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Dynamical properties of two-dimensional Kerr
cavity solitons
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Damià Gomila and Pere Colet

Instituto Mediterraneo de Estudios Avanzados, Consejo Superior de Investigacones Cientificas, Universitat Illes
Balears, Campus Universitat Illes Balears, E-07071 Palma de Mallorca, Spain

Received April 7, 2001; revised manuscript received August 24, 2001

We present the results of our study of the dynamics of two-dimensional Kerr cavity solitons. The solitons are
absolutely stable over a substantial parameter domain. We analyze their dynamics beyond the instability
boundary, finding regions of stable oscillation and of fivefold or sixfold azimuthal instability. The Hopf oscil-
lation is surprisingly robust, owing to the influence of a lower-amplitude unstable soliton. © 2002 Optical
Society of America
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1. INTRODUCTION
Many interesting spontaneous spatial structures have
been predicted and observed in nonlinear optical
systems.1 Among them are localized bright spots in
driven optical cavities.2–34 These spots share some prop-
erties with spatial solitons and have become known as
cavity solitons. Kerr cavity solitons are particularly fun-
damental and interesting in view of the properties of their
propagating counterparts. Whereas in one transverse di-
mension Kerr spatial solitons are stable, it is well known
that their two-dimensional (2D) counterparts are un-
stable against self-focusing collapse.35,36 The stability
and dynamics of 2D Kerr cavity solitons (KCSs) are thus
of particular interest. Their existence and structure was
documented some years ago,11 but only unstable KCSs
were found, though with indications that they might be-
come stabilized for smaller cavity detunings. This stabi-
lization was subsequently confirmed in a brief paper,12

but few details were presented and stability against only
cylindrically symmetric perturbations was established, so
the question of the azimuthal stability of 2D KCSs was
left open.

In this paper we remedy that omission. We find that
in part of the domain in which they are radially stable, 2D
KCSs are in fact azimuthally unstable. The existence of
a broad domain of absolute stability for moderately small
cavity mistunings is, however, fully confirmed.

We establish these results by an essentially exact, if
numerically based, method27 that enables us to provide a
much more comprehensive dynamical picture of 2D KCSs
than was previously available. This method gives infor-
mation on the nature and spatial structure of the internal
modes of the KCSs that become undamped at the stability
boundaries. We confirm our findings by using dynamical
simulations with starting conditions governed by our cal-
culated mode structures. We find that the character of
the cylindrically symmetric instability is a Hopf bifurca-
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tion, resulting in a breathing oscillation of the KCSs.
The amplitude of this oscillation increases with the back-
ground intensity. The oscillating soliton is rather robust,
and we show that it neither collapses nor decays, even
well above the Hopf threshold. Where azimuthal insta-
bility to a mode exp(6imf ) dominates, it may be prefer-
entially of index m 5 5 or m 5 6. In this case the re-
sultant dynamics leads to formation of an expanding
pattern, which for the m 5 5 instability maintains five-
fold symmetry as it grows. In both cases the emerging
pattern is dynamical; each spot oscillates with a location-
dependent phase.37

2. KERR CAVITY SOLITONS
We describe KCSs by using the standard mean-field cav-
ity model of Lugiato and Lefever,38 in which alternation of
propagation about the cavity with coherent addition of
the input field is replaced by a single partial differential
equation with a driving term:

i
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where ¹2 5 ]2/]x2 1 ]2/]y2. The three terms on the
right-hand side of this are perturbations of the nonlinear
Schrödinger equation, all small if « is. The first is a lin-
ear loss (« . 0); the last, the driving field E in that is
needed to sustain E against that loss. The middle term,
in u, describes the cavity mistuning with regard to the
driving field (which we use as the frequency reference).
Time is scaled to the cavity response time. This model
[Eq. (1)] is appropriate for high finesse and assumes that
only one longitudinal mode is excited.

We now set « 5 1, which is equivalent to a rescaling,
and designate the resultant equation the Lugiato–
Lefever equation (LLE).38 Its only known exact solutions
2002 Optical Society of America
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assume a homogeneous (plane-wave) driving field and are
themselves homogeneous, given by E 5 Es 5 E in /@1
1 i(u 2 I)#, where I 5 uEsu2. For u , A3 this implicit
solution is single valued (no optical bistability). 2D
KCSs are usually rather unstable when I is multiple val-
ued, so we hence forth assume that u , A3 and can thus
use intracavity background intensity I and u as conve-
nient control parameters. Note that Lugiato and Lefever
introduced the LLE in the context of pattern formation,
finding that the plane-wave solution is always unstable to
some transverse wave vector whenever I > 1. Stable
KCSs can thus exist only for I , 1, because they must as-
ymptote to a stable Es . Figure 1 shows a typical 2D KCS
for u 5 1.2 and I 5 0.9. It consists of a bright peak on a
flat background, with a few weak diffraction rings. The
period and spatial damping rate of these rings follows
from the fact that the KCS is asymptotically given by a
pair of generalized Bessel functions.11,12 The rings be-
come much more pronounced as I → 1. For convenience,
we often set E 5 Es(1 1 A), where A(r) permits a
background-free description of KCSs.

The LLE is known to have patterned solutions for I
. 1.38 These include stripes (rolls), which are subcriti-
cal (i.e., coexist with a stable plane-wave solution) for u
. 41/30. For smaller u, rolls exist only for I . 1 and
thus cannot coexist with stable 2D KCSs. Hexagonal
patterns do, however, exist for I , 1, u , 41/30. Figure 2
shows a plot of I versus the maximum uAu for coexistent
hexagons and 2D KCSs: u 5 1.0. These stationary so-
lutions are calculated by use of a Newton method after
the transverse derivatives have been computed with a
Fourier transform. This approach is extremely accurate,
and, furthermore, automatically generates the Jacobian
operator whose eigenvalues determine the stability of the
solution obtained.

For the cylindrically symmetric solutions we study sta-
bility with respect to perturbations of the form exp(imf )
for an arbitrary integer m, noting that for m Þ 0 closure
of the linearized perturbation equations requires terms in
both m and 2m. In this way we can study the stability

Fig. 1. Typical cavity soliton, showing a bright peak on a darker
homogeneous background, with a few weak diffraction rings.
Plotted is the modulus of the intracavity field as a function of the
transverse coordinates x and y; parameters are u 5 1.2 and I
5 0.9.
of 2D KCSs with respect to all possible perturbations in
the 2D plane.

As might be expected, the negative-slope portions of
both the KCS branch and the hexagon branch are un-
stable. The KCS branch usually has only a single un-
damped mode, as illustrated in Fig. 3. The positive-slope
branch of KCSs is usually stable at low values of I but be-
comes unstable as I increases (Fig. 3). For u 5 1.3, a
complex-conjugate pair of eigenvalues crosses the imagi-
nary axis at I ' 0.79, rendering the KCSs unstable. The
underlying mechanism for this instability has been iden-
tified by Skryabin.39 Direct simulation confirms the sta-
bility analysis. A perturbed cavity soliton exhibits

Fig. 2. Maximum amplitude of stationary solutions versus I for
u 5 1.0. Solutions shown are the 2D KCS solutions (solid curve)
and the hexagonal pattern (dashed curve). The slight irregular-
ity in the hexagon curve is a numerical artifact associated with
the existence of a continuum of hexagonal patterns with different
lattice spacings.

Fig. 3. Stability of the upper- (solid curves) and lower- (dashed
curves) branch cavity solitons: how the eigenvalues with largest
real parts change with I [ uEsu2. The detuning is u 5 1.3.
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damped oscillations in the stable domain, which become
undamped as the stability boundary is crossed. The
positive-slope part of the hexagon branch can also be un-
stable to a Hopf mode.37 Hopf instability and the oscil-
lation of a dark cavity soliton were previously reported
and analyzed in a cavity with saturating defocusing
nonlinearity.40

The stability of 2D KCSs for general (u, I) is displayed
in Fig. 4. The area above the lowest curve in Fig. 4
shows where 2D KCSs exist, and the shaded regions show
where they are unstable. They exist only for a finite
range Imin , I , 1, which is broader for large u. They
are stable against m 5 0 perturbations only over a range
Imin , I , Ihopf owing to the presence of a Hopf bifurca-
tion in the dark shaded area. The Hopf-stable strip is
very narrow for u . 1.5, which is why no stable 2D KCSs
were found in an earlier study.11

Figure 5 shows the results of a numerical integration of
the LLE inside the Hopf-unstable region (u 5 1.3, I
5 0.9). The initial condition was the unstable solution
found by use of the Newton method. The exponential, os-
cillatory divergence is clear. In fact, the projection of the
dynamics onto the Hopf eigenmode of the initial soliton
shows an exponential growth, in excellent agreement
with the computed positive eigenvalue. In Fig. 6 a cross
section of the oscillatory solution is shown as a function of
time.41

Figure 7 shows phase plots of the upper- and lower-
branch solitons together with the trace of the Hopf oscil-
lation of its central peak. The full phase profiles over all
r are also plotted for the extrema. Clearly, at the lower
extremum of its oscillation, the soliton dwells close to the
lower-branch KCS.41

Even at I 5 0.8, only just beyond the Hopf threshold,
the oscillating soliton’s profile comes close, in both ampli-
tude and phase, to that of the lower-branch KCS. It thus
seems to act as a barrier, rather than a catalyst, to decay

Fig. 4. Stability of 2D KCSs in the u, I plane. Solitons exist
above the lowest of the curves and are stable in the unshaded re-
gion. In the darkest area they are unstable to a Hopf mode with
m 5 0, whereas in the other two shaded regions they are un-
stable to m 5 5 and m 5 6 modes (see text).
of the Hopf-unstable KCSs. We can explain this some-
what surprising phenomenon by considering the dynam-
ics of the LLE in the vicinity of the lower branch KCS.
From Fig. 3 it is evident that, for I ; 0.9, this KCS has
just one unstable mode, with all the others well damped.
We can expand the total field as E 5 Es(1 1 A) 5 Es(1
1 Al 1 aAunst 1 B), where Al is the lower-branch KCS
and Aunst is its unstable mode with amplitude a. Be-
cause there is only one unstable mode we can take a to be
real and such that, if a . 0, the lower-branch soliton will
evolve toward the upper branch. B is the remainder of
the deviation from the lower-branch KCS.

Fig. 5. Dynamics of oscillating 2D KCS beyond the Hopf bifur-
cation: uA(0)u, as a function of time (u 5 1.3, I 5 0.9).
Dashed lines show uA(0)u for the upper- and lower-branch soli-
tons. Inset, amplitude ua0u of Hopf-unstable eigenmode v0(r),
where A(r, t) ' Au(r) 1 a0(t)v0(r); Au is the Hopf-unstable
KCS and the dashed line is the gradient predicted by the corre-
sponding eigenvalue from the linear stability analysis.

Fig. 6. Dynamics of an oscillating 2D KCS beyond the Hopf bi-
furcation (u 5 1.3, I 5 0.9): cross section uE(x, y 5 0, t)u rela-
tive to x and time. (The oscillation preserves cylindrical symme-
try.)
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Close enough to the unstable soliton Al , we can linear-
ize in a and B. It follows from the linear stability prop-
erties of Al that a grows exponentially, whereas B decays
at least as fast as the least-damped stable mode of Al .
Thus the dynamics rapidly becomes one dimensional, con-
fined to the unstable manifold of the lower-branch KCS.
The exception occurs when a 5 0, which asymptotes to
Al , because it has no projection along the unstable mode.
The condition a 5 0 identifies the stable manifold of Al .
For the present case the unstable manifold is one dimen-
sional in the function space of the eigenmodes of Al and
the stable manifold is infinite dimensional. Because of
the simple dynamics of a, its time dependence is a(t)
5 a(0)exp(lt), where l is the positive eigenvalue of Al .
It follows that (within the linear approximation) the
stable manifold acts as an absolute barrier: Crossing it
would require that a change sign, which is impossible
(unless some noise or other effect perturbs the LLE evo-
lution). Physically, this structure implies that any bump
in A that is close enough to Al will evolve toward Al if uau
is initially small enough compared with uBu. The expo-
nential growth of a eventually takes over, however, and
the bump either decays into the background (if a , 0) or
evolves toward the upper-branch soliton (if a . 0).

The oscillation of the Hopf-unstable KCS, by its nature,
is such that if it should approach the stable manifold of
the lower-branch soliton it will do so with a . 0. If this
a is initially small compared with uBu, the soliton is at-
tracted toward Al as B decays and then escapes along the
unstable manifold as the exponential growth of a takes
over. This procedure yields a prediction about the subse-
quent dynamics: Because the unstable manifold of the
lower-branch KCS is also the stable manifold of the
upper-branch KCS, the oscillating soliton should follow
its close encounter with the former by a close encounter
with the latter. That this is indeed what happens is evi-
dent from Fig. 7. This surprising robustness of the oscil-

Fig. 7. Phase-plane representation of the dynamics of an oscil-
lating 2D KCS (u 5 1.3, I 5 0.9). Dashed curves, phase por-
trait of A(r) at the extrema of the oscillation; dotted curves, A(0)
at intermediate times. Arrows, directions of rotation. Upper
and lower solid curves (Hopf-unstable) upper and (amplitude un-
stable) lower KCSs, respectively.
lating 2D KCS is potentially significant in relation to ap-
plications because an oscillating soliton is almost as
clearly distinguishable from no soliton, as is a stable soli-
ton (because its amplitude is bounded below by that of the
lower-branch soliton).

As we already mentioned, however, the barrier can be
crossed in the presence of deviations from the determin-
istic evolution. Noise in experiments is unavoidable,
which would undoubtedly limit the robustness in practice
of Hopf-unstable cavity solitons. Even in simulations we
have seen decay of the oscillating KCS, which we ascribe
to numerical noise because increasing the computational
accuracy prevents decay. It is likely that the decay seen
in earlier research with KCSs11 is, with hindsight, attrib-
utable to numerical noise. It would be interesting to in-
vestigate whether the decay of the oscillating dark-cavity
soliton reported by Michaelis et al.40 is also sensitive to
numerics. Of course, our analysis of the soliton dynam-
ics has only first-order validity and cannot establish
whether the stable manifold is a global decay barrier.

The mechanism by which the unstable manifold of the
lower-branch cavity soliton acts as a phase-space barrier
seems quite general, so this phenomenon should not be
limited to pure Kerr, or even Kerr-like, media. Recent
studies with a semiconductor model33 identified the role
of the lower-branch soliton as a separatrix, in that below
a certain amplitude an address pulse failed to write a soli-
ton, whereas above that critical amplitude the pulse suc-
cessfully initiated one (which in the case in question was
stable). Therefore a weak pulse creates a bump with a
, 0, leading to decay, whereas the critical address pulse
corresponds to a 5 0. Any stronger pulse generates a
bump with a . 0, which evolves into an upper-branch
soliton. Such separatrix behavior in the writing of soli-
tons was experimentally observed in a semiconductor
cavity20 and for cavity-soliton-like feedback
structures.29,34 In the latter cases the critical switching
dynamics was used to map out the unstable lower branch.

The dynamics close to the lower-branch soliton has
similarities to dynamics close to a saddle point in low-
dimensional dynamical systems. One characteristic of
such dynamics is sensitivity to initial conditions and to
noise. This sensitivity could account for the slight peak-
to-peak variation in Fig. 6. Whether this fluctuation is
noisy or chaotic requires further, detailed, investigation.

For the approximate range u , 1.22 shown in Fig. 4,
the leading instability observed is not the Hopf mode
(which is cylindrically symmetric) but instead modes with
m 5 5 or m 5 6. This azimuthal instability leads to its
surrounding ring’s breaking up into five or six spots, re-
spectively. Numerical integration shows that the result-
ant structure then grows to invade the homogeneous
background. The leading instability is to m 5 6 for u
, 1.1, leading to an (unstable) hexagonal pattern. For a
narrow domain about u 5 1.2 (Fig. 4), m 5 5 dominates,
and the resultant pattern, though it is locally hexagonal,
retains its global fivefold symmetry (Fig. 8).

These azimuthal instabilities are easily interpreted as
a quasi-1D modulational instability of the primary ring of
the 2D KCS, once the local intensity uEu2 on the ring ex-
ceeds unity by a sufficient margin to compensate for the
ring’s radial confinement.
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3. SUMMARY
We have demonstrated existence of stable 2D Kerr cavity
solitons in the archetypal Lugiato–Lefever mean-field
model. This is a behavior that is qualitatively different
from its bulk-medium equivalent and so clearly demon-
strates that cavity solitons are qualitatively different
from ordinary spatial solitons. We have also presented
detailed and accurate investigations of the nature of the
processes by which this 2D Kerr cavity soliton may be-
come unstable. We found a novel and interesting azi-
muthal instability, leading to formation of an unstable
quasi-hexagonal pattern. There is an interesting insta-
bility of the Hopf type. We showed that the resultant dy-
namics preserves the soliton even when the oscillation
reaches quite a high amplitude and have demonstrated
the key role of the lower-branch soliton in this phenom-
enon.
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