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Spatial behavior of light in second-harmonic generation

Pierre Scotto and Maxi San Miguel
Instituto Mediterráneo de Estudios Avanzados, IMEDEA (CSIC-UIB), Campus Universitat Illes Balears,

E-07071 Palma de Mallorca, Spain
~Received 31 October 2001; published 29 March 2002!

We investigate the spatial behavior of nonclassical light produced by type I second-harmonic generation in
the traveling-wave configuration. An input-output transformation for the system of fundamental and second-
harmonic field is derived in the framework of a linearization approach and used to investigate the properties of
an optical system, which consists of a crystal with a quadratic nonlinearity pumped at frequencyv and
enclosed in a two-lens telescopic system. If a faint input image at frequency 2v is injected into this device, for
a sufficiently large interaction length, the output displays a pair of symmetric amplified versions of the input
image at both fundamental and second-harmonic frequency. The analysis of the quantum fluctuations in the
output images shows that under certain conditions, this optical device operates noiselessly with respect to the
output at frequencyv, whereas the output images at frequency 2v are affected by a slight degradation of the
signal-to-noise ratio.
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I. INTRODUCTION

Nonclassical states of light have been the object of int
sive studies over the last decade not only because of
interest they represent from a fundamental point of view,
also because they can be used to circumvent standard q
tum limits in optical precision measurement and informat
technologies@1#. A new field of applications of nonclassica
light has emerged, since it has been realized that it is poss
to produce light with reduced quantum fluctuations not o
in time, but also in space, i.e., in the transverse cross sec
of the beam@2–5#. New developments appear in the field
image processing, with the possibility of noiseless amplifi
tion of a faint optical image@6,7# or of image cloning@8#, as
well as in high-precision optical measurement: here, gr
precision enhancements with respect to standard met
based on the use of coherent light beams were predicted
the measurement of very small displacements of a light be
@10,11#, of very weak spatial phase modulations@12–14#, or
in the reconstruction of fine details in images in diffractio
limited optical systems@15#.

Such light states with a higher spatial order are genera
using nonlinear optical media. As a matter of fact, any op
cal nonlinearity is associated with the simultaneous abs
tion or emission of photons. On a macroscopic level, a
under suitable conditions, this can result in spatial corre
tions beyond the standard quantum limit, i.e., beyond th
corresponding to a random distribution of photons. From t
point of view, perhaps the simplest process that is likely
generate nonclassical spatial correlations is the decay
photon of a given frequency into two photons of lower e
ergy, which is, in principle, possible in any medium prese
ing a susceptibility with a quadratic nonlinearity. This is pr
cisely the mechanism on which is based the opti
parametric amplifier~OPA!, a x (2)-nonlinear crystal illumi-
nated by a strong monochromatic pump field at freque
2v. In the crystal, the pump photons may decay either sp
taneously or in a stimulated process into a pair of perfe
correlated twin photons. This mechanism gives rise to n
1050-2947/2002/65~4!/043811~14!/$20.00 65 0438
-
he
t

an-

le
y
on

-

at
ds
for
m

d
-
p-
d
-
e

is
o

a
-
-
-
l

y
n-
y
-

classical quantum correlations between the correspon
spatial frequencies of a parametrically amplified~signal! im-
age and its generated~idler! image, as was demonstrate
experimentally in@16#. When enclosed in a classical two
lens telescopic system, the OPA is able to generate two
plified copies of a given input image, which are symmet
with respect to the mean light propagation direction, a
which are expected to be locally much better correlated t
classical copies, not only with respect to intensity fluctu
tions @8#, but also to ‘‘phase’’ fluctuations@9#. Finally, the
perfect quantum correlations of the twin photons created
each photon down-conversion process can be used to
plify a faint optical image without deteriorating its signal-to
noise ratio, as was predicted in@7# and realized experimen
tally in @17#.

In this paper, we suggest going one step further along
lines of optical image processing and propose an optical
vice capable of frequency down-converting a given inp
image first, and then cloning and amplifying it. If an optic
image is injected at frequency 2v, this device is expected to
deliver in the output a pair of amplified versions of this inp
image, symmetric with respect to the mean light-propagat
direction, not only at frequencyv, but also, as a detailed
analysis will reveal, at frequency 2v. In addition, we will
show that, under certain conditions, this image process
can be carried out in a way that preserves the signal-to-n
ratio. The realization of these optical operations turns ou
be possible using, again, a crystal with a quadratic non
earity. But unlike the OPA, for which the pumping is pe
formed at 2v, we propose here to pump this crystal at t
fundamental frequencyv. This new image-processin
scheme exploits the well known process of second-harmo
generation~SHG!: during propagation through the nonline
crystal, the fundamental pump field undergoes a convers
into second-harmonic field@18#. The technical advantages o
SHG for the generation of squeezed fields have been poi
out in @19,20#. Among others, the simplicity of the exper
mental setup and the possibility to create nonclassical ligh
both fundamental and second-harmonic frequencies m
©2002 The American Physical Society11-1
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PIERRE SCOTTO AND MAXI SAN MIGUEL PHYSICAL REVIEW A65 043811
vated an extensive investigation work at both experime
and theoretical levels. Now, there are good reasons to be
that the advantages of SHG for squeezing generation c
translate into new possibilities for image processing. A
matter of fact, the investigation of the properties of the no
classical light produced by an OPA showed that squeez
and noiseless amplification are closely related to each o
@2#. These aspects, which to our knowledge have not b
investigated so far, are relevant in the actual context of
increasing importance of ‘‘quantum imaging’’ for practic
applications.

Technically, image-processing problems are solved by
vestigating the spatial behavior of the fields generated by
optical system under study@2#. Our first objective will be
hence to generalize previous investigations devoted to
propagation of quantum fluctuations in SHG@20,21#, in or-
der to include the transverse spatial dependence of the fi
This analysis, carried out in Sec. II, allows to derive
input-output transformation for the system of fundamen
and second-harmonic fields. In the second part of this pa
~Sec. III!, we will use these results to investigate SHG-bas
image processing. First we will focus on the phas
insensitive configuration, which will give a precise picture
the elementary three-wave processes involved in the for
tion of the observed output images. We will then concentr
on the phase-sensitive regime and explore the noise pro
ties of this optical device, which plays a central role in qua
tum imaging.

II. FIELD-OPERATOR DYNAMICS
IN SECOND-HARMONIC GENERATION

A. General picture

The interesting possibilities offered by SHG in the field
image processing can be understood from the follow
simple considerations. Figure 1 shows schematically
physical system we are considering: ax (2)-nonlinear crystal,
which is ideally infinite in the transverse plane, is illum
nated by a strong monochromatic pump field at frequencyv.

FIG. 1. Second-harmonic generation. Upper part: The inten
of fundamental~dashed line! and second-harmonic field~solid line!
inside the crystal as a function of the propagation length in
perfect phase-matched case (2kF2kS50). Lower part: Schematic
representation of the different regions of the crystal. The horizo
axis corresponds to the direction of beam propagation, whe
(x,y) defines the transverse plane. The slightly~strongly! wavy
arrows represent fundamental~second-harmonic! photons.
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We restrict ourselves to the simplest case of perfect ph
matching. As can be seen from Fig. 1, several regions ca
distinguished in the crystal, according to the relative inten
ties of fundamental and second-harmonic field:1 whereas in
the part of the crystal close to the input plane, the domin
field will be the fundamental pump field~region I in Fig. 1!;
an increase of the propagation length leads to a higher c
version of the pump into second-harmonic field through
SHG process, so that at some depth—provided that the n
linear crystal is long enough—we will reach a region~la-
beled as region II in Fig. 1! in which the field at frequency
2v will be the stronger one. It is easy to show that t
regions I and II will show very different behaviors with re
spect to image processing. To this purpose, we consider
general Hamiltonian describing the three-wave interact
mediated by the quadratic nonlinearity of the crystal,

Ĥ int5 il (
kW1 ,kW2

@aS
†~kW11kW2!aF~kW1!aF~kW2!

2aS~kW11kW2!aF
†~kW1!aF

†~kW2!#, ~1!

where aF(kW ) @aS(kW )# annihilates a fundamental~second-
harmonic! photon with wave vectorkW andl is the coupling
constant of the interaction. The two down-converted phot
are considered to have the same polarization, which co
sponds to a type-I phase matching. A parametric approxi
tion allows to make meaningful simplifications. In region
this approximation amounts to replacing the operators a
ciated with the second-harmonic field by the correspond
complex amplitudes. Assuming a homogeneous pumpin
the transverse plane, we are left with an effective Ham
tonian

Ĥ int,II
e f f 5 il II(

kW
@aF~kW !aF~2kW !2aF

†~kW !aF
†~2kW !#, ~2!

which coincides with the Hamiltonian of an OPA. As a ma
ter of fact, it describes the creation or annihilation of pairs
twin photons propagating in opposite transverse directio
In region I, the situation is quite different, because now
‘‘strong’’ field is at frequencyv. In the spirit of the paramet-
ric approximation, we can writeaF(kW ) as cFd(kW )
1aF(kW )ukÞ0, wherecF represents the amplitude of the stron
homogeneous fundamental pump field. Inserting this exp
sion into Eq.~1! and neglecting the terms that are quadra
in the small quantityaF(k)/cF , we obtain, apart from two
contributions describing the creation/annihilation of
second-harmonic wave with vanishing wave number, the
teraction Hamiltonian

Ĥ int,I
e f f 5 il I(

kW
@aS

†~kW !aF~kW !2aS~kW !aF
†~kW !#, ~3!

1The intensities plotted in Fig. 1 as a function of the propagat
length are calculated from Eqs.~27! and ~28!.
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SPATIAL BEHAVIOR OF LIGHT IN SECOND- . . . PHYSICAL REVIEW A 65 043811
which obviously describes a frequency converter: a photo
either frequencyv or 2v with a given wave vectorkW is
annihilated and a photon with the same wave vectorkW , but at
the other frequency, is created. This Hamiltonian is the m
timode generalization of that considered in@22# and analyzed
in @23#.

Combining these two mechanisms gives an idea on h
to exploit best SHG for image-processing purposes: An in
image at frequency 2v, superposed to the pump at frequen
v, is expected to first undergo a frequency down-convers
since it has to cross region I. The result of this first step, i
the frequency down-converted version of the input ima
arriving then in region II, should be amplified and clon
according to the predictions of the theory of the OPA@7,8#.
We conclude that injecting an optical image at 2v, we end
up with two symmetric amplified versions of this input
frequencyv.

Of course, this simple argumentation does not take i
account, to begin with, the intermediary crystal region,
which both fields generated by the pump inside the cry
have comparable strengths, and hence both mechanism
occur simultaneously. This makes a full calculation nec
sary, which will be the object of the remaining of this se
tion. Generalizing the approach developed for the OPA
@2#, we will first derive a set of two nonlinearly couple
operator equations, which describe the propagation of
fundamental and second-harmonic field in the nonlin
crystal. They will be solved in the framework of the linea
ization approach developed in@21,20#, based on the assump
tion that the pumping generates strong monochromatic fi
inside the crystal. The main result of this analysis will be
input-output transformation for the system of fundamen
and harmonic field, connecting the field operators at the o
put plane of the crystal with those at the input plane. T
transformation will encode the quantum spatial behavior
the light produced by second-harmonic generation.

B. Propagation equations

The main difference of our analysis with the treatment
the OPA developed in@2# is that in the OPA case, it is gen
erally justified to work in the approximation of a classic
undepleted~second-harmonic! pump field, whereas in SHG
pump depletion cannot be neglected and both the fundam
tal and the second-harmonic field have to be treated simu
neously at a quantum-mechanical level.

First we begin by defining theslowly varying photon-
annihilation operators for the fundamental and second
harmonic fieldAF(z,rW ,t) and AS(z,rW ,t) from the positive
frequency part of the electric field,

EF
(1)~z,rW ,t !5 i jFA\vF

2e0c
exp@ i ~kFz2vFt !#AF~z,rW ,t !,

~4!

ES
(1)~z,rW ,t !5 i jSA\vS

2e0c
exp@ i ~kSz2vSt !#AS~z,rW ,t !.

~5!
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The wave numbers of fundamental and second-harmo
wave in the nonlinear medium,kF and kS , depend on the
wave frequency through the dispersion relationv5v(k). In
Eqs.~4! and ~5!, the prefactors

js5
u~ks!v~ks!

c2cosr~ks!
~6!

involve the group velocityu(ks), the phase velocityv(ks),
and some generalized anisotropy angler(ks). They describe
the strength of the electric field in the medium, as compa
to that in the vacuum.z is the coordinate on the longitudina
axis, which is defined as the beam axis, andrW is the two-
dimensional coordinate vector in the transverse plane.

To describe the dynamics of these two fields in ax (2)

nonlinear crystal, we choose, following@2#, a Hamiltonian
formulation, based on the following Hamiltonian operator

Ĥ5Ĥ0,F1Ĥ0,S1Ĥ int ~7!

in which Ĥ0,F andĤ0,S are the free-field Hamiltonians for th
fundamental and the second-harmonic field in the mediu
whereasĤ int describes the interaction between the two fie
generated by the nonlinearity of the crystal. In terms of
slowly varying operatorsAs(z,rW ,t), s5F,S, the free-field
Hamiltonians are given by the expression@2#

Ĥ0,s5
\vs

c E
V
dz d2rA s

†~z,rW ,t !As~z,rW ,t !, ~8!

in which the space integration is extended to the whole v
ume of the crystal. The expectation valu

^A s
†(z,rW ,t)As(z,rW ,t)& can be interpreted as the energy de

sity per unit volume, scaled by a factor\vs /c. The interac-
tion partĤ int describes a three-wave interaction, which, u
der the usual assumption of a instantaneous and l
nonlinear response of the medium@24#, is given by

Ĥ int5x (2)E
V
dz d2rES

(1)~z,rW ,t !EF
(2)2~z,rW ,t !

1x (2)E
V
dz d2rES

(2)~z,rW ,t !EF
(1)2~z,rW ,t !, ~9!

and can be rewritten in terms of the slowly varying fie
operators,

Ĥ int5 i\lF E
V
dz d2r exp@ iDkz#A S

†~z,rW ,t !A F
2~z,rW ,t !

2E
V
dz d2r exp@2 iDkz#AS~z,rW ,t !A F

†2~z,rW ,t !G ,
~10!

with a coupling constant\l5x (2)(\/2e0c)3/2jF
2jSAvF

2vS

proportional to the susceptibility constantx (2) of the me-
dium. Dk52kF2kS is generally referred to as the collinea
1-3
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PIERRE SCOTTO AND MAXI SAN MIGUEL PHYSICAL REVIEW A65 043811
phase mismatch.Ĥ int is the sum of two contributions tha
display the two basic and complementary processes, w
connect the fundamental and second-harmonic fields
x (2)-nonlinear crystal: the first term in Eq.~10! is responsible
for second-harmonic generation, whereas the second co
bution, which has to be present because of the Hermiti
requirement imposed onĤ int , will induce the process o
photon down-conversion. The dynamics of the two field o
erators are described by the Heisenberg equations

] tAs~z,rW ,t !5 ivsAs~z,rW ,t !1
i

\
@Ĥ,As~z,rW ,t !#, ~11!

which, for the Hamiltonian defined by Eqs.~8! and~10!, take
the following explicit form:

] tAF~z,rW ,t !5 ivFAF~z,rW ,t !2 ivFE
V
dz8 d2r8

3GF~z2z8,rW 2rW 8!AF~z8,rW 8,t !22clE
V
dz8

3d2r8GF~z2z8,rW 2rW 8!exp~2 iDk z8!

3AS~z8,rW 8,t !A F
†~z8,rW 8,t !, ~12!

] tAS~z,rW ,t !5 ivSAS~z,rW ,t !2 ivSE
V
dz8 d2r8

3GS~z2z8,rW 2rW 8!AS~z8,rW 8,t !

1clE
V
dz8 d2r8GS~z2z8,rW 2rW 8!

3exp~ iDkz8!A F
2~z8,rW 8,t !, ~13!

with

Gs~z2z8,rW 2rW 8!5E dkzd
2q

~2p!3

v~Akz
21qW 2!

vs
exp@ i ~kz2ks!

3~z2z8!1 iqW ~rW 2rW 8!#. ~14!

To make further progress, we first have to derive from E
~12! and ~13!, more transparent propagation equatio
Rather than working in real space, it is convenient to int
duce quantum operators associated with waves with a g
transverse wave vectorqW and temporal frequency offsetV
~with respect to the corresponding carrier frequencyvs). As
in the OPA case, starting from the Fourier transform of
field operators

As~z,qW ,V!5E d2re2 iqW •rWE dteiVtAs~z,rW ,t !, ~15!

it is advantageous to separate the effects of free propaga
through the crystal from the effects of the interaction induc
by the nonlinearity of the crystal. This is achieved by defi
ing, for each field, a propagation-corrected Fourier amplitu
04381
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Âs~z,qW ,V!5jsAns exp$2 i @ks
z ~qW ,V!2ks#z%As~z,qW ,V!,

~16!

where ks
z (qW ,V)5Ak(vs1V)22qW 2, which involves the

wave numberk(vs1V) associated with the frequencyvs

1V through the dispersion relation, represents the long
dinal wave number of a wave with frequencyvs1V and
transverse wave vectorqW . Clearly, the exponential phase fa
tor in Eq. ~16! is chosen so as to absorb, in the fre
propagation case, the exactz dependence of the wave wit
frequencies (qW ,vs1V) associated with the field operato
Âs(z,qW ,V). The additional prefactorjsAns5Aus /c, with
us defined as the group velocity of a wave with frequen
vs , allows to identify^Âs

†(z,rW ,t)Âs(z,rW ,t)& with the mean
photon flux density in the medium in (photons/cm2/sec!.
Moreover, it can be shown thatÂF(z,qW ,V) and ÂS(z,qW ,V)
fulfill the standard commutation relations

@Âs~z,qW ,V!,Âs8
†

~z,qW 8,V8!#5~2p!3dss8d
(2)~qW 2qW 8!

3d~V2V8!. ~17!

In the standardparaxial @ uqW u!ks
z (qW ,V)# andquasimono-

chromatic (V!vs) approximation and under the assum
tion of a slowz dependence of the field operators, it can
shown that the propagation-corrected Fourier amplitu
ÂF(z,qW ,V) and ÂS(z,qW ,V) obey the following set of
coupled propagation equations:

]

]z
ÂF~z,qW ,V!522KE d2q8dV8ÂF

†~z,qW 8,V8!ÂS~z,qW

1qW 8,V1V8!exp$ i @kS
z~qW 1qW 8,V1V8!

2kF
z ~qW ,V!2kF

z ~qW 8,V8!#z%, ~18!

]

]z
ÂS~z,qW ,V!51KE d2q8dV8ÂF~z,qW 8,V8!ÂF~z,qW

2qW 8,V2V8!exp$ i @kF
z ~qW 8,V8!

1kF
z ~qW 2qW 8,V2V8!2kS

z~qW ,V!#z%,

~19!

whereK5(2p)23Ac3/uF
2uSl is the coupling constant of the

interaction. Thesenonlinearly coupled differential-operato
equations describe the propagation of fundamental a
second-harmonic field through the nonlinear medium. T
right-hand side~rhs! of Eqs. ~18! and ~19! represent a sum
over all three wave processes that are able to genera
fundamental and a second-harmonic wave, respectively,
frequencies (qW ,V). The only physical constraints are energ
and transverse and longitudinal momentum conservat
which Eqs.~18! and ~19! can be shown to fulfill. Equations
~18! and~19! generalize the propagation equations derived
@21# without considering the transverse spatial dependenc
1-4
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SPATIAL BEHAVIOR OF LIGHT IN SECOND- . . . PHYSICAL REVIEW A 65 043811
the fields, as well as those considered in@20#, in which a
single temporal mode for each field was taken into acco
Furthermore, specializing Eqs.~18! and ~19! for the special
case of a strong undepleted classical field at seco
harmonic frequency, one retrieves the equation describ
the propagation of the fundamental field in an OPA, eithe
the plane-wave approximation@2# or for a more genera
pump-field distribution@25#.

Being able to solve Eqs.~18! and~19! in the general case
one could express the field operators in the output plan
the crystal as a functional of the field operators in the in
plane, which would finally allow to calculate, for any arb
trary quantum-mechanical state of the electromagnetic fi
illuminating the crystal, the state of the outcoming radiatio
Of course, due to the nonlinear nature of these equati
some suitable approximation scheme is needed, as desc
below.

C. Two-field input-output relations

In the context of SHG, the standard linearized-fluctuat
analysis is generally justified by considering that the stro
incoming pump beam of monochromatic light at frequen
v generates inside the nonlinear crystal a strong seco
harmonic beam at frequency 2v @21,20#. The strong inten-
sity assumption allows, in principle, to treat the quantu
fluctuations of the fields around their mean values as sm
perturbations, and to linearize Eqs.~18! and~19! with respect
to Âs(z,qW ,V)2^Âs(z,qW ,V)&. In fact, a close inspection o
Eqs. ~18! and ~19! reveals that in the case of SHG, it
enough to require the quantum fluctuations to be m
weaker than the field mean amplitudefor the fundamental
field. This observation justifies the validity of the lineariz
tion procedure in the neighborhood of the input plane,
spite of a vanishing second-harmonic amplitude. But this
quirement is no longer fulfilled, as can be seen from Fig
in the limit of large propagation lengths, provoking a brea
down of this approach, as will be discussed in some de
below.

Going along the lines of the linearized-fluctuation ana
sis, we consider here a slightly more general situation, wh
corresponds to image-processing problems: we assume
field distribution in the input plane of the crystal to be giv
by the superposition of a strong uniform pump field at f
quencyv and some ‘‘weak’’ coherent signal at frequen
2v, with an arbitrary space-time distribution representing
input optical image. The propagation of this signal throu
the nonlinear crystal can be described in the framework
the linearization approach, provided that at any point ins
the crystal the fundamental field generated by the input
nal remains weak with respect to the depleted pump fiel

Following @21# and @20# we hence write the propagation
corrected field operators associated with fundamental
second-harmonic field as

ÂF~z,qW ,V!5cF~z!d (2)~qW !d~V!1âF~z,qW ,V!, ~20!

ÂS~z,qW ,V!5cS~z!d (2)~qW !d~V!1âS~z,qW ,V!, ~21!
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where cF(z) and cS(z) are the amplitudes of the stron
monochromatic waves at frequenciesv and 2v generated by
the pump inside the crystal, which, for simplification, a
considered in the plane-wave approximation, andâF(z,qW ,V)
and âS(z,qW ,V) are the quantum field operators associa
with the two fields. These take into account the propagat
of any field distribution injected into the crystal in additio
to the strong pump field. In particular, they encode the pro
gation of the vacuum quantum fluctuations entering the cr
tal through its input plane, which are responsible for t
quantum fluctuations in the output fields, as analyzed
@21,20#.

Inserting Eqs.~20! and ~21! into Eqs.~18! and ~19!, and
keeping only the terms up to the first order inâF(z,qW ,V) and
âS(z,qW ,V), we find, equating the zeroth-order terms, th
cF(z) and cS(z) have to fulfill the well-known classica
propagation equation of nonlinear optics

d

dz
cF~z!522KcF* ~z!cS~z!e2 iDkz, ~22!

d

dz
cS~z!51KcF

2~z!eiDkz. ~23!

Defining a dimensionless characteristic interaction length

z5A2WKz, ~24!

which is proportional to the square root of the input pow
W5ucF(0)u212ucS(0)u2 injected into the nonlinear crysta
and to the strength of the nonlinearityK, Eqs.~22! and ~23!
can be conveniently rewritten in terms of the following d
mensionless field amplitudesc̃F(z)5cF(z)/AW and c̃S(z)
5cS(z)/AW/2 as

d

dz
c̃F~z!52 c̃F* ~z!c̃S~z!e2 iDs z, ~25!

d

dz
c̃S~z!51 c̃F

2~z!eiDsz, ~26!

whereDs5Dkz0 , z051/(A2WK) being the typical length
scale involved in Eq.~24!, represents the dimensionless co
linear phase mismatch. It can be easily checked that
quantityuc̃F(z)u21uc̃S(z)u251 is a constant of motion. This
is the well-known Manley-Rowe relation, which express
the conservation of energy flow in the lossless crystal. T
coupled equations~25! and ~26! can be solved analytically
@18#. In the case of a vanishing phase mismatchDk50, the
solution is particularly simple and reads

c̃F~z!5eifF
(0)

sech~z!, ~27!

c̃S~z!5e2ifF
(0)

tanh~z!. ~28!

wherefF
(0) is the phase of the pump field. These expressi

correspond to the profiles plotted in Fig. 1.
1-5
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Collecting now the terms at first order, we obtain the f
lowing equations of propagation for the quantum field ope
tors âF(z,qW ,V) and âS(z,qW ,V):

]

]z
âF~z,qW ,V!52 c̃S~z!âF

†~z,2qW ,2V!e2 i D̃(qW ,V)z

2A2c̃F* ~z!âS~z,qW ,V!e2 iD̃ (qW ,V)z, ~29!

]

]z
âS~z,qW ,V!51A2c̃F~z!âF~z,qW ,V!eiD̃ (qW ,V)z, ~30!

which involve two different dimensionless phase-misma
functions,

D̃~qW ,V!5@kF
z ~qW ,V!1kF

z ~2qW ,2V!2kS#z0 , ~31!

D̃~qW ,V!5@kF
z ~qW ,V!1kF2kS

z~qW ,V!#z0 . ~32!

Before analyzing the physical content of these equations,
important to discuss the range of validity of the linearizati
approach. As a matter of fact, in the perfect phase-matc
case, the linearized-fluctuation analysis predicts that the
damental field should evolve, in the limit of large interacti
lengths, into a perfect amplitude-squeezed vacuum@21#. This
leads to a clear contradiction of the basic requirement of
linearization approach that at frequencyv, the amplitude of
the fluctuations should be much smaller than the mean v
of the field@26#. This observation was the starting point of a
extended work in which the predictions of the lineariz
theory for traveling-wave SHG were compared to the res
of the stochastic integration of the full nonlinear propagat
equations obtained in the positiveP representation. This
study was carried out with respect to the field mean val
@26#, squeezing properties@27#, and quantum nondemolition
criteria @28#, with the following main conclusions: as far a
the field mean values or the quadrature squeezing eithe
each field separately or for their sum and difference are c
cerned, the linearization approach was found to give v
accurate results for interaction lengthsz<4. For the squeez
ing in intensity, its range of validity slightly shrinks t
z<3. Finally, with respect to a description of the behavior
the fields in terms of standard QND criteria, it was sho
that the breakdown of the linearization approach occurs
even smaller interaction lengthsz;2. For these very sensi
tive quantities, not even the truncated Wigner representa
was found to reproduce the exact results@28,29#. Since our
analysis is based on linearization, it is important to ke
these results in mind. As will be clear from the remaining
this paper, the quantities we will mainly be interested in
calculated from the squeezing spectra for given field qua
tures. We can hence estimate the upper bound of validit
the analysis presented here asz;4.

With this restriction, we can now turn to the interpretati
of Eqs.~29! and ~30!. Inspecting first Eq.~29!, two sources
of fundamental waves with frequencies (qW ,V) can be distin-
guished. The first source term on the rhs of Eq.~29! reflects
process I of Fig. 2: photons of the strong homogene
second-harmonic wave generated by the pump inside
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crystal may split into two fundamental photons with oppos
frequency offsetsV and2V and transverse wave vectorsqW

and 2qW . This process, which is described by the effecti
Hamiltonian ~2!, generates a coupling between the amp
tudesâF(z,qW ,V) and âF

†(z,2qW ,2V). The specificity of the
SHG scheme is entirely due to the presence of a strong
form field at fundamental frequency, which, as already m
tioned, dominates in region I of the crystal~see Fig. 1!. This
strong fundamental field stimulates the process labeled I
Fig. 2, which describes the frequency down-conversion o
second-harmonic wave with (qW ,V) into a fundamental wave
with (qW ,V) and hence translates into a coupling between
field operatorsâF(z,qW ,V) andâS(z,qW ,V). This is the physi-
cal content of the second source term in Eq.~29!, which, in
terms of a Hamiltonian formulation, can be traced back
the effective Hamiltonian~3!. Energy conservation implies
that this frequency-changing process occurs under the ra
tion of a fundamental pump photon. The reversed proc
~process III in Fig. 2! acts as a source of second-harmon
photons, as displayed by the rhs of Eq.~30!.

As can be seen from the structure of the propagat
equations~29! and~30!, two factors determine the efficienc
of a given elementary three-wave process: the amplitude
the strong homogeneous wave involved in that particu
process and the phase-mismatch function, which is the ef
tive phase mismatch within the crystal along the bea
propagation direction. A large phase mismatch results in
spatial oscillations of the source term, which reduces
efficiency of this particular process. For this reason, proc
I will be important provided thatD̃(qW ,V)z!1, whereas pro-
cesses II and III will be efficient ifD̃(qW ,V)z!1. In the
paraxial and monochromatic approximation, the longitudi
wave numberks

z (qW ,V) can be expressed as

ks
z ~qW ,V!5ks1Fvsns8

c
1

ks

vs
GV1

1

2
ks9V22

q2

2ks
~33!

with ks95]2k/]v2 andns85]n/]v for v5vs , s5F,S. Us-

ing this expansion, we can show thatD̃(qW ,V) and D̃(qW ,V)
can be written in terms of a common typical spatial fr
quency q25AkF /z0 and two distinct tempora
frequencies V15@(v/c)(2nS82nF8 )z0#21 and V2

5(ukF9 uz0)21/2,

FIG. 2. Different three-wave processes involving one photon
one of the two strong homogeneous fields generated by the p
inside the crystal. The slightly~strongly! wave-shaped arrows rep
resent waves at fundamental~second-harmonic! frequency. Process
I represents twin-photon emission, process II~III ! is a down-~up-!
conversion process at wave numberq, which occurs under radiation
~absorption! of a fundamental pump photon.
1-6
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D̃~qW ,V!5Ds1sgn~kF9 !
V2

V2
2

2
q2

q2
2

, ~34!

D̃~qW ,V!5Ds2
V

V1
2

1

4 S 12
Dk

2kF
Dq2

q2
2

. ~35!

V2 and q2 are precisely the scales that are relevant for
OPA in the undepleted pump approximation and set
bandwidths for amplification and squeezing in the fundam
tal field in terms of temporal and spatial frequency@2#. V1
comes in through the first-order dependence of the ph
mismatch functionD̃(qW ,V) on V, and determines, as can b
seen from Eqs.~29! and~30!, the bandwidth for the coupling
between the second-harmonic and the fundamental fi
Since this coupling is responsible for squeezing generatio
the second-harmonic field, as pointed out in@21#, V1 coin-
cides with the bandwidth for intensity squeezing at 2v. It is
interesting to recall that in the practical case of a KNb3
crystal considered in@21#, the two temporal frequency scale
V1 and V2 were found to be separated by two orders
magnitude:V2 /V1;400. Different regimes can be henc
distinguished according to the value ofV. For V!V1,
propagation through the nonlinear medium generates a
pling between fundamental and second-harmonic fi
through all processes represented in Fig. 2. IfV is increased
to a value such thatV1!V!V2, processes II and III be
come inefficient and Eqs.~29! and ~30! simplify to

]

]z
âF~z,qW ,V!52 c̃S~z!âF

†~z,2qW ,2V!exp@2 i D̃~qW ,V!z#,

~36!

]

]z
âS~z,qW ,V!50. ~37!
liz
in

ffi
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Equation~36! describes the parametric amplification of a s
nal at fundamental frequency through down-conversion o
second-harmonic pump field, the strength of which depe
on the position on the longitudinal axis, whereas Eq.~37!
indicates that a signal at second-harmonic frequency wo
cross the nonlinear medium without modification. With r
spect to spatial frequencies, the scales for the frequen
changing and the parametric down-conversion processes
of the same order of magnitude, as can be seen from
~34! and ~35!, so that one does not expect to be able
identify a q-value domain in which one particular proce
will be clearly dominant.

The solution of Eqs.~29! and ~30! can be expressed in
terms of aninput-output transformation for the system of th
two fields,

âF~z,qW ,V!5W11~z,qW ,V!âF~0,qW ,V!1W12~z,qW ,V!

3âF
†~0,2qW ,2V!1W13~z,qW ,V!âS~0,qW ,V!

1W14~z,qW ,V!âS
†~0,2qW ,2V!, ~38!

âS~z,qW ,V!5W31~z,qW ,V!âF~0,qW ,V!1W32~z,qW ,V!

3âF
†~0,2qW ,2V!,1W33~z,qW ,V!âS~0,qW ,V!

1W34~z,qW ,V!âS
†~0,2qW ,2V!, ~39!

which connects the field operators at the exit plane of
crystal with those at the input plane. The coefficien
Wi j (z,qW ,V) are the elements of a 434 matrix W(z,qW ,V)
defined as the solution of the following first-order different
equation:

]

]z
W~z,qW ,V!52A~z,qW ,V!W~z,qW ,V! ~40!

with
A~z,qW ,V!

5S 0 c̃S~z!exp@2 i D̃~qW ,V!z# A2c̃F* ~z!exp@2 iD̃ ~qW ,V!z# 0

c̃S* ~z!exp@ i D̃~2qW ,2V!z# 0 0 A2c̃F~z!exp@ iD̃ ~2qW ,2V!z#

2A2c̃F~z!eiD̃ (qW ,V)z 0 0 0

0 2A2c̃F* ~z!exp@2 iD̃ ~2qW ,2V!z# 0 0

D
~41!
re-
by
and the initial conditionW(z50,qW ,V)5I , I being the unit
matrix. In combination with Eqs.~40! and ~41!, Eqs. ~38!
and ~39! are the central result of this section and genera
for the case of two coupled fields the multimode squeez
transformation derived in@2# for an OPA in the undepleted
pump approximation. Analytical expressions for the coe
cients of the input-output transformations~38! and ~39!
could be derived in@21# for q50 andV50. In the general
e
g

-

case, however, no analytical solution is known, and the
sults presented in the following section were obtained
means of a numerical integration of Eq.~40!.

III. QUANTUM IMAGE PROCESSING

Following the general ideas of@6,7#, we now consider the
optical device represented in Fig. 3: thex (2)-nonlinear crys-
1-7
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tal pumped at frequencyv investigated in the first part o
this paper is enclosed in a two-lens telescopic system. Its
is to map the Fourier plane onto the physical plane, so
this optical system operates on a portion of the input pl
rather than on a band of wave vectors@30#. In terms of image
processing, this optical device is expected to deliver, fo
given input image at frequency 2v, a pair of symmetric am-
plified versions of the input image at both fundamental a
second-harmonic frequency.

The input-output transformation for the real-space ope
tors can easily be derived taking into account the inp
output transformation for a lens with focal lengthf @30#,
which relates the field operators in the image plane to th
in the object plane of the lens,

aout~rW ,t !5
1

l f E d2r8 expF2 i
2p

l f
rW •rW 8Gain~rW 8,t !.

~42!

l is the wavelength of the light considered. Since the effe
of the telescopic system on the input-output transforma
leads to the replacementqW↔2(2p/ls f )xW , wherels is the
wavelength of the output field considered, we will discu
the results in terms of plane waves with given wave vecto
and remember that the telescopic system converts these
vectors into positions in the transverse plane. Furtherm
we will assume the temporal evolution of the input image
be slow and putV→0 for the calculation of the output im
ages.

The nonlinear crystal is pumped at frequencyv. Consid-
ering a vanishing collinear phase mismatchDk50, the am-
plitudes of the two strong coherent waves at frequencyv and
2v generated in the crystal by the pump, which are nee
as an ingredient of the propagation equations for the qu
tum field operators, are given by Eqs.~27! and ~28!. The
input signal at frequency 2v is described by a coherent sta
ua in& characterized by a complex amplitudea in(qW ,V). With
respect to the frequencyv, ua in& is assumed to be in th
vacuum state. Hence, we have

FIG. 3. Scheme of an optical device based on second-harm
generation. The nonlinear crystal, pumped at frequencyv, is en-
closed in a two-lens telescopic system. In the output plane of
crystal, a pupil of finite width represents the finite spatial bandwi
of the system.
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âS~0,qW ,V!ua in&5a in~qW ,V!ua in&,

âF~0,qW ,V!ua in&50. ~43!

As will become clear in the following, the symmetry prop
erties ofa in(qW ,V), exactly as in the OPA case@4#, determine
the operating regime of the SHG-based optical device:
distinguishes between thephase-insensitive regime, which
corresponds to an input signal confined to one half of
object plane of the optical device@8# ~an object confined to
the upper part of the object plane, for instance, will be ch
acterized bya in(qW ,V)50 for qy,0) , and the phase-
sensitive regime, which refers to the behavior of the optica
system in the case of a symmetric input signal, i.e., wh
a in(qW ,V)5a in(2qW ,2V) @7#.

A. Phase-insensitive configuration

We start considering thephase-insensitive configuratio
because it provides a clear picture of the elementary p
cesses, which are responsible for image generation in
SHG-based optical device. Using the input-output trans
mations~38! and~39!, the intensity of an outgoing wave with
frequencies (qW ,V) for the input defined by Eq.~43! can eas-
ily be calculated. At the fundamental frequency, one find

^âF
†~z,qW ,V!âF~z,qW ,V!&

5~2p!3d (3)~0!uW12~z,qW ,V!u21~2p!3d (3)~0!

3uW14~z,qW ,V!u21uW13~z,qW ,V!u2ua in~qW ,V!u2

1uW14~z,qW ,V!u2ua in~2qW ,2V!u2, ~44!

which indeed does not depend on the phase of the in
signal. Four different contributions can be distinguished:
two first terms on the rhs of Eq.~44! are independent of the
strength of the input wave and reflect the spontaneous p
metric fluorescence, which takes place in the crystal eve
the absence of any coherent input signal. The two other c
tributions are proportional to the intensity of the input wa
at (qW ,V) and (2qW ,2V), respectively. But because of th
particular injection scheme considered here, for a given w
vectorqW at which the output is considered, only one of the
two terms is nonvanishing. To fix the ideas, we consider
object confined to the upper part of the object plane. Ifqy

.0, ua in(2qW ,2V)u250 and uW13(z,qW ,V)u2ua in(qW ,V)u2

describes the intensity distribution of an amplified version
the input image. Ifqy,0, only uW14(z,qW ,V)u2ua in(2qW ,
2V)u2 is nonvanishing and corresponds to a reversed am
fied version of the input image. The underlying mechanism
process I of Fig. 2, according to which, second-harmo
photons generated by the strong pump wave inside the c
tal decay into pairs of fundamental twin photons propagat
in opposite directions@8#. At second-harmonic frequency, w
find a similar structure of the output intensity,

ic

e
h

1-8



n
in
c
id
it
lt
e
tin
av

a
se
u
n

r
t

e
e

ut

ry
elp-
the

ion

-
s is

In-
the

ers
-

n-
ncy

rted

rve
re-

ner-
stal
-
ncy
the
ses

tion

-

SPATIAL BEHAVIOR OF LIGHT IN SECOND- . . . PHYSICAL REVIEW A 65 043811
^âS
†~z,qW ,V!âS~z,qW ,V!&

5~2p!3d (3)~0!uW32~z,qW ,V!u21~2p!3d (3)~0!

3uW34~z,qW ,V!u2

1uW33~z,qW ,V!u2ua in~qW ,V!u2

1uW34~z,qW ,V!u2ua in~2qW ,2V!u2. ~45!

Therefore, the output at 2v is expected to display both a
amplified and a phase-conjugate-amplified version of the
put image. But the underlying mechanism is different, sin
there is no three-wave process in the system under cons
ation, in which two second-harmonic waves with oppos
wave vectors and frequency offsets are created simu
neously. As will become clear in the following, these imag
are generated by the frequency-converting process III ac
on the image pair at fundamental frequency, which we h
discussed above.

To quantify the efficiency of these mechanisms, we c
define, for each of the four output images, a local pha
insensitive gain as the ratio of the intensity of the outp
wave under consideration to the intensity of the correspo
ing input wave, which is given byua in(qW ,V)u2. If the con-
tributions to the output intensities due to spontaneous p
cesses can be neglected—this is a reasonable approxima
as has been shown in@6#, if a pupil of finite aperture and
properly chosen dimensions is located in the output plan
the crystal—the gains can be expressed in terms of the
ments of the matrixW(z,qW ,V),

GF~z,1qW ,1V!5
^âF

†~z,1qW ,1V!âF~z,1qW ,1V!&

^âS
†~0,1qW ,1V!âS~0,1qW ,1V!&

5uW13~z,qW ,V!u2, ~46!

GF~z,2qW ,2V!5
^âF

†~z,2qW ,2V!âF~z,2qW ,2V!&

^âS
†~0,1qW ,1V!âS~0,1qW ,1V!&

5uW14~z,qW ,V!u2, ~47!

GS~z,1qW ,1V!5
^âS

†~z,1qW ,1V!âS~z,1qW ,0!&

^âS
†~0,1qW ,1V!âS~0,1qW ,1V!&

5uW33~z,qW ,V!u2, ~48!

GS~z,2qW ,2V!5
^âS

†~z,2qW ,2V!âS~z,2qW ,2V!&

^âS
†~0,1qW ,1V!âS~0,1qW ,1V!&

5uW34~z,qW ,V!u2, ~49!
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where ^•••& stands for the expectation value in the inp
coherent stateua in& defined through Eqs.~43!.

To get some insight into the details of the elementa
processes generating the four output images, it is very h
ful to first plot the phase-insensitive gains as functions of
interaction length inside the crystal~Fig. 4!. At the input
plane, we haveGF(z50,1qW ,1V)5GF(z50,2qW ,2V)
5GS(z50,2qW ,2V)50 andGS(z50,1qW ,1V)51, which
simply identifies the input chosen. Increasing the interact
length, a reduction ofGS(z,1qW ,1V) is first observed, with
a simultaneous increase ofGF(z,1qW ,1V), whereasGF(z,
2qW ,2V)5GS(z,2qW ,2V) are still close to zero. This con
firms that the dominant process at small interaction length
process II of Fig. 2. Atz.1.4, the totality of the injected
second-harmonic signal turns out to be down-converted.
creasing further the interaction length, a second step in
signal processing is initiated, which, for small wave numb
~solid lines in Fig. 4!, is characterized by a rapid and sym
metric growth of both fundamental gains at1q and 2q.
Obviously, this is the manifestation of the photon dow
conversion process labeled I in Fig. 2. As a consiste
check, one observes that at a propagation lengthz.1, al-
ready more than 58% of the pump field has been conve
into second-harmonic field, as revealed by Eqs.~27! and
~28!. Therefore, the interaction lengths for which we obse
this rapid growth of both fundamental gains indeed cor
spond to region II of the crystal~Fig. 1!, in which the domi-
nant homogeneous field is the second-harmonic field ge
ated by SHG. As a consequence, this region of the cry
acts principally as an OPA with az-dependent pump. How
ever, the presence of a weak residual pump field at freque
v makes possible a partial frequency up-conversion of
amplified waves at fundamental frequency through proces

FIG. 4. Phase-insensitive gains as a function of the interac
length z for waves with V50 and different wave numbers:q
50.5 ~solid line!, q51.2 ~dashed line!, andq51.6 ~dotted line! ~in
units ofq25AkF /z0). The symbols I, II, III refer to the correspond
ing dominant elementary processes of Fig. 2. Process III8 is the

same as process III but withqW replaced by2qW .
1-9
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PIERRE SCOTTO AND MAXI SAN MIGUEL PHYSICAL REVIEW A65 043811
III of Fig. 2 and III8, which is the process III but involving

waves with the transverse wave vector2qW instead ofqW . This
mechanism translates into a slow increase of both sec
harmonic gains at1qW and 2qW with increasing interaction
length. It is responsible for the formation of the two phas
conjugate output images at the second-harmonic freque
we have already mentioned.

Due to diffraction, which is encoded in the dependence
the phase mismatch functionsD̃(qW ,V) andD̃(qW ,V) on qW and
V, the gains will also depend on the spatial and tempo
frequency. Considering first the fundamental gains, it tu
out that the general consequences of increasing the i
wave number can be predicted from the OPA theory: incre
ing the transverse wave number first translates into a we
amplification rate of an input signal, and above a critic
value qc5A2 in the dimensionless units used here, a to
suppression of the amplification mechanism is observed
the input signal, instead of being exponentially amplifie
will present, as a function of the interaction length, an os
latory behavior@31#. These predictions coincide with the re
sults of our numerical calculations shown in Fig. 4. For t
two second-harmonic gains, we find that increasing the w
number of the input signal leads to a saturation of the ou
wave intensity, which has a finite asymptotic value in t
limit of large propagation lengths.

As far as the optical device sketched in Fig. 3 is co
cerned, this reduction of the gains at higher transverse w
number will translate into a finite bandwidth for image pr
cessing. As for the OPA in the perfect phase-matched c
@8#, only a finite disk-shaped portion of the input image ce
tered on the beam axis will be efficiently processed by
optical device. This is precisely illustrated in Fig. 5, whic
shows, for a crystal of a given length, the dependence of
gains on the transverse wave number. For wave numbeq
,1, all gains have constant, almostq-independent values. In
real space, this value corresponds to a spatial bandwidt

FIG. 5. Phase insensitive gains as a function of the transv
wave number for two different values of the interaction lengthz
52.5 ~dashed line! ~which is an arbitrary length.1.4) and z

53.32 ~solid line! @for which GF(z,1qW ,1V)uq5V50.25#.
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the optical device that can be estimated tor0. f /AkFz0. At
large transverse wave numbers, sayq.2, an input wave is
seen to basically cross the optical device without be
modified: the nonlinear crystal is transparent. However, so
structure can be observed in the tail ofGS(z,1qW ,1V) at
largeq. Closer inspection reveals that it has its counterpar
the tail of GF(z,1qW ,1V), which however cannot be see
directly from the graphs displayed in Fig. 5 due to of t
different scales used to plot fundamental and seco
harmonic gains. This result shows that in the limit of lar
wave numbers, the dominant process is a weak freque
down-conversion of the input wave, which is consistent w
the fact that the variation scale ofD̃(qW ,V) with respect to the
spatial frequency is larger than the one ofD̃(qW ,V) by a fac-
tor 2.

B. Phase-sensitive configuration

It is also possible to operate the SHG-based optical de
in the so-calledphase-sensitive configuration, the difference
to the previous scheme being the symmetry of the input
nal imposed by the conditiona in(2qW ,2V)5a in(qW ,V). For
static signals, this translates into a symmetry of the in
image with respect to the beam axis. In the case of the O
it is well known that with this symmetry of injection, th
output is the result of the coherent superposition of both tw
waves produced in an elementary down-conversion proc
@32#. As a consequence, the amplification is phase sensi
and this is precisely one requisite for the possibility of a
plifying an optical image without deteriorating its signal-t
noise ratio@7,33#. It is, therefore, interesting to investigat
the optical system considered here with respect to sim
properties.

But, before studying the noise behavior of SHG-bas
signal processing, we first have to investigate the output fi
distribution for this injection scheme. We begin by notin
that the input image being symmetric with respect to
beam axis, the output displays, at each frequency, an im
with the same symmetry. Under the same assumptions a
the phase-insensitive case, the ratio of the intensity in a gi
portion of each output image to the one in the correspond
part of the input image defines the phase-sensitive gains

GF
(f in)

~z,qW ,V!5uW13~z,qW ,V!eif in1W14~z,qW ,V!e2 if inu2,

~50!

GS
(f in)

~z,qW ,V!5uW33~z,qW ,V!eif in1W34~z,qW ,V!e2 if inu2,

~51!

which both depend on the phase of the input signalf in . For
simplicity, we only consider input images with an homog
neous phasea in(qW ,V)5ua in(qW ,V)ueif in.

This phase sensitivity is illustrated in Fig. 6 for differe
transverse wave numbers, i.e., for different regions of
transverse plane. On the longitudinal axis (qW 50), both gains
reach maximal values forf in5p/21np, and go through
minima at f in5np. To understand this observation, it
useful to recall that in a perfect phase-matched OPA,

se
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amplification of an input signal~at frequencyv) with a
phasefF,in is maximal, iffS

(0)22fF,in5p, fS
(0) being the

phase of the second-harmonic pump field illuminating
OPA @2,18#. If fS

(0)22fF,in50, the input signal turns out to
be maximally deamplified. This rule should be valid here
well, provided thatfF,in is identified with the phase of th
down-converted version of the input signal. In general,fF,in
is not identical with the phasef in characterizing the inpu
signal. Inspecting Eqs.~29! and ~30!, one can show that fo
D̃(qW ,V)5D̃(qW ,V)50—what is fulfilled along the longitudi-
nal axis in the case of perfect phase matching—these
phases are connected in a simple way:fF,in5f in2p
2fF

(0) , wherefF
(0) is the phase of the pump field illumina

ing the crystal. Putting these two phase relations toget
one predicts that the fundamental gain should have an e
mum for f in52fF

(0)1np/2, the maxima corresponding t
odd values ofn. This is exactly what is observed in Fig. 6~a!
~in all calculations, the phase of the fundamental pumpfF

(0)

was taken equal to 0). Looking at Fig. 6~b!, one observes
that the second-harmonic gain shows the same behavior.
is not surprising, since image formation at 2v can be viewed
as the result of a secondary process acting on the fundam
tal wave propagating through the medium and experienc
either amplification or deamplification. It is hence plausib
that the second-harmonic gain will be maximal for tho
values of the input phase that guarantee a maximal fun
mental gain.

Considering off-axis regions of the transverse plane,
observes a shift of the input phase ensuring maximal
minimal gains~dashed and dotted lines in Fig. 6!. The main
consequence of this observation will be that for an in
image with an homogeneous phase, the maximal gain co
tion can only be satisfied at one point of the transverse pla
However, it should be possible to compensate this posit
dependent phase shift through a displacement of the no
ear crystal with respect to the lenses. This operation, wh
amounts to superposing a parabolic phase profile to the o
all phase of the input image, was shown to achieve, for
OPA, a substantial optimization of the performances of
amplifier @7#. Without elaborating on these consideration
we show in Fig. 7 the phase-sensitive gains as a functio
the transverse wave number, for a phase of the input si
chosen so as to have maximal gains atqW 50. The conclusions
that can be drawn from these curves are identical with th

FIG. 6. Phase-sensitive gains for fundamental~a! and second-
harmonic~b! fields as a function of the phase of the input signal~in
radians! for different values of the transverse wave numberq50
~solid line! q51 ~dashed line! andq51.4 ~dotted line!. Interaction
lengthz53.32.
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obtained for the phase-insensitive injection mode: image p
cessing will be efficient within a region of finite width cen
tered on the beam axis, whereas outside this region, the
linear crystal will behave as a transparent medium.

Finally, we investigated the noise properties of the opti
device proposed here, which are determined by the quan
fluctuations of the output fields. For this purpose, we fi
define, at each frequency, the following quadrature oper
at phasefLO :

xs
(fLO)

~z,qW ,V!5 1
2 @as~z,qW ,V!e2 ifLO1as

†~z,2qW ,2V!

3eifLO#, ~52!

which involves the field amplitude operatoras(z,qW ,V) re-
lated to the propagation-corrected amplitudeâs(z,qW ,V)

as~z,qW ,V!5exp$ i @ks
z ~qW ,V!2ks#z0z%âs~z,qW ,V!.

~53!

The exponential factor simply restores the phase accu
lated during propagation, which had been for technical r
sons factorized out in the definition~16!. Unlike the quanti-
ties considered before, this phase factor is now important
was illustrated in@2#: it accounts, in particular, for the modi
fications of the properties of multimode-squeezed light d
ing propagation in free space.

The variance ofxs
(fLO)(z,qW ,V) defines the spectrum o

squeezingSs
(fLO)(z,qW ,V) through the following relation:

^xs
(fLO)

~z,qW ,V!,xs
(fLO)

~z,qW 8,V8!&

5 1
4 d (2)~qW 1qW 8!d~V1V8!Ss

(fLO)
~z,qW ,V! ~54!

with the usual definition of the variance,̂f ,g&5^ f g&
2^ f &^g&. In the case of detectors with perfect quantum e
ciency, the spectrum of squeezing coincides with the spec
density for photocurrent fluctuations, normalized to the s
noise level, as measured in a homodyne detection sche
fLO represents the phase of the local oscillator used in
detection setup.

FIG. 7. Phase-sensitive gains for fundamental~a! and second-
harmonic~b! fields as a function of the transverse wave number
two different values of the interaction lengthz52.5 ~dashed line!
and z53.32 ~solid line!. The phase of the input image (f in

5p/2) is chosen for maximal gain atq50.
1-11
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PIERRE SCOTTO AND MAXI SAN MIGUEL PHYSICAL REVIEW A65 043811
Figure 8 displays the variation ofSs
(fLO)(z,qW ,V) as a

function of the local oscillator phase. In analogy with a on
mode squeezing transformation, changing the local oscill
phase allows one to explore the shape of the uncerta
region covered by the quantum fluctuations of the field. T
maximum corresponds to the local oscillator pointing alo
the quadrature with stretched fluctuations, whereas the m
mum indicates the direction of the squeezed quadrat
Considering different values ofqW allows one to observe th
effects of diffraction on the squeezing properties of t
fields: again, as for the phase-sensitive gains, a shift in
positions of maximum and minimum spectrum of squeez
is observed, which can be interpreted as a rotation of the
of the uncertainty region. This is a well-known phenomen
in the case of the OPA@2#. Simultaneously, a reduction of th
amplitude of oscillations of the spectrum of squeezing in
cates a reduction of the squeezing effect with largerqW , with
the consequence that the uncertainty region recovers m
and more the circular shape characteristic for a cohe
state.

These preliminary considerations demonstrate very s
lar features of the quantum properties of the fields in S
and in the OPA. In order to be able to appreciate the per
mances of the SHG device, in particular, with respect
noiseless signal processing, we consider precisely the de
tion scheme, for which the noiseless amplification was p
dicted for the OPA@4#: it consists in measuring the sum o
the photocurrents from two symmetric pixels in the outp
plane. Assuming for simplification an ideal quantum ef
ciency of the detectors, the measured quantity is given b

^Ns~q!&5TdS E
Sq

d2q81E
S2q

d2q8D
3^as

†~z,qW 8,0!as~z,qW 8,0!&

52TdSd Gs
(f in)

~z,qW ,0!ua in~qW ,0!u2 ~55!

in which Sq represents the area of the output plane occup
by the photodetector, centered onq. Sd represents the pixe
area, andTd is the observation time, which is supposed to
large enough, so that the main contributions to the meas
current come from the field components with vanishing ti
frequency offset. The noise affecting this measuremen

FIG. 8. Spectrum of squeezingSs
(fLO)(z,qW ,V) for fundamental

~a! and second-harmonic~b! fields as a function of the phase of th
local oscillator~in radians! for V50 and different values of the
transverse wave numberq50 ~solid line!, q51 ~dashed line! and
q51.4 ~dotted line!. Interaction lengthz53.32.
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characterized by the variance in the mean number of
lected photoelectronŝDNs

2(q)&, which can be calculated
One finds

^DNs
2~q!&5Ss

(fLO)
~z,qW ,0!^Ns~q!&, ~56!

in which Ss
(fLO)(z,qW ,0) can be obtained from the spectrum

squeezing~54!, if the local oscillator is taken to coincide
with the complex amplitude of the output field. At funda
mental frequency, the phasefLO has to be taken equal to

fF
out5arg@W13~z,qW ,V!eif in1W14~z,qW ,V!e2 if in#

1@kF
z ~qW ,V!2kF#z0z, ~57!

as can be seen by combining the propagation-corrected
put field amplitude at fundamental frequency~50! with the
correct propagation phase~53!. To compute the intensity
fluctuations in the second-harmonic output,fLO has to be
identified as

fS
out5arg@W33~z,qW ,V!eif in1W34~z,qW ,V!e2 if in#

1~kS
z~qW ,V!2kS!z0z. ~58!

Figure 9 reveals that the intensity squeezingSs
(fLO)(z,qW ,0),

as a function of the input phase of the signal, is almost
ways given by the maximum value of the spectrum
squeezing, as can be seen from a comparison with Fig. 8,
drops very suddenly to its minimum value when the inp
phase approaches the value corresponding to the min
gain. This simply reflects the fact that we are consider
parameters for which the maximal gain is high~of the order
of 100 for an interaction lengthz53.32), so that the orien
tation of the output field amplitude in the complex plane
dominated by the ‘‘amplified’’ quadrature. Only for input sig
nal phases close to fulfill the condition for minimal gain, th
‘‘deamplified’’ quadrature comes into play, and the phase
the output field varies rapidly, translating into a rapid chan
of orientation of the local oscillator. Furthermore, th
diffraction-induced shift in the input phase dependence
be clearly seen when looking at Fig. 9.

The noise performance of an optical device is describ
by the noise figure

FIG. 9. Intensity fluctuations of fundamental~a! and second-
harmonic~b! fields normalized to the shot noise level, as a functi
of the phase of the input signal for different values of the transve
wave numberq50 ~solid line! q51 ~dashed line! andq51.4 ~dot-
ted line!. Interaction lengthz53.32.
1-12
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Fs~q!5
R in~q!

R s
out~q!

~59!

whereR in (R s
out) represents the signal-to-noise ratio in t

input image~each output image!, and is defined as

R~q![
^Ns~q!&2

^DNs
2~q!&

. ~60!

Collecting the results of Eqs.~55! and ~56!, one easily ob-
serves that the noise figure is given by the ratio of
intensity-squeezing spectrum to the phase-sensitive gain

Fs~q!5
S

s

fs
out

~z,qW ,0!

Gs
(f in)

~z,qW ,0!
. ~61!

Choosing again the phase of the input signal for maxim
phase-sensitive gains atq50, the results of our numerica
computation of the noise figure for each output are prese
in Fig. 10. Since all this analysis is done in the linearizat
approach, the propagation equations for the field opera
are linear and the noise figure can never be less than 1@33#.
This smallest possible value, which has been plotted
comparison as a dotted line, corresponds to a noiseless
eration, in which the noise level is preserved during proce
ing. In the domain of wave numbers, in which image p
cessing is efficient, we find that the fundamental out
shows the same level of noise as the input image: the S
based device operates without adding noise to the signa
we consider the output at frequency 2v, we see that the
noise figure is slightly above 1. With respect to this outp
frequency, image processing is hence affected by a degr
tion of the signal-to-noise ratio. However, increasing the
teraction length, the figure noise is seen to approach 1 for
spatial frequencies inside the bandwidth for image proce
ing. Finally, one notes that, in the transparency region,
noise figure with respect to the second-harmonic outpu
equal to 1, since the input signal is unaffected by the opt
system, whereas the noise figure for the fundamental ou
diverges, as a consequence of a vanishing output intensi
v in the limit uqW u→`. The structure observed in the tail o
FF(q) can be traced back to the interplay of the diffractio
induced rotation of the uncertainty region with respect to

FIG. 10. Noise figure at fundamental~a! and second-harmonic
~b! frequency as a function of the transverse wave number for
different values of the interaction lengthz53.32 ~solid line! and
z52.5 ~dashed line!. As a dotted line, the smallest possible val
Fs(q)51 for a linear system.
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output field amplitude with some structure in theq depen-
dence of the fundamental gain.

IV. CONCLUSIONS AND OUTLOOK

In this paper, the spatial behavior of light generated b
x (2)-nonlinear crystal pumped at the fundamental freque
was investigated. Focusing on the problem of the propa
tion of coherent input signals, we found that the process
second-harmonic generation, which spontaneously ta
place in the crystal, opens new possibilities in quantum
age processing. Essentially, this can be traced back to the
that a SHG—based optical device is equivalent to an O
combined with a frequency converter. This combination
lows, for instance, to switch a given optical input image
frequency 2v down to frequencyv before amplifying and
cloning it. As a result, the output at fundamental frequen
displays two amplified versions of the input image, whi
are symmetric with respect to the system axis. Investiga
the quantum fluctuations in this output, we conclude that
a symmetric input image with a properly chosen phase,
two-step image processing can operate preserving the sig
to-noise ratio. This can be a very valuable property wh
processing very weak input signals. In addition, the f
quency converter ‘‘part’’ of the device is also able to conv
a small fraction of this output up to frequency 2v, generat-
ing a pair of symmetric images at second-harmonic f
quency. The output intensity at 2v was found to be much
weaker than the fundamental output and affected by so
excess noise, which, however, can be lowered by conside
larger interaction lengths. More quantitatively, consideri
one of the numerical examplesz52.5 used in this paper, we
found in the phase-sensitive configuration a ratio of out
intensity at fundamental frequency to input intensity of 2
with an unchanged noise level. The output at 2v was found
to be roughly twice the input intensity, with a noise lev
approximately increased by the same factor. These va
were found to be valid for a region of finite widthr0

. f /AkFz0 centered on the beam axis.
However, these interesting properties of SHG-based

nal processing require interaction lengths above a mini
lengthzmin;1.4, which is the interaction length necessary
first down convert the input signal. This value is slight
above the actual experimental possibilities. As a matter
fact, a good second-harmonic conversion rate obtained
perimentally is of the order of 66%@34#, corresponding to an
interaction lengthzexp;1.1. Therefore, to be able to observ
the effects predicted here, an increase of the available in
action length by 50% is necessary. It seems reasonable
this will be possible in the near future, either increasing
pump power, or the nonlinearity of the crystal, as report
for example, in@35#, or optimizing further the conversion
efficiency @34#.

From a general point of view, the work reported he
opens interesting perspectives for further investigation
first objective would aim at a better understanding, on
analytical basis, of the spatial behavior of the fields gen
ated by SHG. In particular, since the two field input-outp
transformations~38! and ~39! are the generalizations to th

o
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case of two coupled fields at frequencyv and 2v of a mul-
timode squeezing transformation, it would be interesting
be able to interpret it in terms of simple geometrical tra
formations in the complex plane of the field amplitudes.
for the OPA, this would allow to predict most of the prope
ties of quantum image processing in a very simple way.

Whereas the study presented here was restricted to
case of perfect phase matching, it was shown that SHG w
a finite phase mismatch could present interesting prope
@20#. In particular, it was found that the second-harmo
field could be highly squeezed, whereas a 50% squeezin
the maximum available in the perfect phase-matching si
tion. As far as the OPA is concerned, an imperfect ph
matching has the consequence that the region of the tr
verse plane for which the image processing is optimal is
a

t.

.
l

t
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more a circular spot centered on the beam axis, but turns
to be ring shaped. With a proper choice of the phase m
match, it is hence possible to optimally process off-axis
gions of the transverse plane@8#. Since the SHG device stud
ied here is based on a combination of both processe
would be interesting to see if, for a finite phase mismat
one could simultaneously exploit both advantages.

ACKNOWLEDGMENTS

Financial support from the European Commissi
Projects QSTRUCT~FMRX-CT96-0077! and QUANTIM
~IST-2000-26019!, as well as from CONOCE MCyT~Spain!
~Project No. BFM2000-1108!, is acknowledged. We also ac
knowledge helpful discussions with M. Kolobov.
.S.

,

o

-
y

.

s.

n.

P.

M.
@1# Y. Yamamoto, S. Machida, S. Saito, N. Imoto, T. Yanagaw
M. Kitagawa, and G. Bjork, inProgress in Optics, edited by E.
Wolf ~North-Holland, Amsterdam, 1990!, Vol. 28, p. 89.

@2# M.I. Kolobov, Rev. Mod. Phys.71, 1539~1999!.
@3# L.A. Lugiato, E. Brambilla, and A. Gatti, inAdvances in

Atomic, Molecular, and Optical Physics, edited by B. Bederson
and H. Walther~Academic, Boston, 1999!, Vol. 40, p. 229.

@4# A. Gatti, E. Brambilla, L.A. Lugiato, and M.I. Kolobov, J. Op
B: Quantum Semiclassical Opt.2, 196 ~2000!.

@5# M.I. Kolobov and I.V. Sokolov, Zh. E´ksp. Theor. Fiz.96, 1945
~1989! @Sov. Phys. JETP69, 1097~1989!#; Phys. Lett. A140,
101 ~1989!; Europhys. Lett.15, 271 ~1991!.

@6# M.I. Kolobov and L.A. Lugiato, Phys. Rev. A52, 4930~1995!.
@7# I.V. Sokolov, M.I. Kolobov, and L.A. Lugiato, Phys. Rev. A

60, 2420~1999!.
@8# A. Gatti, E. Brambilla, L.A. Lugiato, and M.I. Kolobov, Phys

Rev. Lett.83, 1763~1999!; J. Opt. B: Quantum Semiclassica
Opt. 1, 1763~1999!.

@9# E. Brambilla, A. Gatti, P. Navez, and L.A. Lugiato, e-prin
quant-ph/0010108.

@10# C. Fabre, J.B. Fouet, and A. Maitre, Opt. Lett.25, 76 ~2000!.
@11# N. Treps, U. Andersen, B. Buchler, P.K. Lam, A. Maıˆtre, H.

Bachor, and C. Fabre~unpublished!.
@12# I.V. Sokolov, Opt. Spektrosk.70, 393 ~1991!.
@13# I.V. Sokolov, J. Opt. B: Quantum Semiclassical Opt.2, 179

~2000!.
@14# M.I. Kolobov and P. Kumar, Opt. Lett.18, 849 ~1993!.
@15# M.I. Kolobov and C. Fabre, Phys. Rev. Lett.85, 3789~2000!.
@16# M.L. Marable, S.K. Choi, and P. Kumar, Opt. Express2, 84

~1998!.
@17# S.K. Choi, M. Vasilyev, and P. Kumar, Phys. Rev. Lett.83,

1938 ~1999!.
,@18# J.A. Armstrong, N. Bloembergen, J. Ducuing, and P
Pershan, Phys. Rev.127, 1918~1962!.

@19# R.D. Li and P. Kumar, Opt. Lett.18, 1961~1993!.
@20# R.D. Li and P. Kumar, Phys. Rev. A49, 2157~1994!.
@21# Z.Y. Ou, Phys. Rev. A49, 2106~1994!.
@22# A. Andreoni, M. Bondani, G.M. D’Ariano, and M.G.A. Paris

Eur. Phys. J. D13, 415 ~2001!.
@23# G.M. D’Ariano, M.G.A. Paris, and M.F. Sacchi, Nuov

Cimento Soc. Ital. Fis., BB114, 339 ~1999!.
@24# C.L. Tang and L.K. Cheng,Fundamentals of Optical Paramet

ric Processes and Oscillators, Laser Science and Technolog
Vol. 20 ~Harwood Academic, Amsterdam, 1995!, pp. 30 and
31.

@25# A. Gatti ~private communication!.
@26# M.K. Olsen, R.J. Horowicz, L.I. Plimak, N. Treps, and C

Fabre, Phys. Rev. A61, 021803~2000!.
@27# M.K. Olsen and R.J. Horowicz, Opt. Commun.168, 135

~1999!.
@28# M.K. Olsen, L.I. Plimak, M.J. Collet, and D.F. Walls, Phy

Rev. A62, 023802~2000!.
@29# M.K. Olsen, K. Dechoum, and L.I. Plimak, Opt. Commu

190, 261 ~2001!.
@30# M.I. Kolobov and L.A. Lugiato, Phys. Rev. A52, 4930~1995!.
@31# A. Berzanskis, W. Chinaglia, L.A. Lugiato, K.-H. Feller, and

Di Trapani, Phys. Rev. A60, 1626~1999!.
@32# E. Lantz and F. Devaux, Quantum Semiclassic. Opt.9, 279

~1997!.
@33# C.M. Caves, Phys. Rev. D26, 1817~1982!.
@34# S. Yu and M. Weiner, J. Opt. Soc. Am. B16, 1300~1999!.
@35# J. Liu, Z. Wang, S. Zhang, J. Wang, H. Chen, Z. Shao, and

Kiang, Opt. Commun.195, 267 ~2001!.
1-14


