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In this contribution we report on a transition to high-dimensional chaos through three-frequency

quasiperiodic behavior.

The resulting chaotic attractor has a one positive and two null

Lyapunov exponents. The transition occurs at the point at which two symmetry related three-
dimensional tori merge in a crisis-like bifurcation. The route can be summarized as: 2D torus
— 3D torus — high-dimensional chaotic attractor.

Nonlinear dynamical systems with chaotic behav-
ior exhibit a number of well characterized routes
to chaotic behavior [Ott, 1993; Bergé et al., 1986].
These routes present universal properties, allowing
to classify nonlinear systems in universality classes
formed by systems with completely different micro-
scopic interactions. A lot of effort has been devoted
to study transitions to chaos through quasiperi-
odic motion, starting with the pioneering work
of Ruelle and Takens [Ruelle & Takens, 1971;
Newhouse et al., 1978]. So far, many workers
have studied the transition from two-frequency
quasiperiodic behavior to low-dimensional (d < 3)
chaotic behavior (where the dimension d is usually
taken as some representative of the dimension spec-
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trum D, [Ott, 1993], typically the capacity dimen-
sion, Dy, the information dimension, D1, or the cor-
relation dimension, Do, that for typical situations
are found not to differ much among them; in this
study we have chosen to work with D;). This tran-
sition to chaotic behavior usually proceeds through
the interaction of resonances (mode-locking), that
lead to a wrinkling or corrugation of the torus, and
ultimately to a strange attractor [Curry & Yorke,
1977]. Much light on the quantitative and universal
features of this transitions has been gained through
studies on the simplified circle map [Feigenbaum
et al., 1982]. However, it has been shown that 2D-
tori can lead to a strange attractor without mode-
locked states [Moon, 1997].
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The situation is not so clear regarding the tran-
sition to chaos mediated by three-dimensional tori
(the very existence of these attractors appears un-
likely in the light of the Newhouse-Ruelle-Takens
(NRT) Theorem [Newhouse et al., 1978]). How-
ever, both experiments [Gollub & Benson, 1980;
Linsay & Cummings, 1989; Alaggio & Rega, 2000]
and numerical studies [Grebogi et al., 1983a, 1985;
Battelino, 1988] give support to the existence of
these attractors, although the apparent departure
from the NRT Theorem is unclear at this level.
Some further light has been shed on this topic
after the work of Feudel et al. [Feudel et al., 1993,
Anishchenko et al., 1994; Feudel et al., 1996], who
have presented convincing arguments on the stabil-
ity of these 3D-tori on systems with certain types
of symmetries. The rationale behind the stability of
these attractors is the fact that the perturbations
that affect these attractors are not generic due to
the symmetry of the system (NRT Theorem says
that three-dimensional tori are unstable when sub-
jected to certain generic perturbations).

Not much is known regarding the possibil-
ity of direct transitions to chaotic behavior from
a three-dimensional torus. Omne of the reported
routes that involves a 3D-torus is: 2D-Torus — 3D-
Torus — 2D-Torus — Chaos [Feudel et al., 1993;
Anishchenko et al., 1994; Feudel et al., 1996; Yang,
2000]. On the other hand, a recent study reports
a gluing bifurcation of two 3D-tori to another
(nonchaotic) 3D-torus [Lopez & Marques, 2000;
Marques et al., 2001].

The aim of the present paper is to describe the
direct transition from two symmetry related 3D-tori
to a high-dimensional chaotic attractor in a realis-
tic system corresponding to three coupled Lorenz
oscillators. One of the features of this system is
that it is autonomous, i.e. all the frequencies that
appear are created by the system dynamics. This
attractor has one positive, and two null Lyapunov
exponents, and, thus, its information dimension D1
is larger than three, although the attractor is not
hyperchaotic. The information dimension, D1, has
been estimated according to Kaplan—Yorke conjec-
ture [Kaplan & Yorke, 1979; Ott, 1983 from the
knowledge of the Lyapunov spectrum. In our case,
in the chaotic region in Fig. 2 the sum of the four
largest exponents is positive, while the sum of the
largest five is negative, implying that Dy > 4. This
does not imply that the whole dimension spectrum
obeys D, > 4 for any g, but one can argue that
D, > 3 for any ¢, as there are three degrees of

freedom with a non negative Lyapunov exponent,
that need, at least, three dimensions to be spanned,
while one of these degrees of freedom induces frac-
talization. As this type of attractor has not been so
far reported in many studies we call it from now on
high-dimensional chaotic attractor (following also
[Yang, 2000]). In previous studies this attractor was
reported in rings of unidirectionally coupled Chua’s
oscillators [Matias et al., 1997; Sénchez et al., 2000],
and then also in rings of Lorenz oscillators [Sanchez
& Matias, 1999], that is the setting studied in the
present work. As shown in the previous studies, the
extra null Lyapunov exponent is created in a sym-
metric Hopf bifurcation that takes place because of
the invariance of the ring under the cyclic group Z,
[Collins & Stewart, 1994]. This rotational degree
of freedom, involving a spatio-temporal symmetry
in the array, corresponds to a simultaneous shift
to a neighboring oscillator and advance in time by
a period divided by N, is conserved in the region
under study in this contribution, and this leads to
the third frequency in the torus and to the high-
dimensionality of the chaotic attractor. Thus, and
following the previous discussion on the validity of
the NRT Theorem in this case, this spatio-temporal
symmetry allows to have a stable T attractor over
a finite parameter range.

Now we pass to discuss in more detail this tran-
sition. The 3N-dimensional system considered in
this study can be written as,

Zj = o(y; — z;)
yj = Rzj —y; — 252

Zj :xjyj —ij

j=1,...,N, (1)

xj = x;_1 for j # 1, introduces the coupling and the
(periodic) boundary conditions entering through
r1 = xn. The results presented correspond to the
case N = 3 (the dimension of the dynamical system
is, then, 9), and the parameters for the Lorenz sys-
tem are the same as in [Sanchez & Matias, 1999,
ie. 0 = 20, b = 3, while R € [35, 35.4]. The
system (1) has been chosen because a hardware
implementation of three coupled Lorenz systems fol-
lowing this prescription is available (it is described
in [Sanchez & Matias, 1998, 1999)).

In the previous (experimental) study [Sanchez
& Matias, 1999], it was already shown that there
is a route to chaos through quasiperiodic behav-
ior, although the transition was not resolved with
sufficient details to show the presence of three-
frequency quasiperiodicity. This is due to the fact
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Fig. 1. Representation of the four largest Lyapunov exponents (A) of the system (1) with o = 20 and b = 3 as R is varied

in the range shown in abscissae. The inset shows a blowup in which the three-frequency torus can be clearly seen. Symbols
correspond to Lyapunov exponents as follows: A1, A; A2, -5 Az, O; A4, U; with Aj > Ajta1.

that the third frequency has a much slower time
scale than the others, which is a problem with the
number of points that the oscilloscope uses. In ad-
dition, this region is relatively difficult to locate in
parameter space. Figure 1 contains a representation
of the four largest Lyapunov exponents for the nine-
dimensional dynamical system (1). In particular,
the inset illustrates the region with three-frequency
quasiperiodic behavior. The quantitative charac-
terization of these exponents is made quite difficult
due to the fact that there are very long chaotic tran-
sients. Thus, for a time ¢ = 10° time units the
dynamical system is left to evolve, and then the
Lyapunov exponents are calculated during a time
of the order of t = 10° t.u. This allows to resolve
unambiguously the exponents, showing that there
are three null Lyapunov exponents, the fourth being
slightly negative (for shorter calculation times the
fourth exponent is of the order of the other three).

The exponents have been calculated by extending
the procedure of [Wolf et al., 1985].

The best way of displaying the three-frequency
quasiperiodic attractor is by reducing its dimension-
ality with the use of the Poincaré section technique
[Hénon, 1982]. The Poincaré sections of the two-
and three-frequency quasiperiodic attractors of the
system are presented in Fig. 2. As expected, the di-
mensionality of these attractors is reduced and one
sees a limit cycle and a two-frequency quasiperiodic
attractor, respectively. Due to the symmetry of the
problem, a representation in terms of the spatial
(discrete) Fourier modes [Matias et al., 1997] has
been found more adequate. The definition of these
modes is the following,

1 N
X, = sz:lxjexp

(2)

{271'2'(]'N— 1)/{}
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Fig. 2.
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Plot of a Poincaré cross-section for the system (1) with o = 20 and b = 3: (a) R = 35.1, for which the system exhibits

two-frequency quasiperiodic behavior (one-frequency periodic in the Poincaré section); (b) R = 35.095, for which the system
exhibits three-frequency quasiperiodic behavior (two-frequency quasiperiodic in the Poincaré section). The representation
has been carried out by using the (complex) mode representation of the system (2), and the three axes correspond to the z
coordinate and are the uniform (k = 0) mode, and the real and imaginary parts of the k = 1 mode. The Poincaré cross-section

has been defined by the condition: Zo = 34 ~ R — 1 with Zo > 0.

with N = 3, where ¢ is the imaginary unit, and
where X and x represent the (z, y, z) coordinates
as a vector for the modes and the original coordi-
nate representations, respectively.

A feature of the reported transition from two
symmetry-related three-frequency quasiperiodic at-
tractors to a high-dimensional chaotic attractor is
the presence, at the chaotic and quasiperiodic sides
of the transition, of laminar bursts and chaotic tran-
sients, respectively, that indicates that the transi-
tion has intermittent features. This can be seen for
the chaotic side of the transition from Fig. 3, in
which a time series is reported for R = 34.093 <
R. ~ 34.093(8). The laminar bursts correspond
to a long residence time on each side of the at-
tractor: chaos is introduced by the jump to the
other side. Although it appears that this type of

attractor-merging transition has not been reported
so far, it has some attributes of a crisis [Grebogi
et al., 1982, 1983b], although in this case at one
of the sides of the transition the attractors are peri-
odic. On the other hand, Lopez and Marques [2000]
have recently reported the merging of two sym-
metry related three-frequency quasiperiodic attrac-
tors, but this yields a nonchaotic (quasiperiodic)
attractor. Up to this point it is not clear the mech-
anism that creates the high-dimensional chaotic
attractor. The idea of a crisis-like mechanism is
supported by the fact that the 3D-tori enlarge their
size as R is decreased. One can speculate that
this mechanism implies the simultaneous collision
of both (symmetry related) 3D-tori with the (un-
stable) chaotic invariant manifold corresponding to
the uniform mode or a homoclinic (or heteroclinic)
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Fig. 3.

(a) Time series, variable x in one of the oscillators versus time for o = 20, b = 3 and R = 35.093. The system is

already in the chaotic region, but exhibits long bursts of laminar behavior, corresponding to the three-frequency quasiperiodic
behavior. (b) Time series, variable = in the three oscillators, i.e. z1, 2, and z3 (solid, dotted and dashed lines respectively)
versus time (for a short time interval) for the same parameters, showing the laminar character of one of the bursts.

connection. The detailed mechanism is still under
investigation.

In conclusion, in this work we have reported
a direct transition from three-frequency quasiperi-
odic behavior to high-dimensional chaotic behav-
ior (d > 3) with a single positive and two null
Lyapunov exponents. The system studied is au-
tonomous, which implies that all the frequencies
are generated by physical mechanisms, and there
exists an experimental counterpart [Sdnchez &
Matias, 1998, 1999], and an experimental study of
the phenomena studied here is underway [Sdnchez
et al., 2001]. The transition does not involve any
kind of frequency locking and interaction of reso-
nances. Instead, it involves the (crisis-like) merging
of two symmetry-related three-frequency quasiperi-
odic attractors with intermittent features and long
transients at both sides of R..

The present work illustrates a novel route
to (high-dimensional) chaos through the route:

2D-torus — 3D-torus — high-dim. chaos. Other
routes to chaos recently reported in the literature,
like those in [Moon, 1997; Yang, 2000] involve a
two-frequency quasiperiodic attractor, while [Lopez
& Marques, 2000] deals with the transition from
three-frequency quasiperiodic behavior to a non-
chaotic attractor. Probably, the fact that this type
of unusual transition occurs in this system is due to
both the dimensionality of the system, nine, and its
degree of symmetry (rotations that permutate the
oscillators).
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