harmon'@bject plane of the optical devid8] (an object confined to

generation. The nonlinear crystal, pumped at frequencys en-  the ypper part of the object plane, for instance, will be char-
closed in a two-lens telescopic system. In the output plane of the

crystal, a pupil of finite width represents the finite spatial bandwidth"’lcter.lz.ed by.ai”(q’.Q):O for qy<0) ' a.nd thephasg—
of the system. sensitive regimewhich refers to the behavior of the optical

system in the case of a symmetric input signal, i.e., when

tal pumped at frequency investigated in the first part of @in(9,Q2) = in(=0, = 2) [7].

this paper is enclosed in a two-lens telescopic system. Its role

is to map the Fourier plane onto the physical plane, so that A. Phase-insensitive configuration
this optical system operates on a portion of the input plane
rather than on a band of wave vectf8§)]. In terms of image

processing, this optical device is expected to deliver, for
given input image at frequency«®? a pair of symmetric am-

plified versions of the input image at both fundamental an ations(38) and(39), the intensity of an outgoing wave with

second-harmonic frequency. . . .
The input-output transformation for the real-space operafféauencies ¢,€) for the input defined by E43) can eas-

tors can easily be derived taking into account the input-"y be calculated. At the fundamental frequency, one finds
output transformation for a lens with focal length 30],

A
which relates the field operators in the image plane to thost2r(£,0,Q)ar(£,9,02))
in the object plane of the lens, =(277)35(3)(0)|le(§,a,9)|2+(277)35(3)(0)

X|Wia(£,0,0) 2+ |Wis(£,9,9)|?] @in(q, Q)|

We start considering thphase-insensitive configuration

because it provides a clear picture of the elementary pro-
%esses, which are responsible for image generation in the
HG-based optical device. Using the input-output transfor-

an(p’,b). +|Wii(£,0,Q) | ain(—a,— Q)[?, (44)
(42)

- 1 5, 2. o
Qoulp, )= 5 | dp'exp —iszp-p

which indeed does not depend on the phase of the input
signal. Four different contributions can be distinguished: the

\ is the wavelength of the light considered. Since the effectdWo first terms on the rhs of E¢44) are independent of the

of the telescopic system on the input-output transformatior?tretngtn of the input Wﬁ_"eh ?”I‘(j refllect the tshpontantecl)us para-
leads to the replacemedit — (27/\. )%, where), is the  MetiC fluorescence, which takes place in the crystal even in

wavelength of the output field considered, we will discussthe absence of any coherent input signal. The two other con-

. o tributions are proportional to the intensity of the input wave
the results in terms of plane waves with given wave vectors, ~ ~ - :
and remember that the telescopic system converts these wa@k (4:() and (-g,—), respectively. But because of the
vectors into positions in the transverse plane. Furthermord?@rticular injection scheme considered here, for a given wave
we will assume the temporal evolution of the input image tovectorq at which the output is considered, only one of these
be slow and puf)—0 for the calculation of the output im- two terms is nonvanishing. To fix the ideas, we consider an
ages. object confined to the upper part of the object planeq,If
The nonlinear crystal is pumped at frequengyConsid- >0, |ai,(—d,—Q)[?=0 and |W;5(£,0,9Q)| ain(9,Q)|?
ering a vanishing collinear phase mismattk=0, the am-  describes the intensity distribution of an amplified version of
plitudes of the two strong coherent waves at frequan@nd  the input image. Ifq,<0, only IW14(Z,0,9) 4 ain(—q,
2w generated in the crystal by the pump, which are needed. ())|2 is nonvanishing and corresponds to a reversed ampli-
as an ingredient of the propagation equations for the quartied version of the input image. The underlying mechanism is
tum field operators, are given by Eq®7) and (28). The  process | of Fig. 2, according to which, second-harmonic
input Signal at frequencch iS described by a C_)Oherent state photons generated by the Strong pump wave inside the Crys_
|ain) characterized by a complex amplitudg,(q,Q). With  tal decay into pairs of fundamental twin photons propagating
respect to the frequency, |a;,) is assumed to be in the in opposite directiong8]. At second-harmonic frequency, we
vacuum state. Hence, we have find a similar structure of the output intensity,
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(al(£,0.0)ag(¢,0.0)) - Y
~ @m0 Wed £.G,0) P+ (2m260)  § |
X[ Wa( £,G, ) 3 i e
+|Wail £,6,0) 2 in(@, Q)2 s s 4 s

+|W3y(£,0,Q)|H ain(—q,— Q)| (45)

~ 8
<
Therefore, the output ata2 is expected to display both an & 6
amplified and a phase-conjugate-amplified version of the in-éi 4F
put image. But the underlying mechanism is different, since® 2
there is no three-wave process in the system under conside o
ation, in which two second-harmonic waves with opposite 0 1 2 5 4 5 6 e 1 2 5 4 5 6
wave vectors and frequency offsets are created simulta-
neously. As will become clear in the following, these images FIG. 4. Phase-insensitive gains as a function of the interaction
are generated by the frequency-converting process Il actingngth ¢ for waves with Q=0 and different wave numbers
on the image pair at fundamental frequency, which we have=0.5(solid line), g=1.2 (dashed ling andq= 1.6 (dotted ling (in
discussed above. units ofg,= vkg /). The symbols I, 11, 1l refer to the correspond-
To quantify the efficiency of these mechanisms, we caring dominant elementary processes of Fig. 2. Processidlthe
define, for each of the four output images, a local phasesame as process Il but with replaced by—q.
insensitive gain as the ratio of the intensity of the output
wave under consideration to the intensity of the correspond-

ing input wave, which is given bye;,(q,Q)[% If the con-  where(- - -) stands for the expectation value in the input
tributions to the output intensities due to spontaneous procgherent statéw;,) defined through Eqg43).
cesses can be neglected—this is a reasonable approximation,To get some insight into the details of the elementary
as has been shown {6}, if a pupil of finite aperture and processes generating the four output images, it is very help-
properly chosen dimensions is located in the output plane oyl to first plot the phase-insensitive gains as functions of the
the crystal—the gains can be expressed in terms of the elenteraction length inside the crystaFig. 4). At the input
ments of the matrixV({,q,), plane, we haveGg({=0,+q,+Q)=Gg({=0,—q,—Q)
=Gg({=0,—q,—0)=0 andGg({=0,+q,+Q)=1, which
- . . - simply identifies the input chosen. Increasing the interaction
(ae(f,+a,+D)ae(f,+9,+ ) length, a reduction 0G(¢,+q,+ Q) is first observed, with
(al(0,+q,+0)ag(0,+q,+Q)) a simultaneous increase &(¢,+q,+ ), whereasG (¢,
—q,—Q)=Gg(¢,—q,— Q) are still close to zero. This con-
firms that the dominant process at small interaction lengths is
process Il of Fig. 2. Atf=1.4, the totality of the injected
A R A ) second-harmonic signal turns out to be down-converted. In-
Gu( : _q (al(¢,—aq,—M)ap({,—q,— Q) creasing further the interaction length, a second step in the
(=0, -Q)=—= = = = signal processing is initiated, which, for small wave numbers
(ag(0,+q,+0)ag(0,+q,+Q)) (solid lines in Fig. 4, is characterized by a rapid and sym-
_ = 2 metric growth of both fundamental gains a&tq and —q.
[Wad£,a.0)1% “7) Obviously, this is the manifestation of the photon down-
conversion process labeled | in Fig. 2. As a consistency
check, one observes that at a propagation ledgtii, al-

Gs(¢,—q.—0)
N K O

Ge(¢,+0,+Q)=

=|Wi4£,9,Q)|2, (46)

Gu(Z 46 +0)= (aj(¢,+q,+Q)ag(¢,+0,0) ready more than 58% of the pump field has been converted
st¢,*a, )= 75 - A 3 into second-harmonic field, as revealed by E@/) and
(ag(0,+q,+Q)ag(0,+q,+Q))
(28). Therefore, the interaction lengths for which we observe
=|Wa4(£,9,Q)|?, (48)  this rapid growth of both fundamental gains indeed corre-

spond to region Il of the crystdFig. 1), in which the domi-
nant homogeneous field is the second-harmonic field gener-
ated by SHG. As a consequence, this region of the crystal

Ga({,—0,— Q)= <?£(§'_?’_Q)?S(§’_?'_Q)> acts principally as an OPA with adependent pump. How-
<a£(0,+ q,+Q)ag(0,4+q,+Q)) ever, the presence of a weak residual pump field at frequency
R o makes possible a partial frequency up-conversion of the
=|W34(£,9,0)|2, (490  amplified waves at fundamental frequency through processes
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(o]
(=]

1.5 the optical device that can be estimatedpte=f/\krzy. At

ol large transverse wave numbers, $gy2, an input wave is

' LT seen to basically cross the optical device without being
] modified: the nonlinear crystal is transparent. However, some

structure can be observed in the tail @g(§,+ﬁ,+9) at
0.0 largeq. Closer inspection reveals that it has its counterpart in

the tail ofGF(§,+ﬁ,+Q), which however cannot be seen
directly from the graphs displayed in Fig. 5 due to of the
different scales used to plot fundamental and second-
harmonic gains. This result shows that in the limit of large
wave numbers, the dominant process is a weak frequency
down-conversion of the input wave, which is consistent with

the fact that the variation scale Bf((iQ) with respect to the

spatial frequency is larger than the onedeﬁ,Q) by a fac-
tor 2.

Ge(¢,+9,+Q)
a 3
Gs(¢,+9,+0)

O5F ~~~_"~

Ge(¢,—a,—0)
Gs(¢,—9,—-0)

B. Phase-sensitive configuration

FIG. 5. Phase insensitive gains as a function of the transverse

wave number for two different values of the interaction length
=2.5 (dashed ling (which is an arbitrary length>1.4) and¢

=3.32(solid ling) [for which Gg(¢,+d,+Q)|q=0-0=25].

It is also possible to operate the SHG-based optical device
in the so-calledphase-sensitive configuratipthe difference
to the previous scheme being the symmetry of the input sig-
nal imposed by the conditioa;,(—q, — Q) = ai,(q,Q). For
static signals, this translates into a symmetry of the input
[l of Fig. 2 and Ill", which is the process IIl but involving image with respect to the beam axis. In the case of the OPA,

waves with the transverse wave vectoq instead ofg. This It iS well known that with this symmetry of injection, the
mechanism translates into a slow increase of both secon@utput is the resul_t of the coherent superposition o_f both twin
harmonic gains ain and _a with increasing interaction waves produced in an elementary down-conversion process

length. It is responsible for the formation of the two phase—[gz]' As a consequence, the amplification is phase sensitive,

conjugate output images at the second-harmonic frequem%nd this is precisely one requisite for the possibility of am-
we have already mentioned. lifying an optical image without deteriorating its signal-to-

Due to diffraction, which is encoded in the dependence o o1se r<'_at|o[7,33]. Itis, th_erefore, mtere_stmg to mvestlg_atg
he optical system considered here with respect to similar

the phase mismatch functioBgq,2) andA(qg,Q) ong and roperties.

Q, the gains will also depend on the spatial and temporaP But, before studying the noise behavior of SHG-based
frequency. Considering first the fundamental gains, it WINg;jgnal processing, we first have to investigate the output field
out that the general consequences of increasing the iNPustribution for this injection scheme. We begin by noting
wave number can be predicted from the OPA theory: increéaspt the input image being symmetric with respect to the
ing the transverse wave number first translates into a weakgjoam axis, the output displays, at each frequency, an image
amplification rate of an input signal, and above a critical\yiiy the same symmetry. Under the same assumptions as in
value d.=+2 in the dimensionless units used here, a totakhe phase-insensitive case, the ratio of the intensity in a given
suppression of the amplification mechanism is observed angortion of each output image to the one in the corresponding

the input signal, instead of being exponentially amplified,part of the input image defines the phase-sensitive gains
will present, as a function of the interaction length, an oscil-

latory behavio31]. These predictions coincide with the re- G(Fqsin)(g,ﬁ,g):|W13(g,a,g)ei $in+ Wo,(£,G,Q)e 4|2,
sults of our numerical calculations shown in Fig. 4. For the
two second-harmonic gains, we find that increasing the wave (50)
number of the input signal leads to a saturation of the output ) R )
wave intensity, WhICh.haS a finite asymptotic value in the G(S¢'")(g,q,Q):|W33(§,q,Q)e'"’in+W34(§,q,Q)e"¢in|2,
limit of large propagation lengths.

As far as the optical device sketched in Fig. 3 is con- (51

cerned, this reduction of the gains at higher transverse wave . . .
number will translate into a finite bandwidth for image pro- Which both depend on the phase of the input sighgl. For

cessing. As for the OPA in the perfect phase-matched casdMPlicity, we only consider input images with an homoge-
[8], only a finite disk-shaped portion of the input image cen-neous phaser,(q,Q) =|a;,(q,2)|e' .

tered on the beam axis will be efficiently processed by the This phase sensitivity is illustrated in Fig. 6 for different
optical device. This is precisely illustrated in Fig. 5, which transverse wave numbers, i.e., for different regions of the
shows, for a crystal of a given length, the dependence of theansverse plane. On the longitudinal axis{0), both gains
gains on the transverse wave number. For wave nuntdpers reach maximal values fop;,= w/2+nw, and go through
<1, all gains have constant, almasindependent values. In  minima at ¢;,=nw. To understand this observation, it is
real space, this value corresponds to a spatial bandwidth afseful to recall that in a perfect phase-matched OPA, the
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FIG. 6. Phase-sensitive gains for fundamertgland second- FIG. 7. Phase-sensitive gains for fundamerigland second-

harmonic(b) fields as a function of the phase of the input sigial ~ harmonic(b) fields as a function of the transverse wave number for
radians for different values of the transverse wave numberO two different values of the interaction length=2.5 (dashed ling
(solid line) g=1 (dashed linpandg= 1.4 (dotted ling. Interaction  and {=3.32 (solid line). The phase of the input imagedf,
length {=3.32. =7/2) is chosen for maximal gain gt=0.

amplification of an input signalat frequencyw) with a  obtained for the phase-insensitive injection mode: image pro-
phasegr ;, is maximal, if ) 2¢¢ in=m, ¢ being the  cessing will be efficient within a region of finite width cen-
phase of the second-harmonic pump field illuminating thetered on the beam axis, whereas outside this region, the non-
OPA[2,18. If ¢(S°)—2¢F,m=0, the input signal turns out to linear crystal will behave as a transparent medium.

be maximally deamplified. This rule should be valid here as Finally, we investigated the noise properties of the optical
well, provided thate ;, is identified with the phase of the device proposed here, which are determined by the quantum
down-converted version of the input signal. In gene¢g!;,,  fluctuations of the output fields. For this purpose, we first
is not identical with the phase;, characterizing the input define, at each frequency, the following quadrature operator
signal. Inspecting Eq$29) and (30), one can show that for at phasep o:

A(q,Q)=D(q,Q)=0—what is fulfilled along the longitudi-

nal axis in the case of perfect phase matching—these two y(?.0)( ¢ q 0)=1[a (¢,q,Q)e *o+al(f,—q,—Q)

phases are connected in a simple wapgi,=d¢i,—7 7 7

— 9 where¢ is the phase of the pump field illuminat- x gl4Lo], (52)

ing the crystal. Putting these two phase relations together,

one predlctsihat }?)e fundamental gain should have an eXtr?/\_/hich involves the field amplitude operatar,(g,ﬁ,ﬂ) e
mum for ¢i,=2¢r’+nw/2, the maxima corresponding to . oA -

odd values oh. This is exactly what is observed in Figas  |ated to the propagation-corrected amplitugg?,q,(2)

(in all calculations, the phase of the fundamental pupp

was taken equal to 0). Looking at Fig(b®, one observes ag(i.d,Q)ZGXp{i[kﬁ(d,Q)—kg]Zoé}ég(éd,Q)-
that the second-harmonic gain shows the same behavior. This (53
is not surprising, since image formation ab Z2an be viewed

as the result of a secondary process acting on the fundame4f4he exponential factor simply restores the phase accumu-

ta}l wave prppag_ating through 't.he medium and experieqcingated during propagation, which had been for technical rea-
either amplification or de_ampll_flcat_lon. It is h_ence plaus'blesons factorized out in the definitidd6). Unlike the quanti-
that the second-harmonic gain will be maximal for thoseyes considered before, this phase factor is now important, as

values of the input phase that guarantee a maximal fundgy,s jjjystrated if2]: it accounts, in particular, for the modi-

mental gan. . . fications of the properties of multimode-squeezed light dur-
Considering off-axis regions of the transverse plane, on g propagation in free space

observes a shift of the input phase ensuring maximal an ) - i

minimal gains(dashed andpdottzd lines in Fig)?ﬁ'he main The variance Ofi(fr¢LO)(§’q’Q) defines the spectrum of
consequence of this observation will be that for an inputsqueezingSffLO)(g,q,Q) through the following relation:
image with an homogeneous phase, the maximal gain condi-
tion can only be satisfied at one point of the transverse plane.
However, it should be possible to compensate this position-
dependent phase shift through a displacement of the nonlin-
ear crystal with respect to the lenses. This operation, which
amounts to superposing a parabolic phase profile to the over-
all phase of the input image, was shown to achieve, for theyith the usual definition of the variance(f,g)=(fg)

OPA, a substantial optimization of the performances of the—(f)(q). In the case of detectors with perfect quantum effi-
amplifier [7]. Without elaborating on these considerations,ciency, the spectrum of squeezing coincides with the spectral
we show in Fig. 7 the phase-sensitive gains as a function iensity for photocurrent fluctuations, normalized to the shot
the transverse wave number, for a phase of the input sign@oise level, as measured in a homodyne detection scheme.
chosen so as to have maximal gaing&t0. The conclusions ¢, o represents the phase of the local oscillator used in this
that can be drawn from these curves are identical with thosdetection setup.

(xo(7,q,0) x"9(7,q7,0"))

=15D(g+9")6(Q+0Q)S"(£,0,0) (54
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FIG. 8. Spectrum of squeezirg{!-°(¢,q,Q2) for fundamental FIG. 9. Intensity fluctuations of fundamenté) and second-

(a) and second-harmoni) fields as a function of the phase of the harmonic(b) fields normalized to the shot noise level, as a function
local oscillator(in radiang for Q=0 and different values of the Of the phase of the input signal for different values of the transverse
transverse wave number=0 (solid line), =1 (dashed linand ~ Wave number=0 (solid ling) =1 (dashed linandq=1.4 (dot-
q=1.4 (dotted ling. Interaction lengthy =3.32. ted ling. Interaction lengthy=3.32.

characterized by the variance in the mean number of col-
lected photoelectronéAN?(q)), which can be calculated.
ne finds

Figure 8 displays the variation chffLO)(g,a,Q) as a
function of the local oscillator phase. In analogy with a one-
mode squeezing transformation, changing the local oscillatoP
phase allows one to explore the shape of the uncertainty ) (b10), 5 =
region covered by the quantum fluctuations of the field. The (ANG(9))=S,19(£,0,0(Ny(a)), (56)
maximum corresponds to the local oscillator pointing along
the quadrature with stretched fluctuations, whereas the minin which SffLO)({ ﬁ ,0) can be obtained from the spectrum of
mum indicates the direction of the squeezed quadraturequeezing(54), if the local oscillator is taken to coincide
Considering different values af allows one to observe the Wwith the complex amplitude of the output field. At funda-
effects of diffraction on the squeezing properties of themental frequency, the phasfg o has to be taken equal to
fields: again, as for the phase-sensitive gains, a shift in the

positions of maximum and minimum spectrum of squeezing U= arg Wio(£,q, Q) e Pin+ Wy 4(£,q,Q) e #in]
is observed, which can be interpreted as a rotation of the axis .
of the uncertainty region. This is a well-known phenomenon +[ke(a,Q) —kelzo8, (57)

in the case of the OPE2]. Simultaneously, a reduction of the

amplitude of oscillations of the spectrum of squeezing indi-as can be seen by combining the propagation-corrected out-
cates a reduction of the squeezing effect with lagewith ~ Put field amplitude at fundamental frequen@0) with the

the consequence that the uncertainty region recovers mofQITect propagation phas3). To compute the intensity
and more the circular shape characteristic for a cohererftuctuations in the second-harmonic outpgi,o has to be

state. identified as
These preliminary considerations demonstrate very simi- out . , . p
lar features of the quantum properties of the fields in SHG Q'=ard W33(£,9,0)€' %in+W34(£,q,0)e ' 9in]
and in the OPA. In order to be able to appreciate the perfor- g
mances of the SHG device, in particular, with respect to +(ks(d,Q2) —ks)zp¢ . (58)

noiseless signal processing, we consider precisely the detec- .
tion scheme, for which the noiseless amplification was preFigure 9 reveals that the intensity squeez&iﬁm)(é,q,o),
dicted for the OPA4]: it consists in measuring the sum of as a function of the input phase of the signal, is almost al-
the photocurrents from two symmetric pixels in the outputways given by the maximum value of the spectrum of
plane. Assuming for simplification an ideal quantum effi- squeezing, as can be seen from a comparison with Fig. 8, and
ciency of the detectors, the measured quantity is given by drops very suddenly to its minimum value when the input
phase approaches the value corresponding to the minimal
f dzq’+f dzq’) gain. This simply _reflects the_fact thgt we are considering
Sy S q parameters for which the maximal gain is hi@f the order
of 100 for an interaction lengtli=3.32), so that the orien-
x(al(¢£,q9',0)a,(£,9’,0)) tation of the output field amplitude in the complex plane is
. . dominated by the “amplified” quadrature. Only for input sig-
=2T¢Sy Gf,¢i”)(§,q,0)|ain(q,0)|2 (65  nal phases close to fulfill the condition for minimal gain, the
“deamplified” quadrature comes into play, and the phase of
in which S, represents the area of the output plane occupiethe output field varies rapidly, translating into a rapid change
by the photodetector, centered qnSy represents the pixel of orientation of the local oscillator. Furthermore, the
area, and 4 is the observation time, which is supposed to bediffraction-induced shift in the input phase dependence can
large enough, so that the main contributions to the measurdak clearly seen when looking at Fig. 9.
current come from the field components with vanishing time The noise performance of an optical device is described
frequency offset. The noise affecting this measurement i®y the noise figure

(N (@) =Tq
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a) output field amplitude with some structure in thedepen-

dence of the fundamental gain.

Fe(q)

IV. CONCLUSIONS AND OUTLOOK

In this paper, the spatial behavior of light generated by a
x®-nonlinear crystal pumped at the fundamental frequency
q q was investigated. Focusing on the problem of the propaga-
tion of coherent input signals, we found that the process of

FIG. 10. Noise f|gur§ at fundament@ and second-harmonic second-harmonic generation, which spontaneously takes
(b) frequency as a function of the transverse wave number for twg

different values of the interaction length=3.32 (solid line) and place in the .CrysItEaI, opt_enlis nt(ra]w possblblltltles :janu?(nttum "P' ¢
{=2.5 (dashed ling As a dotted line, the smallest possible value age processing. Essen "'?‘ Y, |s_can_ € rape acktotne fac
_ i that a SHG—based optical device is equivalent to an OPA
F,(q)=1 for a linear system. . . ; <
combined with a frequency converter. This combination al-
in lows, for instance, to switch a given optical input image at
F(q)= R™(Q) (59 frquen(_:y 20 down to frequencyw before amplifying and

7 R2"(q) cloning it. As a result, the output at fundamental frequency

_ displays two amplified versions of the input image, which
whereR " (R 2" represents the signal-to-noise ratio in theare symmetric with respect to the system axis. Investigating

input image(each output imageand is defined as the quantum fluctuations in this output, we conclude that for
5 a symmetric input image with a properly chosen phase, this

R(q)= (Ng(a)) (60) two-step image processing can operate preserving the signal-
a= (ANZ(q)>' to-noise ratio. This can be a very valuable property when

processing very weak input signals. In addition, the fre-
Collecting the results of Eqg55) and (56), one easily ob- dquency converter “part” of the device is also able to convert
serves that the noise figure is given by the ratio of thed small fraction of this output up to frequencw2generat-
intensity-squeezing spectrum to the phase-sensitive gain ing a pair of symmetric images at second-harmonic fre-
quency. The output intensity ate?was found to be much

out

sts (£,9,0) weaker than the fundamental output and affected by some
Fo(q)=—r - (1)  excess noise, which, however, can be lowered by considering
o (¢in) - . . . . . . .
G, "™(¢£,9,0 larger interaction lengths. More quantitatively, considering

one of the numerical examplés=2.5 used in this paper, we
Choosing again the phase of the input signal for maximafound in the phase-sensitive configuration a ratio of output
phase-sensitive gains gt=0, the results of our numerical intensity at fundamental frequency to input intensity of 20,
computation of the noise figure for each output are presentegith an unchanged noise level. The output at ®as found
in Fig. 10. Since all this analysis is done in the linearizationto be roughly twice the input intensity, with a noise level
approach, the propagation equations for the field operatorgpproximately increased by the same factor. These values
are linear and the noise figure can never be less tH@3]l  were found to be valid for a region of finite widtp,
This smallest possible value, which has been plotted foe=f/\/k.z, centered on the beam axis.
comparison as a dotted line, corresponds to a noiseless op- However, these interesting properties of SHG-based sig-
eration, in which the noise level is preserved during processnal processing require interaction lengths above a minimal
ing. In the domain of wave numbers, in which image pro-length{.,i,~ 1.4, which is the interaction length necessary to
cessing is efficient, we find that the fundamental outpufirst down convert the input signal. This value is slightly
shows the same level of noise as the input image: the SHGahove the actual experimental possibilities. As a matter of
based device operates without adding noise to the signal. thct, a good second-harmonic conversion rate obtained ex-
we consider the output at frequencyw2we see that the perimentally is of the order of 66%84], corresponding to an
noise figure is slightly above 1. With respect to this outputinteraction lengthle,,~ 1.1. Therefore, to be able to observe
frequency, image processing is hence affected by a degradghe effects predicted here, an increase of the available inter-
tion of the signal-to-noise ratio. However, increasing the in-action length by 50% is necessary. It seems reasonable that
teraction length, the figure noise is seen to approach 1 for thgjs will be possible in the near future, either increasing the
spatial frequencies inside the bandwidth for image processsump power, or the nonlinearity of the crystal, as reported,
ing. Finally, one notes that, in the transparency region, thgor example, in[35], or optimizing further the conversion
noise figure with respect to the second-harmonic output igfficiency[34].
equal to 1, since the input signal is unaffected by the optical From a general point of view, the work reported here
system, whereas the noise figure for the fundamental outpigpens interesting perspectives for further investigation. A
diverges, as a consequence of a vanishing output intensity st objective would aim at a better understanding, on an
w in the limit |ﬁ|—>oo. The structure observed in the tail of analytical basis, of the spatial behavior of the fields gener-
Fr(g) can be traced back to the interplay of the diffraction-ated by SHG. In particular, since the two field input-output
induced rotation of the uncertainty region with respect to theransformationg38) and (39) are the generalizations to the
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case of two coupled fields at frequeneyand 2w of a mul-  more a circular spot centered on the beam axis, but turns out

timode squeezing transformation, it would be interesting tdo be ring shaped. With a proper choice of the phase mis-

be able to interpret it in terms of simple geometrical trans-match, it is hence possible to optimally process off-axis re-

formations in the complex plane of the field amplitudes. Asgions of the transverse plafi@|. Since the SHG device stud-

for the OPA, this would allow to predict most of the proper- ied here is based on a combination of both processes, it

ties of quantum image processing in a very simple way. would be interesting to see if, for a finite phase mismatch,
Whereas the study presented here was restricted to thme could simultaneously exploit both advantages.

case of perfect phase matching, it was shown that SHG with

a finite phase mismatch could present interesting properties ACKNOWLEDGMENTS

[20]. In particular, it was found that the second-harmonic

field could be highly squeezed, whereas a 50% squeezing is Financial support from the European Commission
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