Pitch perception: A dynamical-systems perspective
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Two and a half millennia ago Pythagoras initiated the scientific
study of the pitch of sounds; yet our understanding of the mech-
anisms of pitch perception remains incomplete. Physical models of
pitch perception try to explain from elementary principles why
certain physical characteristics of the stimulus lead to particular
pitch sensations. There are two broad categories of pitch-percep-
tion models: place or spectral models consider that pitch is mainly
related to the Fourier spectrum of the stimulus, whereas for
periodicity or temporal models its characteristics in the time do-
main are more important. Current models from either class are
usually computationally intensive, implementing a series of steps
more or less supported by auditory physiology. However, the brain
has to analyze and react in real time to an enormous amount of
information from the ear and other senses. How is all this infor-
mation efficiently represented and processed in the nervous sys-
tem? A proposal of nonlinear and complex systems research is that
dynamical attractors may form the basis of neural information
processing. Because the auditory system is a complex and highly
nonlinear dynamical system, it is natural to suppose that dynamical
attractors may carry perceptual and functional meaning. Here we
show that this idea, scarcely developed in current pitch models, can
be successfully applied to pitch perception.

he pitch of a sound is where we perceive it to lie on a musical

scale. For a pure tone with a single frequency component, pitch
rises monotonically with frequency. However, more complex sig-
nals also elicit a pitch sensation. Some instances are presented in
Fig. 1. These are sounds produced by the nonlinear interaction of
two or more periodic sources, by amplitude or frequency modula-
tion. All such stimuli, which may be termed complex tones, produce
a definite pitch sensation, and all of them exhibit a certain spectral
periodicity. Many natural sounds have this quality, including vowel
sounds in human speech and vocalizations of many other animals.
Evidence for the importance of spectral periodicity in sound
processing by humans is that noisy stimuli exhibiting this property
also elicit a pitch sensation. An example is repetition pitch: the pitch
of ripple noise (1), which arises naturally when the sound from a
noisy source interacts with a delayed version of itself, produced, for
example, by a single or multiple echo. It is clear that an efficient
mechanism for the analysis and recognition of complex tones
represents an evolutionary advantage for an organism. In this light,
the pitch percept may be seen as an effective one-parameter
categorization of sounds possessing some spectral periodicity (2-5).

Virtual Pitch

For a harmonic stimulus like Fig. 15 (a periodic signal), there is
a natural physical solution to the problem of encoding it with a
single parameter: take the fundamental component of the
stimulus as the pitch and all other components are naturally
recorded as the higher harmonics of the fundamental. This is
what nature does. However, a harmonic stimulus like Fig. 1c,
which is high-pass filtered so that the fundamental and some of
the first higher harmonics are eliminated, nevertheless maintains
its pitch at the frequency of the absent fundamental. The
stimulus (Fig. le) obtained by amplitude modulation of a
sinusoidal carrier of 1 kHz by a sinusoidal modulant of 200 Hz
is also of this type. Because the carrier and modulant are
rationally related, the stimulus is harmonic; the partials are
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integer multiples of the absent fundamental wy = 200 Hz. The
perception of pitch for this kind of stimulus is known as the
problem of the missing fundamental, virtual pitch, or residue
perception (6). The first physical theory for the phenomenon was
proposed by von Helmholtz (7), who attributed it to the gener-
ation of difference combination tones in the nonlinearities of the
ear. A passive nonlinearity fed by two sources with frequencies
w1 and w, generates combination tones of frequency wc (see the
Appendix for clarification of the concepts from nonlinear dy-
namics used throughout this paper). For a harmonic complex
tone, such as Fig. le, the difference combination tone wc = w;
— wp between two successive partials has the frequency of the
missing fundamental wp. In a crucial experiment, however,
Schouten et al. (8) demonstrated that the residue cannot be
described by a difference combination tone: if we shift all of the
partials in frequency by the same amount Aw (Fig. 1f), the
difference combination tone remains unchanged. But the per-
ceived pitch shifts, with a linear dependence on Aw.

A Dynamical-Systems Perspective

Such a complex tone is no longer harmonic. How does nature
encode an inharmonic complex tone into a single pitch? Intuitively,
the shifted pseudofundamental depicted in Fig. 1g might seem to be
a better choice than the unshifted fundamental, which corresponds
to the difference combination tone. However, from a mathematical
point of view, this is not obvious. The ratios between successive
partials of the shifted stimulus are irrational and we cannot repre-
sent them as higher harmonics of a nonzero fundamental fre-
quency; the true fundamental would have frequency zero. Some
kind of approximation is needed. The approximation of two
arbitrary frequencies, w; and w,, by the harmonics of a third, wg, is
equivalent to the mathematical problem of finding a strongly
convergent sequence of pairs of rational numbers with the same
denominator that simultaneously approximates the two frequency
ratios, w;/wg and wy/wg. If we consider the approximation to only
one frequency ratio there exists a general solution given by the
continued-fraction algorithm (9). However, for two frequency
ratios a general solution is not known. Some algorithms have been
proposed that work for particular values of the frequency ratios or
that are weakly convergent (10). We developed an alternative
approach (11). The idea is to equate the distances between appro-
priate harmonics of the pseudofundamental and the pair of fre-
quencies we wish to approximate. In this way the two approxima-
tions are equally good or bad. The problem can then be solved by
a generalization of the Farey sum. This approach enables the
hierarchical classification of a type of dynamical attractors found in
systems with three frequencies: three-frequency resonances [p, g, r].

A classification of three-frequency resonances allows us to pro-
pose how nature might encode an inharmonic complex tone into a
single pitch percept. The pitch of a complex tone corresponds to a
one-parameter categorization of sounds by a physical frequency
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Fig. 1. Stimuli: waveforms, Fourier spectra, and pitches. (a) A 1-kHz pure

tone; the pitch coincides with the frequency wo. (b) Complex tone formed by
200-Hz fundamental plus overtones; the pitch is at the frequency of the
fundamental wo. (c) After high-pass filtering of the previous tone to remove
the fundamental and the first few overtones, the pitch wp remains at the
frequency of the missing fundamental (dotted). (d) The result of frequency
modulation of a 1 kHz pure tone carrier by a 200-Hz pure tone modulant. (e)
Complex tone produced by amplitude modulation of a 1-kHz pure tone carrier
by a 200-Hz pure tone modulant; the pitch coincides with the difference
combination tone wo. (f) The result of shifting the partials of the previous tone
in frequency by Aw = 90 Hz; the pitch shifts by Awy ~ 20 Hz, although the
difference combination tone does not. (g) Schematic diagram of the fre-
quency line details (above the line) the pitch shift behavior of fand (below the
line) the three-frequency resonance we propose to explain it.

whose harmonics are good approximations to the partials of the
complex. This physical frequency is naturally generated as a uni-
versal response of a nonlinear dynamical system—the auditory
system, or some specialized subsystem of it—under the action of an
external force, namely the stimulus. Psychophysical experiments
with multicomponent stimuli suggest that the lowest-frequency
components are usually dominant in determining residue percep-
tion (6). Thus we represent the external force as a first approxi-
mation by the two lowest-frequency components of the stimulus.
For pitch shift experiments with small frequency detuning Aw, such
as those of Schouten et al, the vicinity of these two lowest
components w; = kwy + Awand o, = (k + 1)wy + Aw to successive
multiples of some missing fundamental ensures that (k + 1)/k is a
good rational approximation to their frequency ratio. Hence, we
concentrate on a small interval between the frequencies w;/k and
w/(k + 1) around the missing fundamental of the nonshifted case.
These frequencies correspond to the three-frequency resonances |0,
—1,k] and [—1, 0, k + 1]. We suppose that the residue should be
associated with the largest three-frequency resonance in this inter-
val: the daughter of these resonances, [—1, —1, 2k + 1]. If this
reasoning is correct, the three-frequency resonance formed be-
tween the two lowest-frequency components of the complex tone
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and the response frequency P = (w; + w2)/(2k + 1) gives rise to
the perceived residue pitch P.

Results

As we showed in earlier work (12), there is good agreement
between the pitch perceived in experiments and the three-
frequency resonance produced by the two lowest-frequency com-
ponents of the complex tone for intermediate harmonic numbers
3 = k = 8. For high and low k values there are systematic deviations
from these predictions. Such deviations, noted in pitch-perception
modeling, are explained by the dominance effect: there is a fre-
quency window of preferred stimulus components, so that not all
components are equally important in determining residue percep-
tion (13). To describe these slope deviations for high and low &
values within our approach, we must, instead of taking the lowest-
frequency components, use some effective k that depends on the
dominance effect. In this, we also take into account the presence of
difference combination tones, which provide some components
with ks not present in the original stimulus. In Fig. 2 we have
superimposed the predicted three-frequency resonances, including
the dominance effect, on published experimental pitch-shift data
(8, 14, 15). For stimuli consisting only of high-k components, the
window of the dominance region is almost empty, and difference
combination tones of lower k& can become more important than the
primary components in determining the pitch of the stimulus. The
result of this modification is a saturation of the slopes that correctly
describes the experimental data. A saturation of slopes can also be
seen in the experimental data for low values of k. This effect too can
be explained in terms of the dominance region. For a 200-Hz
stimulus spacing, the region is situated at about 800 Hz; this implies
that stimulus components with harmonic numbers # and n + 1,
other than the two lowest partials (i.e., n > k), become more
important for determining the three-frequency resonance that
provides the residue pitch. Again, incorporating this modification,
we can correctly predict the experimental data.

But for the more complex case of low-k stimuli, not only
quantitative, but also qualitative differences arise between the
two-lowest-component theory and experiment. The most interest-
ing feature seen in the data of Fig. 2 is a second series of pitch-shift
lines clustered around the pitch of 100 Hz. This too can be explained
within the framework of our ideas. Recall that for small frequency
detuning, the frequency ratio between adjacent stimulus compo-
nents, Aw, can be approximated by the quotient of two integers
differing by unity: w,/w; = (n + 1)/n. However, if we relax the small
detuning constraint, so that Aw becomes large, we can move to a
case where w;/w; can better be approximated by (n + 2)/(n + 1).
But, by the usual Farey sum operation between rational numbers,
we know that there exists between these two regions an interval in
which the frequency ratio can be better approximated by (2n +
3)/(2n + 1). In this interval, then, the main three-frequency
resonance is [—1, —1, 4n + 4], giving a response frequency P = (w;
+ w)/(4n + 4), which produces a pitch-shift line with slope 1/(2n
+ 2) around wy/2 = 100 Hz for the case analyzed. Of course, if
prefiltering produces a saturation of the slopes of the primary
pitch-shift lines, the same should occur for these secondary lines. In
Fig. 2 we show our predictions for the secondary lines taking into
account the dominance effect. The agreement, both qualitative and
quantitative, is impressive. Moreover, a small group of data points
indicates the existence of a further level of pitch-shift lines clustered
around 50 Hz in a region between a primary and a secondary
pitch-shift line. We can understand this level in the same way as
above, and we plot our prediction for its pitch-shift line in Fig. 2.
This hierarchical arrangement of the perception of pitch of complex
tones is entirely consistent with the universal devil’s staircase
structure that dynamical-systems theory predicts for the three-
frequency resonances in quasiperiodically forced dynamical sys-
tems. Further evidence comes from psychophysical experiments
with pure tones. These, presented under particular experimental
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Fig.2. Experimental data (red dots) from Gerson and Goldstein (14) and from Schouten et al. (8) (1200—-2200 Hz range) show pitch as a function of the lower

frequency f = kwo + Aw of a complex tone {kwg + Aw, (k + 1)wo + Aw, (k + 2)wo + Aw, . . .} with the partials spaced g = wp = 200 Hz apart. The data of Schouten
et al. are for three-component tones monotically presented (all of the stimulus entering one ear), and those of Gerson and Goldstein for four-component tones
dichotically presented (part of the stimulus entering one ear and the rest of the stimulus the other, controlateral, ear); the harmonic numbers of the partials
present in the stimuli are shown beside the data. The pitch-shift effect we predict from three-frequency resonance, taking into account the dominance region,
is shown superimposed on the data as solid lines given by the equations P= g + (f — n g)/(n + 1/2) (primary lines), P = g/2 + (f — (n + 1/2)g)/(2n + 2) (secondary
lines), and P = g/4 + (f — (n — 1/4)g)/(4n + 1) (tertiary line); the harmonic numbers of the partials used to calculate the pitch-shift lines are shown enclosed in
red squares. For primary lines these harmonic numbers correspond to n and n + 1, for secondary lines to 2n + 1 and 2n + 3, and for the tertiary line to 4n + 1
and 4n + 5. Ared circle, instead of a square, signifies that the component is not physically present in the stimulus, but corresponds to a combination tone. The
Inset corresponds to the slopes of the data averaged over the distinct experimental values plotted as a function of harmonic number. The blue squares are the
data of Gerson and Goldstein, the red squares are those of Schouten et al., and lastly, the blue circles are data of Patterson (15) for six- and twelve-component
tones, which are averaged over different experimental situations that represent several thousand points. The black diamonds correspond to our theory and show

that the data of Gerson and Goldstein and those of Patterson saturate for different values of k (the experimental conditions were different).

conditions, also elicit a residue sensation. The extremes of the
three-frequency staircase correspond to subharmonics of only one
external frequency, and thus these are the expected responses when
only one stimulus component is present. As the results of Houtgast
(16) show, these subharmonics are indeed perceived.

Discussion

A dynamical attractor can be studied by means of time or
frequency analysis. Both are common techniques in dynamical-
systems analysis, but one is not inherently more fundamental
than the other, nor are these the only two tools available. For this
reason, and because our reasoning makes no use of a particular
physiological implementation, our results cannot be included
directly either in the spectral (17) or the temporal (18) classes of
models of pitch perception. What we have proposed is not a
model, but a mathematical basis for the perception of pitch that
uses the universality of responses of dynamical systems to
address the question of why the auditory system should behave
as it does when confronted by stimuli consisting of complex
tones. Not all pitch perception phenomena are explicable in
terms of universality; nor should they be, because some will
depend on the specific details of the neural circuitry. However,
this is a powerful way of approaching the problem and is capable
of explaining many experimental data considered difficult to
understand. Future pitch models can surely incorporate these
results in their frameworks. Spectral models (17) can use these
ideas because they make consistent use of different kinds of
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harmonic templates, and three-frequency resonances offer in a
natural way optimized candidates for the base frequency of such
templates without the need to include stochastic terms. Tem-
poral models (18) can apply these results because they need some
kind of locking of neural spiking to the fine structure of the
stimulus, and three-frequency resonances are the natural exten-
sion of phase locking to the more complicated case of quasi-
periodic forcing that is typically related to the perception of
complex tones. A dynamical-systems viewpoint can then inte-
grate spectral and temporal hypotheses into a coherent unified
approach to pitch perception incorporating both sets of ideas.

We have shown that universal properties of dynamical re-
sponses in nonlinear systems are reflected in the pitch perception
of complex tones. In previous work (12), we argued that a
dynamical-systems approach backs up experimental evidence for
subcortical pitch processing in humans (19). The experimental
evidence is not conclusive: studies with monkeys have found that
raw spectral information is present in the primary auditory
cortex (20). However, whether this processing occurs in, or
before, the auditory cortex, the dynamical mechanism we en-
visage greatly facilitates processing of information into a single
percept. Pitch processing may then prove to be an example in
which universality in nonlinear dynamics can help to explain
complex experimental results in biology. The auditory system
possesses an astonishing capability for processing pitch-related
information in real time; what we have demonstrated here is
how, at a fundamental level, this can be so.
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Fig.3. Two-frequency devil's staircase. The rotation number, the frequency
ratio p = —p/r = war/w, is plotted against the period of the external force.

Appendix: Universality in Nonlinear Systems

Nonlinear systems exhibit universal responses under external
forcing:

Harmonics from Periodically Forced Passive Nonlinearities.

; [passive Wy
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A single frequency periodically forcing a passive (sometimes
termed static) nonlinearity generates higher harmonics (over-
tones) 2wy, 3wy, . . . of a fundamental wy, given by pw; + wy =
0 with p integer. This is seen in acoustics as harmonic distortion.

Combination Tones from Quasiperiodically Forced Passive Nonlineari-
ties.

w -
;’ passive ®c
—={nonlinearity|

0y &y W= 0 O W Ot ©;

A passive nonlinearity forced quasiperiodically by two sources
generates combination tones w; — ws, w; + ws, . . ., which are
solutions of the equation pw; + gw, + wc =0, where p and g are
integers. They are found as distortion products in acoustics.

Subharmonics, or Two-Frequency Resonances from Periodically
Forced Dynamical Systems.

| dynamical | @i
system
[N

@/320,/3 wy

With a periodically forced active nonlinearity—a dynamical-
system—more complex subharmonic responses w;/r, 2w /r, . . .,
(r — 1w /r known as mode lockings or two-frequency resonances
are generated. These are given by pw; + rw,gr = 0 when p and r are
integers. As some parameter is varied, different resonances are
found that remain stable over an interval. A classical representation
of this, known as the devil’s staircase, is shown in Fig. 3.

We see that the resonances are hierarchically arranged. The local
ordering can be described by the Farey sum: If two rational numbers
a/c and b/d satisty lad — bc| = 1 we say that they are unimodular
or adjacents and we can find between them a unique rational with
minimal denominator. This rational is called the mediant and
can be expressed as a Farey sum operation a/c © b/d = (a + b)/
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Fig.4. Three-frequency devil's staircase. Contrary to the case of periodically
driven systems, where plateaux represent periodic solutions, plateaux here
represent quasiperiodic solutions (only the third frequency is represented in
the ordinate). We have investigated these properties in three different sys-
tems: the quasiperiodic circle map, a system of coupled electronic oscillators,
and a set of ordinary nonlinear differential equations, with the same quali-
tative results (23) that confirm the theoretical predictions (11).

(¢ + d). The resonance characterized by the mediant is the widest
between those represented by the adjacents (21).

Three-Frequency Resonances from Quasiperiodically Forced Dynami-
cal Systems.
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Quasiperiodically forced dynamical systems show a great variety
of qualitative responses that fall into three main categories: there
are periodic attractors, quasiperiodic attractors, and chaotic
and nonchaotic strange attractors. Here we concentrate on
the three-frequency resonances produced by two-frequency
quasiperiodic attractors as the natural candidates for modeling
the residue (22). Three-frequency resonances are given by
the nontrivial solutions of the equation pw; + qw, + rwsg = 0,
where p, ¢, and r are integers, w; and w; are the forcing
frequencies, and wsr is the resonant response, and can be written
compactly in the form [p, ¢, r]. Combination tones are three-
frequency resonances of the restricted class [p, g, 1]. This is the
only type of response possible from a passive nonlinearity,
whereas a dynamical system such as a forced oscillator is an
active nonlinearity with at least one intrinsic frequency, and can
exhibit the full panoply of three-frequency resonances, which
include subharmonics of combination tones. Three-frequency
resonances obey hierarchical ordering properties very similar to
those governing two-frequency resonances in periodically forced
systems. In the interval (w2/p, w1/q), we may define a general-
ized Farey sum between any pair of adjacents as a1/c © a»/d =
(a1 + az)/(c + d). The daughter three-frequency resonance
characterized by the generalized mediant is the widest between
its parents characterized by the adjacents (50). Thus, three-
frequency resonances are ordered very similarly to their coun-
terparts in two-frequency systems, and form their own devil’s
staircase (Fig. 4).
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