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Transmission of Information and Herd Behavior: An Application to Financial Markets

Víctor M. Eguíluz,1,2,* and Martín G. Zimmermann1,3,†

1Instituto Mediterráneo de Estudios Avanzados IMEDEA‡ (CSIC-UIB), E-07071 Palma de Mallorca, Spain
2Center for Chaos and Turbulence Studies, The Niels Bohr Institute, Blegdamsvej 17, DK-2100 Copenhagen Ø, Denmark
3Departamento de Física, Facultad Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina

(Received 2 February 2000; revised manuscript received 17 July 2000)

We propose a model for stochastic formation of opinion clusters, modeled by an evolving network,
and herd behavior to account for the observed fat-tail distribution in returns of financial-price data. The
only parameter of the model is h, the rate of information dispersion per trade, which is a measure of
herding behavior. For h below a critical h� the system displays a power-law distribution of the returns
with exponential cutoff. However, for h . h� an increase in the probability of large returns is found and
may be associated with the occurrence of large crashes.
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Recently, there has been significant interest in applica-
tions of physical methods in social and economical sci-
ences [1]. In particular, the analysis of financial stock
market prices has been found to exhibit some universal
characteristics similar to those observed in physical sys-
tems with a large number of interacting units, and several
microscopic models have been developed to study them
[2–4]. For example, the distribution of the so-called re-
turns, i.e., the logarithmic change of the market price, has
been observed to present pronounced tails larger than in a
Gaussian distribution [2,3,5–7]. Several models have been
put forward which phenomenologically show the fat-tail
distributions. Among the more sophisticated approaches
are dynamic multiagent models [4,8] based on the in-
teraction of two distinct agent populations (“noisy” and
“fundamentalists” traders), which reproduces the desired
distributions, but fails to account for the origin of the uni-
versal behavior. An alternative approach, explored in this
Letter, is that herd behavior [9,10] may be sufficient to
induce the desired distributions. Herding assumes some
degree of coordination between a group of agents. This
coordination may arise in different ways, either because
agents share the same information or they follow the same
rumor. This approach has been recently formalized by
Cont and Bouchaud [11] as a static percolation model.

We present a model for opinion cluster formation and
information dispersal by agents in a network. As a first ap-
proach to model this complicated social behavior we con-
sider (i) a random dispersion of information, (ii) agents
sharing the same information form a group that makes de-
cisions as a whole (herding), and (iii) whenever a group
performs an action, the network necessarily adapts to this
change. We then apply the model to study the price dy-
namics in a financial market. Our results show that when
the information dispersion is much faster than trading ac-
tivity, the distribution of the number of agents sharing the
same information behaves as a power law. Using a linear
relationship for the price update in terms of the order size
[11,12], the price returns also exhibit this universal fea-
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ture (with a different exponent). On the other hand when
the dispersion of information becomes slower, a smooth
transition to truncated exponential tails is observed, with
a portion of the distribution remaining close to the power
law. In our approach the average connectivity c�t� of the
network is driven by the rumors in a dynamic way and pro-
vides an extension to the static percolation model proposed
by Cont and Bouchaud [11], where the average connectiv-
ity was a fixed external parameter. We find that the fat-tail
distributions are observed even when the time-average den-
sity c�t� is far from the critical threshold c� � 1 found in
Ref. [11].

The model.—We consider a system composed by N
agents, represented by vertices in a network. The state of
agent l is represented by fl � �0, 11, 21� corresponding
to an inactive state [waiting (fl � 0)] and two active states
[either buying (fl � 11) or selling (fl � 21)]. Agents
can be isolated or connected through links forming a clus-
ter, i.e., those who share the same information. Initially,
all agents are inactive (fl � 0, ; l) and isolated (i.e., no
links between them). The network of links evolves dynam-
ically in the following way: At each time step ti (1) an
agent j is selected at random, (2) with probability a, the
state of j becomes active by randomly choosing the state 1
or 21, and instantly all agents belonging to the same clus-
ter follow this same action by imitation. The aggregate
state of the system si � s�ti� �

P
l�1,N fl and the total

size of the cluster jsij are computed. After that the cluster
is broken up into isolated agents, removing all links inside
the cluster, and resetting their state fl � 0, ; l, and (3)
with probability �1 2 a�, the state of j remains inactive
(fj � 0) and, instead, a new link between agent j and
any other agents from the whole network is established.
This process is repeated from step (1).

The evolution of the system is characterized by a suc-
cession of discrete events s1, s2, . . . , which correspond to
avalanches, occurring instantly whenever an activation oc-
curs. Interspersed between these events, new links are in-
corporated into the network. A quantity relevant in bond
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percolation is the connectivity of the network, ci � c�ti�,
defined as the average number of links per agent, which
will grow as long as the agents remain inactive, or decay
when an avalanche occurs. Thus, we expect that the sys-
tem will reach an asymptotic regime where the connectiv-
ity fluctuates around a mean value, which increases as the
activation rate a decreases.

An application to price dynamics.—Consider now that
the above agents participate in a stock market. When
an agent becomes active, a buy (fj � 11) or a sell
(fj � 21) order is posted to an external centralized
market maker. When inactive (i.e., waiting), the agent
disperses an information unit represented by the random
addition of a link to the cluster. All the members in the
cluster share the same information; thus it constitutes a
group opinion or an information cluster. This process
includes the possibility of cluster merging, in which case
the information is shared among the new set.

Herding assumes that agents are not making decisions
independently, but that each agent acts as belonging to a
group that makes a collective action. In the above model
the herding behavior is represented by the instantaneous
imitation of an activated agent throughout the information
cluster. We notice also that the instantaneous imitation
process we apply above may also result when financial
agents all use similar tools for analysis (and similar know-
how). Also, we assume that after an activation event takes
place the information content of the cluster is no longer
useful, so all links in the cluster are removed after the order
has been placed.

The parameter a controls the rate of trading activity vs
information dispersion and appears as the only adjustable
parameter of the model. For a ! 1 only trading activity
takes place. Thus, starting with some randomly dispersed
links, the evolution of the market will asymptotically ap-
proach that of isolated agents trading in the market, without
large clusters and thus no herding behavior. On the other
hand, for small a ø 1, dispersion of information occurs
on most time steps, increasing the internal connectivity.
Initially the empty network has time to build many clusters,
which eventually merge into bigger clusters, until most
agents belong to a supercluster. When an order arrives,
this will most probably come from the agents in the super-
cluster, inducing a large impact on the market. Although
an extreme scenario, we can estimate that this should oc-
cur when a ø O�1�N�. From the above discussion we
can define the parameter h � 1�a 2 1 as the “herding pa-
rameter”: no herding occurs (h � 0) for a � 1, while
herding is observed (h . 0) for a , 1. Alternatively this
parameter also tells how many links are born between two
trade orders, i.e., the rate of information dispersion.

Finally we introduce the price index dynamics, exe-
cuted by an external centralized market maker. We fol-
low the simple update rule for the price index P discussed
in Ref. [12], which arises considering that each order acts
as an “impact” to the price proportional to the size of it.
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In our case, when activity takes place at step i, all agents
in the expiring cluster act simultaneously, so the size of
the order is jsij. Therefore we consider that P evolves as
P�ti11� � P�ti� exp�si�l�, where l is a parameter which
controls the size of the updates and provides a measure of
the liquidity of the market. With the above rule, the price
return R�ti� � ln�P�ti�� 2 ln�P�ti21�� is proportional to
the order size. Other nonlinear suggestions exist for the
price update [13], which will modify the exponents of
the distribution of returns. However, we stress that the
power-law features observed in this model persist with this
modification and are a consequence of the network growth
and annihilation of links.

We have performed numerical simulations for a popu-
lation of N � 104 agents and for different values of the
herding parameter. In the following simulations the time
unit has been rescaled to that of the average time to place
an order: t� � t�a. For example, a value of a � 0.01
(h � 99) corresponds to an average of a buy or sell order
every 100 iterations, or in other words the “market time” t�

of one unit will correspond in average to 99 agents dispers-
ing a rumor and one (buy or sell) order. Figure 1(a) dis-
plays a typical evolution of the market price P�t�, Fig. 1(b)
shows the corresponding returns R�t�, while the evolution
of the connectivity c�t� is shown in Fig. 1(c). The latter
panel displays the connectivity fluctuates around the time
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FIG. 1. (a) Time series of the typical evolution of the mar-
ket price P�t�, (b) the corresponding returns R�t� � lnP�t� 2
lnP�t 2 1�, and (c) the connectivity c�t�. The mean value of the
connectivity is 	c
 � 0.78 and the standard deviation s � 0.14.
Number of agents N � 104, h � 99 (a � 0.01) and liquidity
l � 5 3 104.
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average 	c
 � 0.78, with some fluctuations overshooting
the critical value c� � 1. The mean value of the connec-
tivity and its standard deviation increases with increasing
herding parameter h (decreasing a).

In Fig. 2 we show the distribution of returns for three
different herding parameters h � 2.33, 9, and 99 (a �
0.30, 0.10, and 0.01, respectively). The solid line shows
a power law R2a with exponent a � 1.5. Note that in
all cases one observes power law decay in a range of re-
turns. Moreover, for increasing h this range increases, up
to a critical value h� where we conjecture a power law
will be fitted on the whole range. For h , h� the distri-
butions display a continuous crossover to an exponential
cutoff, where the time average c�t� is far from c�. How-
ever, for h . h�, the time average c�t� lies very close to
the critical threshold c�, and the distribution changes quali-
tatively. A relative increase in the probability of extremely
high returns is observed, which would favor the creation of
“financial crashes.” We remark that this bump in the dis-
tribution has not been reported using financial time series,
but it is common in other physical systems [14]. In this
regime clusters of the system size are created and produce
the large returns.

The distribution of returns is related in this model to the
distribution of cluster. In fact, if b is the exponent for
the distribution of cluster sizes and a is the exponent for
the distribution of returns, then the distribution of returns
is equal to the distribution of cluster times the probability
to choose a given cluster that is proportional to its size:
prob�R� � R2a � ss2b . The exponents are related by
a � b 2 1. We plot in Fig. 3 the averaged distribution
of clusters. The solid line represents a power law with ex-
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FIG. 2. Log-log plot of the distribution (in arbitrary units) of
returns R (in arbritary units) for different herding parameters
h � 2.33, 9, 99 (equivalently a � 0.30, 0.10, 0.01). The solid
line shows a power law R2a with exponent a � 1.5. The total
time integration was of t� � 106 108 units.
ponent b � 2.5. This result agrees with the previous cal-
culation and with theoretical results on stationary random
graphs that predict an exponent of 5�2 at the critical point
[11]. Recently, this exponent was found by D’Hulst and
Rodgers [15] in a mean-field analysis of our model. They
also extended the model by allowing multiple rumors to
be dispersed at a single time step, finding the exponent is
robust.

In Fig. 4 we show a linear-log plot of the probability dis-
tribution of normalized returns, defined as �R 2 	R
��s

with the average return 	R
 (about 0) over the time series
and the volatility s � �	R2
 2 	R
2�1�2, for a � 0.01 and
different time intervals Dt � 1, 10, 100, 1000. With an in-
creasing time interval Dt, a crossover towards a Gaussian
distribution is observed from the figure, in agreement with
empirical financial data [7].

In summary, we have presented a self-organized model
for the propagation of information and the formation of
groups and we have applied it to the description of herd
behavior in a financial market. We suppose that the prop-
agation of information within the network follows a ran-
dom process, and the traders can be classified into groups
(clusters) having the same opinion. In our description the
size and number of clusters evolves in time reflecting the
information content of the market. This is controlled by
the herding parameter, which is a measure of the rate of
rumor dispersion. Our numerical calculations show that
for herding behavior below a critical value h , h�, herd-
ing produces qualitatively the same distributions observed
in empirical data: a power-law range and an exponential
cutoff. However, for a sufficiently high herding param-
eter h . h�, a qualitative change is observed, where the
probability of large crashes increases. We conclude that
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FIG. 3. Log-log plot of the averaged distribution of cluster
sizes jsj for h � 2.33, 9, 99 (a � 0.30, 0.10, 0.01). Solid line
shows a power law jsj2b with exponent b � 2.5, and for a total
time integration t� � 108 units.
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FIG. 4. Semilog plot of the distribution of the normalized re-
turns (R�s, where s is the standard deviation) for different time
intervals Dt � 1, 10, 100, and 1000. Parameter value h � 99
(a � 0.01). A crossover toward a Gaussian distribution is shown
with the increasing of time interval.

information dispersion and herding may be able to ac-
count for the occurrence of crashes. In our approach, we
propose a mechanism for the fluctuation of the connectiv-
ity of the network in contrast with fixed [11] or random
“sweeping” of the connectivity in other percolationlike
models [11,16]. More elaborate mechanisms for the ac-
tivation of the agents, for opinion conflicts when two clus-
ters merge, and feedback between the price index and the
activation should be incorporated in the model to make it
more realistic. Slight modifications of the model could be
applied to study, for example, social systems of opinion
formation.
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