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Number theory has recently found a quantity of applications in the natural and applied sciences, and in partic-
ular in the study of nonlinear dynamical systems. As our sensory systems are highly nonlinear, it is natural to
suppose that number theory also plays an important role in the description of perception, including aesthetics.
Here we present a mathematical construction, based on number-theoretical properties of the golden mean, that
generates meaningful musical scales of different numbers of notes. We demonstrate that these numbers coincide
with the number of notes that an equal-tempered scale must have in order to optimize its approximation to the
currently used harmonic musical intervals. Scales with particular harmonic properties and with more notes
than the twelve-note scale now used in Western music can be generated. These scales offer interesting new pos-
sibilities for artists in the emerging musical world of microtonality and may be rooted in objective phenomena
taking place in the nonlinearities of our perceptual and nervous systems.

Introduction

From antiquity humanity has sought through scientific enquiry a rational explanation of nature. As artworks
were considered an imitation of nature, the same purpose has pervaded the history of the arts. The Pythagoreans
were the first to put into mathematical terms the rules for aesthetics, borrowing them from music (Allott, 1994).
Later there arose the concepts of eurhythmy or commodulation: the application of rhythmical movements or
harmonious proportions in a piece of music; a painting; a sculpture; a building; a dance. Throughout the Middle
Ages, mathematical ideas of proportion lived side by side with the body of artistic activity, but during the
Renaissance, the natural sciences and mathematics began a process of separation from the arts, both theoretically
as well as in practical terms (James, 1993). One of the reasons for the divorce was that all efforts failed to give a
rational basis to the rdle played by numerical proportions in the aesthetics of an artwork. This lack of scientific
rationale caused a rejection of works on numerical proportion in aesthetics by the scientific community, which
began to consider writings in this area esoteric and unscientific. The divergence between arts and sciences grew
wider in the twentieth century, with the end of the last movements retaining the ancient mathematical roots of art:
neoclassicism and cubism. From this point on, the tendency of artists has been to consider that the mathematical
design of an artwork implies an unacceptable constraint to creativity. If, in the future, the gulf between arts
and sciences is to be reduced, this may come about through being able to understand in an objective fashion
the phenomena that take place in our perceptual and nervous systems when we look at a painting (Zeki, 1999),
or listen to music. Some of these phenomena may be rooted in the fundamental rdle in the theory of nonlinear
dynamical systems played by a particular number: the golden mean.



Figure 1: An example of golden number composition in a Greek amphora (4th century BC). The ratio between
the greater and lesser diameters equals ®: 6/a = 1.618.... The white line passing through the base of the
handles also divides the total height ~ in the proportion ®. The use of the convergents of the golden number
is also evident in the figure. For example, the height of the base of the handles is in 1:1 proportion — the first
convergent of ® — with the width 3, determining the division of the golden rectangle (3, +) into a lesser golden
rectangle by means of its gnomon: a square. Moreover, the horizontal line in the central column divides the
total height in two equal parts, determining a ratio 1:2, the second convergent to ®. Finally, the line passing
by the two small holes near the base of the handles determines a ratio of 2:3, the third convergent to the golden
mean.

Thegolden mean in art and science

There exist many scientific, technical, and even esoteric writings about the use of the golden section, & =
(14++/5)/2 = 1.618.. . ., and its companion ¢ = 1/® = & —1 = 0.618.. .. . in art (Ghyka, 1977; Huntley, 1970).
There also exists a similar tradition regarding its r6le in science and technology (Schroeder, 1990, 1992). The
number and some of its numerical properties were certainly known to the Greeks (Herz-Fischler, 1998), and it
was possibly the key to the Pythagorean discovery of irrational numbers through its geometrical application to
the pentagram. Platonic geometers named it “the section’ referring to its unique properties. Kepler described ®
as one of the ‘jewels of geometry’, but the name of golden mean, golden section, or golden number may first
have been ascribed to it by Leonardo da Vinci. Da Vinci himself illustrated the book about @ by Luca Pacioli,
with whom da Vinci studied mathematics, which Pacioli entitled De Divina Proportione (Pacioli, 2001).

Whatever the level of theoretical knowledge about ® and its attributed mystical significance, its use in painting,
sculpture and architecture is certainly very ancient. Outstanding architectural examples are the Great Pyramid
of Cheops and the Parthenon of Athens. Many ancient Chinese paintings also show the golden section, and
achieve an accuracy of three decimal places in the major to minor ratio of some of their frames. Much Greek
pottery also exhibits the golden section in the proportions of its parts. One example will suffice: in Fig. 1 we
show a sketch of a Greek amphora of the 4th century BC. The ratio of the major to the minor diameter of the
amphora equals @ to three decimal places; the golden section is present also in many other details of the object,
for example, the total height is divided in the proportion ® by the white horizontal line at the base of the handles.

A number of hypotheses have been put forward as explanations for the constant presence of ® in art. The most



Figure 2: Woodcut by Franchino Gafurio, music theorist and choirmaster of Milan cathedral, shows at upper
left the legendary discovery of the harmonic intervals by Pythagoras in a smithy. Pythagoras is also shown
investigating with bells, strings and flutes. [Frontispiece of F. Gafurio “Theorica Musice” Naples (1480)].

accepted refers to a cultural fact: because the golden proportion is found frequently in nature — in phyllotaxis,
sea shells, seed heads, human proportions, etc. — and because art was considered originally an imitation of
nature, it is natural to find this proportion in different artworks. This explanation, however, begs the question:
why is the golden section ubiquitous in nature? The ancient Greeks argued that the explanation for this ubiquity
of ® must be sought in a mathematical description of the world, and that numbers —the branch of mathematics
now known as number theory — describe all things in the universe. They developed a theory of proportions as
an explanation for our aesthetic perception of the universe and as a guide for the work of artists. A proportion is
the equality of at least two ratios: » = a/b = ¢/d. This is termed a discrete proportion because the four elements
are distinct. If two elements of the proportion coincide, the proportion becomes continuous. For example, if
b = ¢, the proportion reads = a/b = b/d, which has the solution b = v/ad, r = \/a/d, when b is known as
the geometric mean of a and d. We can further simplify the proportion by making one element dependent on
the other two. Given d = a + b, so the ratio of the smaller part « to the larger part b is the same as the ratio of
the larger part b to the whole a + b, we obtain only two possibilities for r: ¢ = (v/5 —1)/2 = 0.618... ., and
~® = —(1++/5)/2=—1.618..; this is the geometric definition of the golden section.

In art, the appropriate links between proportions of the parts and the whole gives to the artwork the quality of
eurhythmy. Eurhythmy is currently more generally associated with arts that work in the time dimension, such
as music or dance, but in antiquity it was used equally for the arts working with the spatial dimensions, such
as painting, sculpture or architecture. Many artists have attempted to develop a parallelism between figurative
and non-figurative arts; the writing of da Vinci on music and painting is famous. We can find such projects in
modern painting also. Gino Severini, for example, tried to put musical rules into visual terms, while Paul Klee
held, as did Goethe, that colour may be managed through a general theory of composition in the same way that
sound is managed through the framework of musical theory: a sort of synthesis like that obtained in the works
of Bach or Mozart. Less clear, however, is the contrary: the translation of the aesthetic réle played by the golden
number in painting, sculpture, and architecture to the musical world (see, for example, Huntley (1970); Lendvai
(1966)).

Western science was born with the Pythagoreans, who developed the first mathematical model of a physical
problem. This starting point also coincides with the start of rational studies of music, because the Pythagoreans



Table 1: Names and frequency ratios of the currently accepted harmonic intervals in Western music in descend-
ing order of consonance.

Unison Invariant 1/1 Major Sixth  Variable 3/5
Octave Invariant 1/2 Major Third Variable 4/5
Fifth Invariant  2/3 Minor Third Variable 5/6
Fourth  Mixed 3/4 Minor Sixth  Variable 5/8

developed a musical theory: that of harmonic musical intervals. Legend tells how Pythagoras entered a smithy
and heard the noise of hammers of different masses working a great piece of incandescent iron. Some of the
hammers striking simultaneously produced harmonious sounds. This motivated Pythagoras to study musical
harmony with different tuneable instruments, as the medieval woodcut of Fig. 2 shows. In this way he identified
at least the principal harmonic musical intervals: the unison, the octave, the perfect fifth and the fourth. His
principal observation was that some simple numerical relationships defined these intervals (see Table 1 for
the list of harmonic intervals currently accepted in Western music). Of course these numbers depend on the
physical variables chosen to represent the sounds, but in time it emerged that the fundamental magnitude related
to harmony is frequency. Fortunately, many numerological approaches maintain their validity because they
work with the lengths of strings, since ratios obtained with these lengths are just the inverse of frequency ratios
(a string fixed at both ends oscillates at a fundamental frequency proportional to the inverse of its length).
Pythagorean ratios were quickly utilized for the construction of a musical theory. This musical theory was
based fundamentally on the construction of a musical scale: the Pythagorean musical scale.

Theneed for musical scales

As a first approximation we can say that any frequency can be assigned a pitch, that is, a comparative sensation
that allows us to say that a sound is higher or deeper than another. However, because there is a continuum of
frequencies in any finite interval, there is an infinity of possible pitches. We should point out a couple of caveats:
first, pitch can be ascribed directly to frequency only for pure tones (sounds that contain only one frequency in
their spectrum), and for a definite intensity; second, the ear does not have an infinite resolving power, and thus
two pure tones sufficiently close in their frequencies are judged to be of the same pitch. However, the resolving
power is sufficiently high to be considered a continuum for the frequency values of the notes in any practical
musical scale. For example, a semitone is given by a distance of 100 cents in the equal-tempered scale of twelve
notes — there being 1200 cents in an octave — but the ear can distinguish a substantially lesser interval: the just
noticeable difference limen is as little as three to four cents at 1000 Hz. What then is the need for musical scales?
A practical demonstration cannot give us the complete answer but can convince us of the practical necessity of
a discretization of the octave into notes. If we take a known melody and replace the interval between notes by
a continuum glissando the melody loses all its musical attractiveness and can become unidentifiable, despite
the existence of the fixed frequency clues of the limit of the original intervals. This problem has long been
recognized in practical terms and also, by the Pythagorean school at least, in theoretical terms.

The Pythagorean scale can be obtained by successive applications, ascending or descending from a tonic, of
the interval of the perfect fifth. The notes obtained in this way must be replaced by their octave equivalents in
order to have all the notes in the same octave. The Pythagorean process, however, has a problem because it
never ends: an integer number of fifths never coincides with any other integer number of octaves; in number-
theoretical terms, the problem is that 2* = 3% has no solutions if 2 and y are integers. The essence of the
Pythagorean scale is the preservation of harmonic intervals, mainly the fifth and the octave. From Pythagoras
up to the present day, many musical scales have been developed that try to accommodate the desire for harmonic
intervals with the reality that they do not fit within the octave, the most important being the equal-tempered scale
of twelve notes. Equal-tempered scales are defined by irrational numbers, and do not exactly preserve any of the
harmonic intervals of Table 1 except for the octave, but, for some particular number of notes, they approximate
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Figure 3: The octave interval, defined by the notes of frequency 1/2, the tonic, and 1/1, its superior octave, is
divided by its geometric mean \/m as shown. The interval is defined by the first two convergents of the golden
number, 1/1 and 1/2, to which we have added the next convergent, 2/3. However, this breaks the symmetry
of the scale. There exists another solution which consists of the permutation of the short and long intervals
defined by 2/3, i.e. 3/4. This solution can be viewed as that symmetric to 2/3 through the symmetry axis /1/2.
Symmetry is meant here in the Greek sense, that is, as an equality of ratios, i.e. (2/3)//1/2 = 1/1/2/(3/4).
If we take logarithms of all quantities the symmetry becomes the usual sort and the geometric mean, +/1/2, can
be viewed as a mirror.

them.

The golden scales

The construction of a musical scale is then a problem involving approximating irrational numbers by rationals.
The mathematical technique to obtain the best such approximations is well known, and consists of writing the
irrational number as a continued fraction (Hardy & Wright, 1975). The golden mean ¢ has the continued-
fraction expansion
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and the best rational approximations to ¢ are given by the convergents of this infinite continued fraction, arrived
at by cutting it off at different levels in the expansion: 1/1,1/2,2/3,3/5,5/8, 8/13, and so on; the convergents
of the golden mean are ratios of successive Fibonacci numbers.

¢ =

Most musical scales are discretizations of the octave. The octave interval is such that the sensations produced
by two notes separated by an octave are very similar, and harmonious when sounded simultaneously. This is
independent of cultural roots or specific musical training, and is a shared characteristic that seems to be linked
to human physiology. As the octave is an interval defined by the first and second convergents 1/1 and 1/2 of the
golden number, we can attempt to construct a scale by continuing the series, adding the succeeding convergent
of the golden mean 2/3. The choice of a note = in the octave interval (1/2, 1) satisfies the minimal condition to
have a proportion: we have three elements (1/2, z, 1) that define two ratios, « = 1/(2x) and b = x. However,
the introduction of this rational number, 2/3, breaks the symmetry of the interval because there are now two
ratios defined, « = (1/2)/(2/3) = 3/4and b = (2/3)/1 = 2/3. This is to say that there is a hidden solution
that corresponds to the permutation of the intervals. If we equate the two ratios, a = b, this gives for x the
geometric mean of 1/2 and 1: = = \/m For the geometric mean the two ratios are equal; for the rational
2/3 there is one interval greater than the other and the permutation corresponds to the exchange of these. If
we include this hidden solution, 3/4, we reestablish the symmetry as if a mirror were placed at the geometric
mean (see Fig. 3). This palindromic character for a musical scale was first proposed by Newton in his notebooks
written between 1664 and 1666. Newton pursued this idea further and presented in Opticks (Newton, 1952) the
visible optical spectrum divided into ratios corresponding to those of a musical scale, with the divisions in the
form of a palindrome.
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Figure 4: (a) The golden scale construction developed until the fifth convergent ¢ = 5/8 (upper panel),
and the intervals between adjacent notes (lower panel). We can see that the intervals are distributed in a
band. If we take as a rule that the intervals cannot be greater than the quotient of convergents c,,—2/cn+1,
in this case c3/cs = (2/3)/(8/13) = 13/12 = 1.08, or less than that of the convergents ¢,,/c,,—1, here
es/ca = (5/8)/(3/5) = 25/24 = 1.04, we find that the anomalous interval 1.13, between 2/3 and 3/4, must
be subdivided once. However there is no solution to this problem in rational numbers, because the inclusion of
a rational number and its image generates at least one interval less than 1.04. The only possibility is thus to
include the irrational axis \/m itself. (b) The result of including the irrational axis. We can see that all the
intervals are now within the previously defined band. As the number of notes coincides with the number of notes
of the usual equal-tempered scale of twelve notes, we have given the same names to the notes of this golden
scale.

At this point we can generalize our procedure. For this it is sufficient to notice that the first note included,
the new rational approximant to the golden mean, creates a new interval, (1/2,2/3), which, as before, can
be divided by a geometric mean which, in turn, can be approximated by a rational that corresponds to the
succeeding approximant of the golden mean. This choice breaks the symmetry, which can be reestablished
through the image of this approximant in the geometric mean mirror of this interval \/1/_3 and further, its
image in the previous mirror \/m At the next level — including the convergent 3 /5 — this construction gives
us a pentatonic golden scale; C (1/2), D¥ (3/5), F (2/3), G (3/4), A (5/6), and C (1/1).

Now we need only a rule for proceeding in the subdivision of the interval: the maximum and minimum values
for the intervals between successive notes. We can see in Fig. 4a, which shows the procedure performed until
the third level (including the convergent 5/8), that all the intervals except one fall in a band determined by the
ratios between convergents of the golden number. The greatest interval is that including the first geometric mean
\/1/2. If we seek to subdivide this interval further we find that there is no rational solution that preserves the
palindromy inside the band. Thus the unique possible choice is the irrational geometric mean itself. This is
curious, because we are forced to choose a note that is essentially different to the others, having an irrational
interval. The scale at which we have arrived consists of twelve notes; the same number of notes as has the equal-
tempered scale now in use (see Fig. 4b). Moreover, the golden scale construction has generated all the harmonic
intervals currently accepted by Western music (Table 1). Because of the equal numbers of notes, we can give
the same names to the golden scale notes as their equal-tempered counterparts and compare their dispersion;
see Table 2. It is intriguing that the irrational note corresponds to the interval C to F¥, which has long been a
problem in musical theory because of its ambiguity: being difficult to define as consonant or dissonant. Because
of this it has been named the “diabolus in musica’; in our construction it is certainly an irrational devil!

In Fig. 5 we have calculated the mean quadratic dispersion as a function of the number of notes for an arbitrary
equal-tempered scale. This is an indication of how well the harmonic intervals listed in Table 1 are simultane-



Table 2: Comparison of the notes of the twelve-note equal-tempered scale with those of the golden scale with
the same number of notes.

Note Equal-Tempered Twelve-Note Difference Difference
Scale (Hz) Golden Scale (Hz) (%) (cents)

Cs Dog 4186.00 4186.00 0.00 0.0
ct Dot 4434.92 4465.07 0.68 -11.7
D Re 4698.64 4651.11 -1.01 17.6
D! Ref 4978.03 5023.20 0.90 -15.6
E Mi 5274.04 5232.50 -0.78 13.7
F Fa 5587.65 5583.33 -0.11 2.0
F¢  Fa 5919.90 5919.90 0.00 0.0
G Sol 6270.96 6279.00 0.12 -2.0
Gf  Sol 6644.87 6697.60 0.79 -13.7
A La 7040.00 6976.67 -0.89 15.6
Al Lat 7458.62 7534.80 1.02 -17.6
B Si 7902.13 7848.75 -0.68 11.7
Cy Dog 8372.00 8372.00 0.00 0.0

ously approximated by a given scale. We find a marked minimum at twelve notes, and in order to better this the
number of notes must rise to nineteen. Contrary to what one might naively expect, simply raising the number of
notes or, equivalently, diminishing the interval between adjacent notes, does not automatically achieve a better
approximation to the harmonic intervals. As a consequence, the number of notes of an equal-tempered scale
must be determined by this condition and cannot be arbitrarily chosen. In Fig. 5 we can see that the function
also has a significant minimum for thirty-four notes, and if we continue the construction of the golden scale one
step further we find a scale with thirty-four notes (Table 3). Our golden scale construction, then, provides scales
with optimal numbers of notes to best preserve the harmonic intervals.

In axiomatic terms, the construction of the order n scale from the order n— 1 scale can be summarized thus: first,
include the next convergent of the golden section, ¢,,. Construct the geometric mean of the interval (c,,—1, ¢,,)
and its reflections in the previous geometric mean mirrors. Include all the possible reflections of the convergents
obtained up to this point in the geometric mean mirrors, following the rule that an interval may not be greater
than ¢,,_2/cpn41, Nor less than ¢, /¢, —1 (these ratios are to be inverted depending on whether n is odd or even,
so that they are always greater than one). If an interval remains too large after including all possible rationals,
then it must be subdivided by the irrational geometric mean until the rule is satisfied. The completed scale
should be palandromic. There is very little that is arbitrary in the construction of these scales: everything comes
given by just one number, the golden section. The original notes are convergents of the golden section, the
admissible intervals are quotients of convergents of the golden section, and the symmetry axes are geometric
means between neighbouring convergents of the golden section. With the exception of the first in the series,
the pentatonic golden scale, the golden scales are not just, with all intervals rational, but neither are they equal-
tempered, with all intervals irrational. As they include both rational and irrational intervals, we may term them
mixed scales.

Playing and transposing with golden scalesin equal temperament

As with any other non-equal-tempered scale, the golden scales cause problems for transposition. The golden
scale of twelve notes is interesting for compositional purposes since it has the same number of notes as the usual
equal-tempered one, while some of the notes deviate appreciably from the corresponding equal-tempered ones.
An interesting way to use this scale while maintaining the possibility of transposition is to approximate it by a
subset of an equal-tempered scale of a greater number of notes. As the next step in the golden scale construction



Table 3: The golden scale construction carried out up the the sixth convergent of the golden mean, ¢ =
8/13, gives us a thirty-four-note golden scale. This contains within it the whole twelve-note golden scale; the
additional notes are reflections of convergents of the golden section, plus irrational notes from the inclusion
of mirrors at the geometric means of the intervals. It is hence a mixed scale with both rational and irrational
intervals. From a musical viewpoint, this allows one to play with consonance, dissonance, and tonality.

Note Interval Associated Note of  Thirty-Four-Note
Twelve-Note Scale  Golden Scale (Hz)

0 12 Cs Dog 4186.00
1 20/39 4293.33
2 25/48 4360.42
3 8/15 o Do 4465.07
4 13/24 4534.83
5 5/9 D Re 4651.11
6 5/(3V3) 4741.47
7 1/V3 4833.58
8 V3/Vh 4927.48
9 35 D! Ref 5023.20
10 8/13 5152.00
11 5/8 E Mi 5232.50
12 16/25 5358.08
13 13/20 5441.80
14 213 F Fa 5581.33
15 V2V/3/3 5691.98
16 1/¥3 5804.82
17 1/V2 F Fa' 5919.90
18 /3/2 6037.26
19 3/(2v2¥3) 6156.94
20 3/4 G Sol 6279.00
21 10/13 6440.00
22 25/32 6540.63
23 45 Gt Sol* 6697.60
24 13/16 6802.25
25 5/6 A La 6976.67
26 \/5/(2v/3) 7112.20
27 /3/2 7250.36
28 3v/3/(2V/5) 7391.21
29 9/10 Al Lat 7534.80
30 12/13 7728.00
31 15/16 B Si 7848.75
32 24025 8037.12
33 39/40 8162.70
34 11 Co Doy 8372.00

gives a thirty-four-note scale, and because this scale contains all the intervals of the twelve-note one, we can
approximate the notes of the latter with the notes of an equal-tempered scale of thirty-four steps. As we can see
in Fig. 5, this choice is a better approximation to the harmonic intervals, in the sense of having a smaller mean
quadratic dispersion. In Table 4 we show the notes of the thirty-four note equal-tempered scale that approximate
the corresponding notes in the twelve-note golden scale, and the differences between them expressed in cents.
The maximum deviation is of the order of six cents, very near to the just noticeable difference limen. Thus,
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Figure 5: Mean quadratic dispersion ¢ as a function of the number of notes in an equal-tempered scale. This
number is the square of the difference between the note of the equal-tempered scale that best approximates each
harmonic interval, multiplied by the relative weight of each interval and summed over all the intervals. The
weights of the intervals are set such that the fifth weighs more than the fourth, which weighs more than the
major third and major sixth, which weigh more than the minor third and minor sixth. ¢ is then an indication of
the degree to which a given equal-tempered scale approximates all the harmonic intervals of Table 1. There is
a marked minimum for the usual twelve-note scale which coincides with the number of notes of the golden scale
(the fifth convergent of the golden number). To obtain a better value, the number of notes must rise to nineteen.
The two following minima are at thirty-one and thirty-four notes, and the latter value coincides with the number
of notes of the golden scale developed until the sixth convergent of the golden number, 8/13.

G

33 4

the thirty-four-note equal-tempered scale can be used as a very good approximation to the golden one, with the
benefit that in the equal-tempered scale a musical composition can be transposed without difficulty. Moreover,
we can change tonality within microtonal intervals, by going to a non-twelve interval available in the thirty-four-
note scale. This is a general principle: we can play an order n — 1 golden scale as a subset of the order n one and,
for sufficiently high n the order n scale can be approximated by an equal-tempered one with the same number
of notes. Thus, the order n — 1 scale can be played with transposition in this latter scale with the additional
possibility of microtonal change of tonality. The example above demonstrates that, for practical applications, it
is not necessary to raise further the number of notes; the thirty-four-note scale (n = 6) is at the threshold of our
sensorial pitch sensitivity for a just generation of all the harmonic intervals that we have considered relevant to
the construction of a useful musical scale.

Can our senses be viewed as generic nonlinear systems?

We have shown that we can construct meaningful musical scales based solely on number-theoretical properties
of the continued fraction development of the golden number and its convergents. But is the rdle of the golden
number in musical aesthetics a coincidence; is there some connection with the réle played by the same number
in visual aesthetics?

The development of dynamical systems theory is changing our view about nonlinear phenomena in nature. We
have mentioned the cultural hypothesis which considers that the réle of the golden number in aesthetics is due
to the ubiquity of this number in natural phenomena. It is now clear that in many cases this réle in natural
phenomena is due to underlying dynamical mechanisms (Ball, 1998). Number theory in general, and certain
numbers such as the golden number in particular, play important parts in the dynamics of nonlinear systems
(Gonzélez & Piro, 1983; Cartwright et al., 1999b). To give just one example, patterns seen in phyllotaxis and
in the generation of Fibonacci spirals have been reproduced in a dynamics experiment on the organization of
ferrofluid drops in a silicone oil (Douady & Couder, 1992).



Table 4: The notes of the thirty-four-note equal-tempered scale that approximate the corresponding notes in the
twelve-note golden scale, and the differences between them expressed in cents.

Twelve-Note Thirty-Four Note  Difference
Golden Scale  Equal-Tempered Scale (cents)
C Do 0 0
C* Dof 3 5
D Re 5 6
D! Ref 9 -2
E Mi 11 -2
F  Fa 14 4
Ff  Faf 17 0
G Sol 20 -4
G* Solf 23 2
A La 25 2
Al Laf 29 -6
B Si 31 -5
C Do 34 0

Musical scales are constructed around musical intervals, which may be consonant or dissonant (Table 1). Here
we must be careful to distinguish the concept of musical consonance from that of psychoacoustical consonance
(Plomp & Levelt, 1965); psychoacoustical consonance makes use of the idea of roughness, but many observa-
tions about the consonance of musical intervals cannot be explained on those grounds. The first to put forward
an explanation for musical consonance was Rameau (Rameau, 1722). In his theory of harmony, Rameau as-
sumed that musical chords conveyed information about a fundamental sound: a bass note representing the tonal
meaning of the chord. Related ideas are Rieman’s aural subharmonics (Rieman, 1903), and those that have
their origins in Tartini’s third tone (Tartini, 1754). More recently, Terhardt gave fresh impetus to the theory of
fundamental bass, proposing that the psychoacoustical phenomenon of virtual or residue pitch may be ascribed
to it (Terhardt, 1974). However, Terhardt’s ideas lack a clear connection between the physical parameters of the
sound and the virtual pitch response. Except for von Helmholtz’s ideas on virtual pitch (von Helmholtz, 1863),
which make use of combination tones, other theories of the phenomenon show the same lack of physical sig-
nificance. Recently we proposed a new theory of residue perception, based on nonlinear dynamics (Cartwright
et al., 1999a, 2001). Following the line of reasoning of Terhardt, this becomes ipso facto a physical explana-
tion for musical consonance. Our theory is based on a type of dynamical attractor termed a three-frequency
resonance. These resonances are hierarchically organized following rules borrowed from number theory and
confirmed through simulation and experiment (Cartwright et al., 1999b). In this hierarchical ordering, a central
part is played by the generalization of a number-theoretical operation known as the Farey sum, which also plays
a central r6le in the organization of synchronized responses in periodically forced oscillators (Gonzélez & Piro,
1983). There, the Farey sum leads to a privileged rdle for the golden section.

We propose that following our theory of residue perception, musical consonance may be explained in physical
terms. The auditory system is a very complex and highly nonlinear dynamical system, so we expect that uni-
versal dynamical attractors may convey a perceptual and functional meaning in neural processing. Universal
dynamical attractors of interest for pitch perception, that is three-frequency resonances, are organized by means
of a number-theoretical operation, the generalized Farey sum, which implies a privileged réle for the golden
section in their hierarchical organization. The part the golden section plays in the hierarchical organization of
musical intervals, outlined in this paper, may then be a consequence of the dynamical ordering pointed out above
at the level of neural processing in the auditory system. A final hypothesis can be proposed: the tonal meaning
and the relative consonance of a musical chord may be described by the stability of a dynamical attractor which
represents the residue pitch. This idea is quantitatively testable, because this stability can be measured through
different dynamical indicators.



Our theory for the pitch perception of complex sounds by the human auditory system demonstrates that the au-
ditory system’s response to musical sounds is compatible with the universal response of a nonlinear dynamical
system to such stimuli. Because neuronal networks are very complex dynamical systems, this is not such an
unexpected result. It may be on this basis that the presence of the golden number in musical aesthetics can be
explained: harmonic intervals are another manifestation of the universal nonlinear behaviour associated with
pitch perception. The same phenomena may occur at the level of the visual system, because object identification
appears to correspond physiologically to synchronization of neuron populations to a given frequency (Engel et
al., 1992). The presence of different elements in an image might be then detected through different neuronal
groups that synchronize to different frequencies. And this returns us to the premise of our theory: the nonlinear
interaction of two or more frequencies produces resonances that are hierarchically arranged in a manner de-
scribed by the golden mean. Thus, the more recent results take us nearer to the more ancient theories, to the
Pythagorean dogma that all the universe is described by numbers and rhythms (Allott, 1994) — in modern terms
number theory and dynamics — and that nature is from all points of view similar to itself — in modern terms
universality. We may conclude with the words of the Gothic architect Jean Vignot on the continuation of the
work on Milan cathedral in 1392: “Ars sine scientia nihil est”.
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