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The dynamics of small spherical neutrally buoyant particulate impurities immersed in a
two-dimensional fluid flow are known to lead to particle accumulation in the regions of the flow in
which vorticity dominates over strain, provided that the Stokes number of the particles is sufficiently
small. If the flow is viewed as a Hamiltonian dynamical system, it can be seen that the
accumulations occur in the nonchaotic parts of the phase space: the Kolmogorov–Arnold–Moser
tori. This has suggested a generalization of these dynamics to Hamiltonian maps, dubbed a bailout
embedding. In this paper we use a bailout embedding of the standard map to mimic the dynamics
of neutrally buoyant impurities subject not only to drag but also to fluctuating forces modeled as
white noise. We find that the generation of inhomogeneities associated with the separation of
particle from fluid trajectories is enhanced by the presence of noise, so that they appear in much
broader ranges of the Stokes number than those allowing spontaneous separation. ©2002
American Institute of Physics.@DOI: 10.1063/1.1480441#
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Impurities suspended in a fluid flow are frequently ob-
served to be distributed inhomogeneously. Even in very
chaotic flows, particulate impurities arrange themselves
in extraordinarily structured distributions, in apparent
contradiction to the high mixing efficiency expected from
the characteristics of the basic flow. To give just one ex-
ample, in the particular instance of geophysical fluids, the
filamentary structure, or patchiness, often displayed by
plankton populations in the oceans is a puzzling problem
currently under intense investigation.1–3 Several mecha-
nisms to produce this type of inhomogeneity have been
studied, and include dynamical aspects of the flow as wel
as the reactive properties of the considered impurities.
The basic idea in many of these mechanisms is that th
particle loss due either to the flow—in open flows—or to
the chemical or population dynamics of the particles—in
closed flows—is minimized on some manifolds associate
with the hyperbolic character of the flow.4–6 In this paper
we explore an alternative purely dynamical mechanism
for inhomogeneity with nonreactive particles in bounded
flows. We show that particle inertial effects combined
with fluctuating forces are capable of producing inhomo-
geneity even in cases in which the impurity and fluid den-
sities match exactly.

a!Electronic mail: julyan@lec.ugr.es
b!Electronic mail: marcelo@sur.rockefeller.edu
c!Electronic mail: piro@imedea.uib.es
4891054-1500/2002/12(2)/489/7/$19.00

Downloaded 20 Jun 2002 to 130.206.78.250. Redistribution subject to AI
I. INTRODUCTION

When impurities have a different density to the fluid, it
intuitively clear that they will be expelled from rapidly ro
tating regions of the flow—for heavy particles—or attract
to the centers of these regions—for light particles—beca
of centrifugal effects.7 However, it was recently demon
strated that neutrally buoyant particles also tend to settle
the rotation~vorticity!-dominated regions of a flow, but by
more subtle mechanism involving the separation between
fluid and particle trajectories that can occur in the oppos
regions, i.e., in the areas of the flow dominated by stra8

However, this mechanism is only relevant when the flo
gradients are of the order of the particle drag coefficien
condition that may not be fulfilled in some physically inte
esting situations. We show here by means of a minim
model that this condition may be relaxed if a small amou
of noise is added to the forces acting on the impurity.

Our approach is qualitative, in the sense that instead
considering a specific flow and the precise particle dynam
induced by it, we describe the system with an iterative m
whose evolution contains the basic features of both the fl
flow and the particle dynamics: flow volume preservatio
together with particle separation in the hyperbolic regio
The reason for moving to a discrete system is that in the m
the phenomena that we describe may be understood m
intuitively, while translating the results back to the flow ca
is immediate. The strategy of attempting to understand flu
dynamical phenomena by using iterated maps amenabl
the powerful artillery of dynamical-systems theory h
proved successful on several different occasions. For
© 2002 American Institute of Physics
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ample, the structures of the chaotic advection induced
time-periodic three-dimensional incompressible flows w
predicted by studying the qualitatively equivalent dynam
of three-dimensional volume-preserving maps.9,10 Later,
these structures were confirmed in realistic flows.11–13 Other
examples are the treatment of the propagation of combus
fronts in laminar flows by a qualitative map approach,14 and
the description of the formation of plankton population stru
tures due to inhomogeneities of the nutrient sources.15 Re-
markably, in the instance we discuss in this paper, the p
cedure is also useful from the point of view of dynamic
systems theory, as it has suggested a new technique—ba
embedding—for the control of Hamiltonian chaos.16

The plan of the paper is as follows. First, we brie
review the classical model for the forces acting on a sm
spherical particle moving relative to the fluid in which it
immersed, and, concentrating on the case of a neutr
buoyant impurity, we trace the construction of a minim
model that makes evident the separation of particle and fl
trajectories in the regions in which the flow presents stro
strain ~Sec. II!. On the basis of this model, we make a ge
eralization that allows us to build a discrete mapping t
represents the Lagrangian evolution of the fluid parcels
well as the dynamics of the particle~Sec. III!. While this
map displays particle–fluid separation when the bailout
rameterg, a function of the Stokes number, is relative
small, we show in Sec. IV that a small amount of nois
added to the dynamics of the particle to separate it cont
ally from the flow, enhances the impact of the hyperbo
regions far beyond the values ofg required for separation in
the deterministic case. Section V extends and formali
these ideas with analytical arguments. Our conclusions a
be found in Sec. VI.

II. MAXEY–RILEY EQUATIONS AND MINIMAL MODEL

The equation of motion for a small, spherical particle
an incompressible fluid we term the Maxey–Rile
equation,8,17,18which may be written as

rp

dv

dt
5r f

Du

Dt
1~rp2r f !g2

9nr f

2a2 S v2u2
a2

6
¹2uD

2
r f

2 S dv

dt
2

D

Dt Fu1
a2

10
¹2uG D

2
9r f

2a
An

pE0

t 1

At2z

d

dz S v2u2
a2

6
¹2uDdz,

~1!

where the derivativeDu/Dt is along the path of a fluid ele
ment

Du

Dt
5

]u

]t
1~u"“ !u, ~2!

whereas the derivativedu/dt is taken along the trajectory o
the particle

du

dt
5

]u

]t
1~v"“ !u. ~3!
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Here v represents the velocity of the particle,u that of the
fluid, rp the density of the particle,r f the density of the fluid
it displaces,n the kinematic viscosity of the fluid,a, the
radius of the particle, andg, gravity. The terms on the right
hand side of Eq.~1! represent, respectively, the force exert
by the undisturbed flow on the particle, buoyancy, Stok
drag, the added mass due to the boundary layer of fluid m
ing with the particle,19,20 and the Basset–Boussines
force21,22 that depends on the history of the relative accele
tions of particle and fluid. The terms ina2¹2u are the
Faxén23 corrections. The Maxey–Riley equation is derive
under the assumptions that the particle radius and its R
nolds number are small, as are the velocity gradients aro
the particle.

First let us consider a minimal model for a neutra
buoyant particle. For this we setrp5r f in Eq. ~1!. We con-
sider the Faxe´n corrections and the Basset–Boussinesq te
to be negligible. We now rescale space, time, and velocity
scale factorsL, T5L/U, andU, to arrive at

dv

dt
5

Du

Dt
2St21~v2u!2

1

2 S dv

dt
2

Du

Dt D , ~4!

where St is the particle Stokes number St52a2U/(9nL)
52/9(a/L)2 Ref , Ref being the fluid Reynolds number. Th
assumptions involved in deriving Eq.~1! require that St!1
in Eq. ~4!.

If we substitute the expressions for the derivatives
Eqs.~2! and ~3! into Eq. ~4!, we obtain

d

dt
~v2u!52~~v2u!"“ !u2g~v2u!, ~5!

where we have writteng52/3St21. We may then writeA
5v2u, whence

dA

dt
52~J1gI !"A, ~6!

whereJ is the velocity gradient matrix—we now concentra
on two-dimensional flowsu5(ux ,uy)—

J5S ]xux ]yux

]xuy ]yuy
D . ~7!

If we diagonalize this matrix, and heuristically assume th
the dependence on time of the diagonalizing transforma
is unimportant, we obtain

dAD

dt
5S l2g 0

0 2l2g D "AD , ~8!

so if Re(l).g, AD may grow exponentially. Nowl satisfies
det(J2lI)50, so l22tr J1detJ50. Since the flow is in-
compressible, ]xux1]yuy5tr J50, thence 2l25detJ.
Given squared vorticityv25(]xuy2]yux)

2, and squared
strains25s1

21s2
2, where the normal component iss15]xux

2]yuy and the shear component iss25]yux1]xuy , we may
write

Q5l252det J5~s22v2!/4, ~9!
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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491Chaos, Vol. 12, No. 2, 2002 Small particles in fluid flows
where Q is the Okubo–Weiss parameter.24,25 If Q.0, l2

.0, andl is real, deformation dominates, as around hyp
bolic points, whereas ifQ,0, l2,0, and l is complex,
rotation dominates, as near elliptic points.

Equation~6!, together withdx/dt5A1u, define a dis-
sipative dynamical system

dj/dt5F~j,t ! ~10!

with constant divergence“"F522g in the four dimensional
phase spacej5(x,y,Ax ,Ay), so that while small values o
St—large values ofg—allow for large values of the diver
gence, large values of St—small values ofg—force the di-
vergence to be small. The Stokes number is the relaxa
time of the particle back onto the fluid trajectories compa
to the time scale of the flow—with larger St~smallerg!, the
particle has more independence from the fluid flow. Fr
Eq. ~8!, about areas of the flow near hyperbolic stagnat
points with Q.g2, particle and flow trajectories separa
exponentially. The result is that the particle can overco
Stokes drag and abandon the fluid trajectories in the ne
borhood of the saddle points, to finally end up in a regu
region of the flow. This effect implies that particles tend
stay away from the regions of strongest strain.

In earlier work8 it was shown that when the flow i
chaotic—for example for two-dimensional time-periodic i
compressible flows—it is a consequence of this phenome
that particles asymptotically settle on invariant tori, and,
general, explore the ordered regions of the base flow. In
following, we investigate further this behavior in a qualit
tive but more general framework based on iterative m
modeling of the dynamics.

III. DISCRETE DYNAMICS DESCRIPTION

An examination of the dynamical system defining o
minimal model for the behavior of neutrally buoyant pa
ticles shows that it is composed of some dynamics wit
some other larger set of dynamics. Equation~4! can be seen
as an equation for a variableA that defines another equatio
of motion, v5u, for a fluid element, whenA is zero. The
inner dynamics is that representing the Lagrangian traje
ries of the flow, and in two dimensions it is a Hamiltonia
system. We may say that this Hamiltonian system—the fl
flow—is embedded in a larger dynamical system—the flui
particle system—this time dissipative, whose trajector
may or may not converge to zero. If they do, the system e
up on the same trajectories as those of the smaller embe
system, but in general this need not be the case. The con
of some dynamics embedded within some other dynam
may be exploited within the framework of dynamica
systems theory to design techniques to reject unwanted
jectories of the original dynamics by making them unsta
in the embedding, paralleling what the particles do in
fluid-dynamical case. We have dubbed this idea, which
obvious applications to control and targeting, a bailout e
bedding of a dynamical system.16

Trading generality for clarity, in this section we prese
an example of a bailout embedding for discrete-time dyna
cal sytems that closely represents all the qualitative asp
Downloaded 20 Jun 2002 to 130.206.78.250. Redistribution subject to AI
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of the above-described impurity dynamics. Given a m
xn115T(xn)—x being a point in a space of arbitrar
dimension—a bailout embedding is the second-order re
rence

xn122T~xn11!5K~xn!~xn112T~xn!!, ~11!

whereK(x) is chosen such thatuK(x)u.1 over the unwanted
set of orbits, so that they become unstable in the embedd
In this discrete system, almost any expression written for
ordinary differential equation, Eq.~6!, translates to some
thing close to an exponential; in particular, stability eigenv
ues have to be negative in the ordinary-differential-equat
case to represent stability, while they have to be smaller t
one in absolute value in the map case. In order to simu
the dynamics of particles, the operator2(J1gI ) in the con-
tinuous system should translate into the particular choice

K~x!5e2g
“T ~12!

in the map setting.
To represent qualitatively a chaotic two-dimensional

compressible base flow we choose a classical testbe
Hamiltonian systems, the area preserving standard map
troduced by Chirikov and Taylor:

T:~xn ,yn!→~xn11 ,yn11!, ~13!

where

xn115xn1
k

2p
sin~2pyn!,

~14!
yn115yn1xn11 ,

and k is the parameter controlling integrability. Recall tha
in general, the dynamics defined by this map present a m
ture of quasiperiodic motions occurring on the Kolmogoro
Arnold–Moser~KAM ! tori, and chaotic ones, depending o
the initial conditions. As the value ofk is increased, the
region dominated by chaotic trajectories pervades more
more of the phase space, except for increasingly small
lands of KAM quasiperiodicity. Our qualitative descriptio
of the impurity dynamics, the bailout embedding of the sta
dard map, is given by the coupled second-order iterative s
tem defined by Eqs.~11!–~14!.

Due to the area-preserving nature of the standard m
the two eigenvalues of the derivative matrix must multiply
one. If they are complex, this means that both have an a
lute value of one, while if they are real, generically one
them will be larger than one and the other smaller. We c
then separate the phase space into elliptic and hyperb
regions corresponding to each of these two cases. If a tra
tory of the original map lies entirely in the elliptic region
the overall factor exp(2g) damps any small perturbatio
away from it in the embedded system. But for chaotic traj
tories that inevitably visit some hyperbolic regions, there e
ists a value ofg such that, forg smaller than this, perturba
tions away from a standard-map trajectory are amplifi
instead of dying out in the embedding. As a consequen
these trajectories are expelled from the chaotic regions
nally to settle in the elliptic KAM islands.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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492 Chaos, Vol. 12, No. 2, 2002 Cartwright, Magnasco, and Piro
To illustrate this, Fig. 1 shows the phenomenon in
situation in which the nonlinearity parameter has been se
the valuek57. This corresponds to a very chaotic regime
the standard map, characterized by the existence of mi
KAM islands within a sea of chaos that covers almost all
available phase space. Figure 1~a! is a close-up image—to
make it easily visible—of the largest of these islands, and
dots there represent the successive positions of a set of
fluid parcels spread initially at random over the unit ce
evolving according to the standard map. Since none of th
parcels were initially located inside the island, this is seen
a white region never visited by the parcels. In contrast,
Figs. 1~b!–1~d!, the dots are the successive positions, afte
number of equilibration iterations, of particles initiall
placed as the parcels were in Fig. 1~a!, but allowing a very
small initial discrepancyd05x12T(x0) between the two dy-
namics. Now, although having started initially outside t
island, some of the particles settle inside, in a process
becomes increasingly marked as the bailout parameterg de-
creases.

IV. NOISY DYNAMICS

By virtue of volume preservation, the invariant measu
of the fluid-parcel dynamics is either uniform, if the syste
is ergodic, or else disintegrates into a foliation of KAM to
and ergodic regions. In any case, the addition of a sm
amount of white noise, which may be considered to repres
the effects of small scale turbulence, thermal fluctuatio

FIG. 1. The standard map fork57 has a chaotic sea covering almost t
entire torus, except for a tiny period-two KAM island near position 0,2
1000 random initial conditions were chosen and iterated for 20000 st
then the next 1000 iterations are shown.~a! Original map,~b! g51.4, ~c!
g51.3, ~d! g51.2.
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etc., renders the system ergodic with only a uniform inva
ant measure. Thus, the distribution of fluid parcels is
pected to be uniform with or without the presence of noi
The situation is, however, very different if the noise is a
plied to the dynamics of the particles, or, correspondingly
the bailout embedding.

Consider the following stochastic discrete-time dyna
ics

xn122T~xn11!5e2g
“Tuxn

~xn112T~xn!!1jn , ~15!

in which, as in Sec. III,x represents the particle coordinat
and T(x) the fluid parcel evolution. New here is the nois
term jn , with statistics

^jn&50, ^jnjm&5«~12e22g!dmnI . ~16!

This term forces the particle away from the fluid trajectory
every step of the dynamics. However, the actual magnit
of the fluctuations induced inx will be modulated by the
properties of“T—the flow gradients—along the particle tra
jectory. For practical reasons we shall use the convention
varying the noise intensity in correspondence withg in order
to obtain comparable fluctuations at different values of t
parameter.

We consider the standard map as modeling the b
flow, and its noisy bailout embedding to represent a parti
late impurity subject to both fluid drag and noise forces. W
are interested in the asymptotic behavior of an ensembl
such particles which, by the ergodicity of the fluctuation
should be well represented by the histogram of visits tha
single particle pays over time to each bin of the space—
full phase space for the basic flow, but a projection of the f
phase space for the particles.

Figure 2 displays a sequence of these histograms
scaled color code for the same nonlinearity parametek
57, as in Fig. 1, corresponding to the extremely chao
regime of the standard map considered in Sec. III. The
quence of images corresponds to decreasing bailout pa
eterg. The images make evident the fine filamentary str
ture developed by the asymptotically invariant distributio
due to the combined effects of noise and the ability of p
ticles to separate from the basic flow. Remarkably, howe
these structures appear even when theg values are outside
the range required to produce a spontaneous detachme
the particle trajectories without noise.

The filamentation here arises from the existence of
enues in the phase space that lead to the small KAM isla
on which the particles prefer to stay. A more detailed analy
shows that on these avenues the average value of the sq
separation between particle and fluid trajectories is relativ
small. Roughly parallel to these avenues, on the other ha
there are strips of the phase space that the particles av
There, the separation between particle and fluid trajecto
is on average much larger. Filamentation is thus due to
tendency of the particles to avoid neighboring regions.

The same mechanism may also lead to patchiness,
necessarily filamentary. For flows with weaker chaos, for
ample, for which relatively large KAM islands coexist wit
comparably sized regions of chaos, a situation such as th

.
s,
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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493Chaos, Vol. 12, No. 2, 2002 Small particles in fluid flows
k51.5, shown in Fig. 3, is typical. In the histograms, the
are relatively small avoided regions that separate la
patches of greater concentrations of particles around the
chaotic islands. This picture is also testimonial to a prope
that distinguishes the present mechanism for producing in
mogeneity from others mentioned earlier.4,5 While in those
cases the particles group around the unstable manifold
the homoclinic intersections of the basic flows, here the
purity dynamics instead tend to avoid the invariant ma
folds. This is because following these manifolds would me
eventually hitting regions in which the velocity gradient e
genvalues are closer to one, which locally amplifies the
fect of fluctuations on the dynamics of the particles.

V. DETACHMENT AND AVOIDANCE

We have seen earlier that inhomogeneities in the dis
bution of particles may arise at values of the Stokes num

FIG. 2. ~Color! Histograms with intensity encoding as the square root
invariant probability. Parameters are standard-map nonlinearity param
k57, noise parameter«51028, and bailout parameter~a! g51.6, ~b! 1.55,
~c! 1.5, ~d! 1.4, ~e! 1.3, and~f! 1.2. The striped color scale runs from pink
high densities to blue at low densities.
Downloaded 20 Jun 2002 to 130.206.78.250. Redistribution subject to AI
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~or, equivalently, of the bailout parameter! beyond the range
for which this phenomenon occurs in deterministic syste
when a relatively small amount of noise is added to the p
ticle dynamics, and hence, more generally, to the bailout

f
ter

FIG. 3. ~Color! Histograms~left-hand side! and temperature plots~right-
hand side! for standard map nonlinearity parameterk51.5, noise parameter
«51028, and bailout parameter~a!, ~b!, g50.7; ~c!, ~d!, g50.65; ~e!, ~f!,
g50.6; ~g!, ~h!, g50.55; and~i!, ~j!, g50.5. The striped histogram colo
scale runs from yellow at high densities to cyan at low densities, while
temperature color scale runs from red~high! to blue ~low!.
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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494 Chaos, Vol. 12, No. 2, 2002 Cartwright, Magnasco, and Piro
namics. We show in the following that there are two stage
the modulation of the invariant density in the small-no
limit as the bailout parameter is decreased. At first the bai
is everywhere stable, as the bailout parameter is not s
enough to occasion that the particle trajectories detach f
the fluid ones, but fluctutations around this stable embedd
may be restored toward the stable manifold at different ra
and thus acquire different expectation values. These fluc
tions leave a mark on the invariant density through a mec
nism similar to spatially modulated temperature,26,27namely,
the dynamics prefer to escape the hot regions. This is
anced in a nontrivial fashion by mixing in the dynamics
create interesting scars in the invariant density. As the bai
parameter is lowered, the noise prefactor can diverge,
embedding loses stability at some points, and detachm
ensues.

In order to analyze this critical transition, we proce
with the map approximation with the conviction that gen
alizing this analysis to the continuous-time limit is straigh
forward. We can separate the two-step recurrence, Eq.~15!,
into two one-step recurrences,

xn115T~xn!1dn , ~17!

dn115e2g
“Tuxn

dn1jn . ~18!

The second equation is affine, being linear in thed plus a
homogeneously added noise process, so it could be so
analytically for d if we knew what thex were in the past.
Under the assumption that thed are infinitesimally small, we
get the classical orbitsxn115T(xn), and we can write down
explicitly the solution for thed,

dn115jn1e2g
“Tuxn

3~jn211e2g
“Tuxn21

3~jn221e2g
“Tuxn22

~jn231¯ !!!, ~19!

or, after unwrapping,

dn115jn1e2g
“Tuxn

jn211e22g
“Tuxn

“Tuxn21
jn22

1e23g
“Tuxn

“Tuxn21
“Tuxn22

jn231¯ , ~20!

which may be written more compactly as

dn115(
j 50

n S jn2 je
2 j g)

k50

j

“Tuxn2kD . ~21!

Then, given that thej are uncorrelated, the expectation val
of d 2 is given as the sum of the squares of the terms, or

^d 2&

^j2&
5(

j 50

` S e2 j g)
k50

j

“Tuxn2kD 2

, ~22!

where the^•& are averages over thej process. Clearly, as
g→`, this expression tends to 1.

In the regime in whichg@0 and ^j2&!1, the ^d n11
2 &

'^j2&!1 and hence the trajectories collapse upon the c
sical orbits:xn115T(xn)1dn'T(xn). Under these circum-
stances, the embedding is always stable, and there is no
tachment. In this regime we can compute explicitly t
above-given expression, Eq.~22!, which depends only on the
current value of the position:
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^j2&
5(

j 50

` S e2 j g)
k50

j

“TuT2k(x)D 2

. ~23!

Thust(x) defines a sort of temperature for the fluctuationsd.
As long as thed are infinitesimally small, they do not—

and cannot—affect thex dynamics, which has collapsed on
the classical trajectories; thus they do not influence the
variant densityP(x) either, and henceP(x) is asymptotic to
the Lebesgue measure. For infinitesimally small^j2&, asg is
made smaller, the sum acquires more and more terms
cause the prefactore2 j g decays more and more slowly. Fo
any value ofg, the products of the gradients grow or shrin
roughly as the exponential of the Lyapunov exponent tim
j . Thus, wheng equals the local Lyapunov exponent atx, the
series definingt(x) stops being absolutely convergent atx
and may blow up. Asg is lowered further, more and mor
pointsx have local Lyapunov exponents greater thang, and
so t(x) formally diverges at more and more pointsx.

Wheret(x)5` it means that̂ d n
2& is finite even if^j2&

is infinitesimally small. Thus the embedding trajectories ha
detached from the actual trajectories, and the above-g
approximations break down. Detachment is the process
we first envisioned as being characteristic of bailo
embeddings.16 However, by employing noise in the embe
ding, and carefully controlling its use, we can see the proc
that occurs before detachment. Ift(x) is finite and smaller
than 1/̂ j2&, then we have a regime in which thed ’s behave
as a noise term added to the classical trajectories:xn11

5T(xn)1dn with ^d n
2&5^j2&t(x).

We have lost the whiteness of the noise process, s
dn11 and dn are not any longer statistically independen
However, this is secondary to the fact that the noise proc
amplitude, being modulated as a function of position, w
immediately lead to inhomogeneity in the dynamics: hot
gions will be avoided while cold regions will preserve th
dynamics. All of this is in a context in which the embeddin
is essentially stable throughout. Thus this process is not
tachmentper se, but rather avoidance.

We can illustrate this best in the context of the stand
map acting as before as the base flow. Figure 3 shows sid
side the visit histogram—the invariant measure—~left-hand
side! together with the corresponding space-dependent t
perature~right-hand side! for a decreasing sequence of th
bailout parameterg and fixed values of the standard-ma
nonlinearity and noise parameters. While, forg larger than
0.55, the temperature is a well-defined function of the sp
coordinates, it shows signs of divergence—the red regio
which become larger asg decreases—forg smaller than
0.55. On the other hand, however, the invariant measure
plays features related to the structure oft on both sides of
this transition, i.e., even before detachment occurs.

VI. DISCUSSION AND CONCLUSIONS

It has previously been demonstrated that small neutr
buoyant particles immersed in a fluid flow, and therefo
subject to drag forces, may follow trajectories that sponta
ously separate from those of the fluid parcels in some reg
of the flow. Specifically, this occurs when the strain is ve
P license or copyright, see http://ojps.aip.org/chaos/chocr.jsp
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strong compared to the Stokes number of the particles. G
that, in general, the smaller the particles, the greater
strain necessary for this phenomenon to manifest itself,
conditions for separation to occur may not be fulfilled
some fluid flows of physical interest. However, we ha
shown here that the addition of noise to the forces acting
the particles can extend the action of this phenomenon
yond the range of Stokes numbers for which separatio
possible in a deterministic system, allowing the generation
inhomogeneities in the asymptotic distributions of these p
ticles even in cases where the flow is a highly efficient mix

There is a large variety of examples in which noi
ought naturally to be added to the dynamical equations
particulate impurities. Thermal or concentration fluctuatio
for instance, should be considered in a range of small-s
laboratory experiments. The effect of small-scale turbule
on drifters in oceanographic applications might be anot
relevant example. In the case of plankton dynamics, in wh
the emergence of inhomogeneous distributions is an is
the autonomous swimming abilities of individuals might
viewed as an internal source of noise. But could the phen
enon described here be the basis of the plankton distribu
patchiness? If each individual plankton is naively conside
as an impurity particle, the answer is obviously no: their s
is far too small for these effects to be appreciable. Bu
there are grounds to consider plankton in large-scale colo
moving more or less rigidly in the ocean, the consequen
of the phenomenon described here need to be taken serio

We conclude with an epistemological note: the dynam
of neutrally buoyant particles in flows has suggested to u
generalization to maps that helps to solve some problem
the domain of Hamiltonian dynamics. This generalization
turn pays us back by suggesting a way in which inhomo
neous distributions may arise in fluid-dynamical problem
We believe that this is a remarkable instance of mutual s
port in the interdisciplinary marriage between the two fiel

ACKNOWLEDGMENTS

We should like to thank Leo Kadanoff, Rube´n Pasman-
ter, and Marcelo Viana for useful discussions. J.H.E.C.
Downloaded 20 Jun 2002 to 130.206.78.250. Redistribution subject to AI
en
e
e

n
e-
is
f

r-
r.

f
,
le
e
r
h
e,

-
n

d
e
if
es
es
sly.
s
a
in

-
.

p-
.

-

knowledges the financial support of the Spanish CSIC, P
Nacional del Espacio Contract No. ESP98-1347. M.O.M.
knowledges the support of the Meyer Foundation. O.P.
knowledges the Spanish Ministerio de Ciencia y Tecnolog
Proyecto CONOCE, Contract No. BFM2000-1108.

1E. R. Abraham, Nature~London! 391, 577 ~1998!.
2S. A. Levin and L. A. Segal, Nature~London! 259, 659 ~1976!.
3Spatial Patterns in Plankton Communities, edited by H. J. Steele~Plenum,
New York, 1978!.

4C. Jung, T. Te´l, and E. Ziemniak, Chaos3, 555 ~1993!.
5Z. Toroczkaiet al., Phys. Rev. Lett.80, 500 ~1998!.
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