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We describe the qualitative dynamics and bifurcation set for a laser with injected signal for
small cavity detunings. The main organizing center is the Hopf-saddle-node bifurcation from
where a secondary Hopf bifurcation of a periodic orbit originates. We show that the laser’s
stable cw solution existing for low injections, also suffers a secondary Hopf bifurcation. The
resonance structure of both tori interact, and homoclinic orbits to the “off” state are found
inside each Arnold tongue. The accumulation of all the above resonances towards the Hopf-
saddle-node singularity points to the occurrence of a highly degenerate global bifurcation at
the codimension-2 point.

1. Introduction

The control of a laser via an injected coherent sig-
nal is an important area of research with a great
variety of applications. Experiments with this spe-
cial arrangement have been performed leading to
different kinds of solutions (locked lasers, pulses,
etc.) [Simpson et al., 1997]. The behavior of the
system can be qualitatively different depending on
the choice of parameters: numerical experiments in
three-dimensional models of lasers with injected sig-
nal (LIS), revealed different “routes to chaos” in
different parameter regions [Tredicce et al., 1985;
Solari & Oppo 1994; Wieczorek et al., 2000].

A good theoretical understanding of the un-
derlying mechanisms governing the great variety of
possible behaviors was required. An early attempt
in this direction, [Solari & Oppo, 1994] aimed to

approximate the three-dimensional rate equations
for a class B laser in the vicinity of the parameter
region where this system becomes a Hamiltonian
system, by a more tractable two-dimensional aver-
aged system [Guckenheimer & Holmes, 1983]. A
detailed study of the invariant sets revealed that at
the heart of this nonlinear system, the Hopf-saddle-
node (HSN) bifurcation played as an organizing
center.

In more mathematical terms, this local bifurca-
tion arises when the linearization of the vector field
has a degenerate fixed point with two purely imagi-
nary and a simple zero eigenvalue. The unfolding of
this bifurcation requires two parameters (the ampli-
tude injection rate β and the injected signal detun-
ing η), and four different variants known as Type
(I–IV) have been studied [Guckenheimer & Holmes,
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1983; Wiggins, 1991]; minimally all of these Types
display curves of saddle-node and Hopf bifurcations
of fixed points in parameter space, which are tan-
gent at one point. For increasing cavity detuning
θ > 0 [Solari & Oppo, 1994] found that Types II, I
and III may be visited (in that order).

The interest in a physical (and testable) ap-
plication displaying the above qualitative changes
close to the Hopf-saddle-node bifurcation, is not
restricted to the determination of the well-known
invariant sets which result from normal-form
analysis (saddle-node, primary and secondary Hopf
bifurcations). Global behavior not present in the
usual unfolding of HSN singularity has recently
been studied as a primary source for chaotic be-
havior in LIS.

For example, in the large cavity detun-
ing regime (corresponding to Type III of HSN)
[Zimmermann et al., 1997] showed the occurrence
of Shilnikov homoclinic orbits [S̆hil’nikov, 1965] to
either saddle-focus fixed points (locked solutions).
Further, as the detuning is decreased the transition
from Type III to Type I showed that the homo-
clinic orbits to a fixed point, turns at the critical θ
where the HSN Type changes to a homoclinic tan-
gency to the periodic orbit of HSN [Zimmermann
et al., 2001]. This novel behavior opens the possi-
bility that this physical system may become an ideal
test-bench for new global bifurcation scenarios.

The present work completes the above series
of studies of bifurcations of the laser with injected
signal in the neighborhood of the HSN singular-
ity. We numerically analyze the weak cavity de-
tuning regime for a fixed value θ = 0.5 (in adequate
units), where Type II HSN is expected. The small-
detuning case is particularly relevant for applica-
tions, since a natural ambition when constructing
laser cavities is to obtain low detunings. Long-time
behavior depending on the amplitude and the fre-
quency shift of the applied signal is studied. The
main bifurcation structure consists of a (secondary)
Hopf bifurcation on the periodic orbit associated to
the HSN bifurcation. We have analyzed in detail
the resonance structure which reveals a rich interac-
tion with other bifurcations not present in the usual
HSN scenario. We find that the Arnold tongues
are truncated by another (secondary) Hopf bifur-
cations of periodic orbits. These in turn are born
in an Andronov global bifurcation at the saddle-
node of fixed points (saddle-node infinite period bi-
furcation) [Kuznetsov, 1997]. Another particular

behavior is that inside the Arnold tongues we also
find homoclinic bifurcations to a saddle fixed point
corresponding to the off-state of the laser. Finally
we show how the Arnold tongues of increasing wind-
ing number, with all its associated bifurcations,
accumulate towards the Hopf-saddle-node bifurca-
tion point.

In the previous studies on the global bifurca-
tions in LIS, a combination of the HSN singular-
ity together with a global reinjection resulted in a
proper framework for understanding the laser dy-
namics. However, in Type II we find a new possi-
ble complication which involves a heteroclinic cycle
with the off-state. This will be left as a conjecture
and discussed in Sec. 5.

The paper is organized as follows. In the next
section we review the representative equations for
LIS, together with the unfolding of the HSN bifurca-
tion. In Sec. 3, the resonance structure is described,
while Sec. 4 discusses the Andronov global bifurca-
tion occurring in this laser, and its interaction with
other bifurcations. Finally, a global outlook and
discussion is given in Sec. 5.

2. Equations for the Laser with
Injected Signal

The model for a laser system is given in terms of
the Maxwell–Bloch equations. In a great variety of
lasers, the decay times associated with the popu-
lation inversion and the electric field have different
time scales, allowing for the adiabatic elimination
of the fast decaying polarization variable (class B)
[Solari & Oppo, 1994]. The rate equations in a ref-
erence frame rotating with the injected signal may
be written as

dE

dt
= EW + i(θW + η)E + β ,

dW

dt
= A2 − χW (1 + g|E|2)− |E|2 ,

(1)

where E is the complex envelope of the electric field
and W is proportional to the population inversion.
θ represents the detuning between the atomic and
the nearest eigenfrequency of the cavity, A is pro-
portional to the amount of pumped atoms, χ ≥ 0 is
proportional to the decay time of the population in-
version and g is inversely proportional to 1+θ2. η is
the detuning of the perturbation frequency and the
unperturbed laser operating frequency and β ≥ 0 is
the intensity of the injected signal. The relationship
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between the parameters used in this model and the
parameters in the Maxwell–Bloch equations can be
found in [Solari & Oppo, 1994]. The model can be
justified for small signal intensity ratio, β/A2 � 1,
and it has been argued that it can be successfully
applied beyond this limit [Oppo et al., 1986]. Our
present study centers in this limit and in some cases
we have explored a region beyond this limit in order
to understand the fate of some invariant sets.

Solari and Oppo [1994] performed a reduction
of the three-dimensional model by averaging over
the fast relaxation oscillation motion, reducing the
dynamics to a two-dimensional system. In this
way, the difficulty of finding analytic expressions for
most of the local bifurcations is simplified. A close
analysis of the singularities of this model, reveals
that the system organizes around the codimension-
2 Hopf-saddle-node (HSN) local bifurcation. One
finds that after a suitable change of coordinates
one may arrive to its normal form representation
[Guckenheimer & Holmes, 1983]:

r′ = (µ+ az)r +O(3) ,

z′ = ν + br2 − z2 +O(3) ,

ζ ′ = ω0 + az +O(2) ,

(2)

where a, b, ω0 6= 0 and µ and ν are the bifurcation
parameters, all functions of the laser parameters.
The signs of a and b classify different types of flows:
Type I for (a > 0, b > 0), Type II for (a < 0, b > 0),
Type III for (a > 0, b < 0), Type IV for (a < 0,
b < 0).

One of the main achievements of the Solari and
Oppo average model is that they have established
that the actual laser with injected signal operation
is controlled by the cavity detuning parameter θ in
the following way:

Type II : 0 < θ < 1 ,

Type I : 1 < θ <
√

3 ,

Type III :
√

3 < θ .

We refer the reader to [Zimmermann et al., 2001]
for a detailed account of the normal form compu-
tations for the three-dimensional LIS equations (1),
where the above results are validated up to order
O(χ2), for

a(θ) = (1 + gA2)
(θ2 − 1)

4θ
χ+O(χ2) ,

b(θ) = −(1 + gA2)
(1 + θ2)(θ2 − 3)

8θ
χ+O(χ2) ,

ω0 =
√

2A+O(χ2) .

(3)

In terms of the laser parameters we find from [Solari
& Oppo, 1994]:

µ(β, η) = θ

(
2

1 + θ2
− χ

βθ
√

1 + θ2

)
,

ν(β, η) = 2

(
β
√

1 + θ2 + η

β(1 + θ2)

)
.

(4)

The main characteristics of each Type of flow
may be summarized as follows. A saddle-node bi-
furcation occurs for ν = νsn = 0, where a pair
of saddle-focus fixed points are born at (r, z) =
(±
√
ν, 0). These fixed points may as well bifurcate

in a Hopf bifurcation along a parabola in parame-
ter space, ν = νHopf = µ2/a2. The periodic orbit
will be at zHopf = −µ/a and its radius is given by
r2

Hopf = (µ2/a2 − ν)/b. The main differences be-
tween Types I–III, lies in the region of existence
and stability of the periodic orbit. In Type III the
periodic orbit always coexists with the fixed points
(ν > µ2/a2 > 0), while in Type I the periodic or-
bit exists before the creation of the fixed points (for
ν < 0, rHopf > 0). Type II is similar to Type I, but
the stability of the periodic orbit may change. A
degenerate (secondary) Hopf bifurcation occurs on
the semiaxis µ = 0, ν < 0, where the periodic orbit
becomes a center.

Addition of appropriate third-order terms to
the normal form (2), in general breaks this degen-
eracy and results in a bifurcation to a torus. The
fate of the torus will depend on the perturbation
applied to (2) and results concerning this Type are
unknown. Kirk [1991] has analyzed these kind of
perturbations for Type III, where the secondary
Hopf bifurcation occurs in the semiaxis µ = 0,
ν > 0, coexisting with the fixed points. In her anal-
ysis she found that the torus breaks-up in Arnold
tongues [Arnold, 1983], which in turn end up as
resonances of another secondary Hopf bifurcation.
Below a similar scenario will hold.

In the present work we will investigate the
small detuning regime 0 < θ < 1 corresponding
to Type II. In terms of bifurcations and periodic
orbit organization, the most prominent feature is
the (secondary) Hopf bifurcation of periodic orbits
associated to the HSN singularity. This will be one
of our main objects of study, where we will dis-
cuss the interaction of its resonances with other bi-
furcations not present in the (local) normal-form
analysis.
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3. Bifurcation Set for Small Detuning

We have integrated numerically Eqs. (1) with fixed
parameters A = 1, χ = 0.3 and g = 0.1 Most
computations were done with the AUTO97 [Doedel
et al., 1997] continuation package, in the parameters
(β, η) and 0 < θ = 0.5 < 1. In general, the locus
in parameter space of a particular bifurcation will
be presented as points, representing the actual com-
putation performed. To guide the reader we have
selected different colors for each type of bifurcation.

Given the complexity of the full bifurcation set
found, we will introduce in steps the different invari-
ant sets and their bifurcations. Impatient readers
may refer to Fig. 19 for the full bifurcation set dis-
cussed in this paper.

3.1. Invariant sets close to the
Hopf-saddle-node bifurcation

We begin our numeric exploration with the locus
of the saddle-node, Hopf and Hopf-saddle-node bi-
furcations of fixed points. These may be explicitly
computed, with the relevant equations being:

1. The fixed point equation may be reduced to,

(1 + θ2)Y 3 − 2[A2(1 + θ2) + χηθ]Y 2

+ [A4(1 + θ2) + 2A2χηθ + χ2η2]Y

−χ2β2 = 0 , (5)

a cubic polynomial in Y = |E|2.
2. The saddle-node condition, i.e. when one of the

eigenvalues of the Jacobian is zero:

3(1 + θ2)Y 2 − 4[A2(1 + θ2) + χηθ]Y

+A4(1 + θ2) + 2A2χηθ + χ2η2 = 0 . (6)

3. The Hopf condition (i.e. when two (complex con-
jugated) eigenvalues of the Jacobian are pure
imaginary) reads:

(1 + θ2)Y 3− [3A2(1 + θ2) + χ2(θ2− 3)

+ 2ηχθ]Y 2+ [3A4(1 + θ2) +A2[(θ2− 5)χ2

+ 4ηχθ]+ 2χ4+ θχ3η + η2χ2]Y − [(1+ θ2)A6

+ 2A4(ηχθ − χ2) +A2(η2χ2+ χ4)] = 0 . (7)

The fixed point equation reveals that there are
regions of one or three fixed points, separated by
saddle-node bifurcations. The simultaneous solu-
tion of (5) and (6) (the fixed point equation will
then have a double root) gives the locus of the
saddle-node curve, while solution of (5) with (7)
gives the locus of the Hopf curve. When all three
equations are simultaneously satisfied there is a
tangency point where the Hopf-saddle-node occurs
[Zimmermann et al., 2001],

ηhsn(θ) = −(1 + θ2)

2θ

(
1− 1

4θ2A2
χ2
)
χ+O(χ)4 ,

βhsn(θ) =
A
√

1 + θ2

2θ

(
1− (1 + θ2)

4θ2A2
χ2

)
χ+O(χ)4 .

(8)

A typical bifurcation set displaying these bifur-
cations is shown in Fig. 1. Inside the “triangle”
shaped region, three fixed points exists, while out-
side this region only one fixed point remains. Let
us label the fixed points in region 1 as: A stable,
B unstable and C saddle. A pair of the above
fixed points are annihilated crossing the sides of
the triangle: moving into region 4, B and C col-
lide, while entering region 6 or (3, 3′), A and B
annihilates leaving in these regions only the fixed
point C.2 In physical terms, locking behavior (out-
put frequency tuned to that of the injected signal)
occurs whenever the laser is operated in either re-
gions (1, 4, 5), where a stable fixed point exists. On
the other hand, fixed point C exists in all regions
except 4 in Fig. 1 and is approximately situated in
(|E|, W ) ≈ (0, A2/χ) for β � 1, which corresponds
to the laser-off state. In all regions of interest it is
a saddle fixed point.

The (primary) Hopf bifurcation occurs on
either fixed point A or B, creating a peri-
odic orbit transversal to the W = 0 plane,
which will be referred to as T in what fol-
lows. This orbit corresponds to the undamped
relaxation oscillation [van Tartwijk & Lenstra,
1995], whose main characteristic is that the
phase of the electric field remains bounded. A
closed circuit in parameter space around the
HSN point reveals that moving from region 1 to

1In real lasers g ε[0, 1]. However, the qualitative features of the bifurcations around the HSN bifurcation will not change if
g is kept small. In [Zimmermann et al., 2001] it is found to slightly modify the second-order coefficients in the HSN normal
form.
2Notice that choosing a path far out from the “triangle” shaped region, we have to identify fixed point C in regions (6, 3, 3′)
with fixed point A in region 4.
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Fig. 1. Numerical bifurcation set in parameters (β, η) for Type II. Red line: saddle-node of fixed points (SN FP). Blue
line: Hopf bifurcation of fixed points (HOPF FP). The secondary Hopf bifurcation of transversal periodic orbits (HOPF T)
separates regions 3 and 3′.

region 5, the unstable node B becomes a saddle
and creates an unstable T orbit. This orbit exists
up to region 3, where it suffers a (secondary) Hopf
bifurcation when crossing to region 3′, creating an
unstable transversal torus. The remaining stable
T periodic orbit continues to exist up to region 2,
when it dies in a (primary) Hopf bifurcation with
fixed point A.

To complete the main invariant sets present in
regions 3 and 3′, we have to include another peri-
odic orbit. For sufficiently small β we find from (1)
that for W ≈ 0, |E| ≈ A and the phase arg(E(t)) =
ηt, which corresponds to the cw (continuous-wave)
laser solution [van Tartwijk & Lenstra, 1995] with
an unbounded electric field phase. As this orbit
lies approximately coplanar to the W = 0 plane,
it will be referred to as L, the longitudinal orbit.
For sufficiently small (η, β), this orbit can be eas-
ily shown to be stable. However we find that the
period of L diverges at the saddle-node bifurcation
of fixed points where the orbit disappears. This
global bifurcation is known as Andronov or saddle-
node infinite-period bifurcation [Kuznetsov, 1997],
and will be addressed in more detail in Sec. 4. We
remark that the stability of L close to the Andronov

bifurcation depends on the stability of the saddle-
node fixed point, thus on which side of the HSN
point one is: in region 3′ the orbit is unstable, while
in region 3 it is stable. From this, it is clear that at
least a local bifurcation to L is required. Below we
will show that a new secondary Hopf bifurcation on
L occurs inside region 3′.

In summary, we find that fixed points A and B
together with the transversal periodic orbit T cor-
respond to the Type II Hopf-saddle-node scenario
proposed by the normal-form analysis in the previ-
ous section. The periodic orbit L is also an integral
part of the bifurcation set in LIS, and we will show
in the next section how the interaction of bifurca-
tions between these two periodic orbits organize the
resonance structure.

3.2. Bifurcations of transversal
periodic orbits

We begin with a general observation for the exis-
tence boundary of transversal T orbit born at the
Hopf bifurcation of fixed points. For a fixed value of
η, we find for the continuation of this orbit for de-
creasing β, its period diverges at a critical β ≈ 0.05,
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Fig. 2. Partial numerical bifurcation set showing the homoclinic to C fixed point and the first resonances of the transversal
secondary Hopf bifurcation. Saddle-node bifurcation of transversal periodic orbits (SN T ) and period doubling bifurcation of
transversal periodic orbits (PD T ) are indicated.

(a) (b)

Fig. 3. Phase portrait in (Er = Re(E), Ei = Im(E)) of periodic orbits in the neighborhood of the (secondary) Hopf bifurcation
of T . Solid lines: stable orbits, dot lines: unstable trajectories. η = −1. (a) β = 0.24, (b) β = 0.28. The torus created is an
unstable one.
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for an interval of η close to 0, where a homoclinic
orbit to fixed point C occurs. Figure 2 shows the
locus of this global bifurcation in parameter space,
while Fig. 8 shows the typical period versus β be-
havior. This bifurcation is found not to depend on
θ, and was found up to Type III regime. We leave
for Sec. 4 the discussion of how this bifurcation is
related to the Andronov bifurcation producing L.

In Fig. 3(a) we display the main invariant sets
for the parameter region bounded by the homoclinic
to C and the secondary Hopf bifurcation. We have
the stable longitudinal orbit L (which lies approx-
imately on |E| ≈ A = 1, W ≈ 0), together with
the unstable transversal orbit T . This orbit has a
large variation in the inversion population W , and
a bounded electric field phase (the phase does not
make a complete turn as L does). Crossing the
secondary Hopf bifurcation T and entering region
3′, we find that T becomes stable and an unsta-
ble invariant torus is created. Figure 3(b) shows
the invariant sets, where only the intersections of
the quasiperiodic orbit with the W = 0 plane are
shown. A time series of the intensity |E|2 on this
solution is shown in Fig. 4.

It is well known that in generic systems,
quasiperiodic motion may suffer resonance phenom-
ena. Local analysis [Arnold, 1983] around the
Hopf bifurcation reveals that whenever the ratio
of the two competing frequencies is rational, the
quasiperiodic motion may disappear and periodic
orbits arise. These orbits may be classified by an in-
teger number of p turns following the primary or bi-
furcating orbit (T in this case), and another integer

Fig. 4. Intensity (|E|2) versus time for the unstable
transversal torus created in the Hopf bifurcation of T pe-
riodic orbits. η = −1, β = 0.28.

number q which denotes the number of turns made
around the primary orbit, before closing on itself.
Precisely on the (secondary) Hopf bifurcation the
nontrivial Floquet multipliers are on the unit circle
at e±i2πp/q. A general result shows that in the weak
resonances case q > 4 these periodic orbits are born
in saddle-node pairs, and in a two-parameter space
they trace a “tongue” (known as Arnold tongue)
with the tip lying on the (secondary) Hopf bi-
furcation. In phase space the periodic orbits are
phase locked solutions on the torus. On the other
hand the case q ≤ 4 are known as strong reso-
nances and do not correspond to “strict” Arnold
tongues. A detailed account of the unfoldings of
each strong resonance may be found in [Kuznetsov,
1997].

In Fig. 5 we display the resonance structure for
1/q, q = 1, . . . , 12, where the saddle-node of the
resonant periodic orbits have been continued in pa-
rameter space. Of course in general one expects a
countable number of tongues, one for each ratio-
nal p/q. We will show below the location of other
resonances with p 6= 1. We find that the tongues
corresponding to q > 4 behave like standard Arnold
tongues, while q = 1, 2, 3, 4 behave in a different
way as expected. Resonance q = 4 is well known
not to finish in a cusp singularity (compare with
[Kirk, 1991]), while resonance q = 3 does not even
finish in a cusp bifurcation (see below for a detailed
description of this resonance). For lower η, reso-
nance q = 2 arises whenever the nontrivial Floquet
multipliers of the primary periodic orbit (T ) col-
lide in a doubly degenerate −1 eigenvalue. In this
case, we find in parameter space the Hopf bifurca-
tion is interrupted by an “isola” of period-doubling
bifurcations (PD T in Fig. 5). For even lower η we
find that the Hopf bifurcation is finally interrupted
when the two nontrivial Floquet multipliers become
degenerate at +1. In this case a saddle-node bifur-
cation of periodic orbits occurs (SN T in Fig. 5),
and in fact a Takens–Bogdanov [Kuznetsov, 1997]
singularity takes place. In Sec. 3.4 we discuss this
with more detail.

The organization of the tongues in parameter
space shows that for increasing q, the resonances
appear to accumulate towards the HSN singularity.
This may be easily understood by a simple anal-
ysis from the HSN normal form. Truncating the
normal form (2), the eigenvalues of the Hopf pe-
riodic orbit (corresponding to T ) at the (degener-
ate) secondary Hopf bifurcation µ = 0, ν < 0 are
λ1,2 = ±iω1 = ±i

√
2aν. Using the expression of
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Fig. 5. Resonance structure for the transversal and longitudinal Hopf bifurcations, together with the homoclinic bifurcation
to fixed point C. Period doubling bifurcations of longitudinal orbits (PD L) and Hopf bifurcations of longitudinal orbits
(HOPF L) are displayed.

Fig. 6. Secondary Hopf bifurcation and its resonances p/q = {1/2, 1/3, 1/4, . . .} from an estimation of the HSN normal form
(2) using LIS parameters (β, η). The dashed line is the saddle-node of fixed points while the vertical line is the secondary
Hopf bifurcation. Compare with Fig. 5 (A = 1, θ = 0.5, χ = 0.3).
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a(θ) and ω0 in (3) we may estimate the position of
the resonances in parameter space solving

pω0 = qω1(ν) , (9)

for each pair of p, q. It is clear that moving on
the secondary Hopf and approaching the HSN sin-
gularity (ν → 0), the typical secondary frequency
ω1 goes to zero, so a larger q is required to satisfy
the resonance condition. Figure 6 shows the result
of this estimation of the resonance condition us-
ing the approximate reparametrization of LIS (β, η)
parameters in terms of HSN parameters (4):

η(µ, ν) =
(1 + θ2)(ν − 2)χ

2(−2θ + µ(1 + θ2)
,

β(µ, ν) =

√
1 + θ2χ

−2θ + µ(1 + θ2)
.

(10)

The resonance structure is very similar to the
one identified by Kirk [1991], but for Type III
Hopf-saddle-node. The main difference is that
in this Type the invariant torus coexists with
the two fixed point solutions, and the possible

homoclinic/heteroclinic between them. Her main
result was that the Arnold tongues accumulated
for increasing winding number towards this homo-
clinic/heteroclinic bifurcation are presented for this
particular Type. In our case, we observe that the
accumulation of the tongues saddle-nodes is onto
the Andronov global bifurcation, occurring at the
saddle-node of fixed points.

3.3. Structure and truncation of
Arnold tongues

A closer look at how the periodic orbits are
organized inside each resonance q > 2 is very in-
teresting. To fix ideas we take resonance q = 3
shown in Fig. 7. We have performed three constant-
η parameter cuts displayed in Fig. 8, where the
period of the orbits as a function of β is shown.
In each panel the unstable T periodic orbit is seen
to be born at β ≈ 0.05 (with diverging period) in
a homoclinic bifurcation to C, becoming stable at
β ≈ 0.30 in the (secondary) Hopf bifurcation. Also
for low β we observe the stable L orbit which suffers

Fig. 7. Partial numerical bifurcation set around the 1/3 resonance. The horizontal lines are constant-η parameter cuts shown
in Fig. 8.
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Fig. 8. Period versus β of periodic orbits inside the resonance q = 3. (a) η = −0.645: the two saddle-node bifurcations
form an “isola” for the resonant periodic orbits close to the HOPF T bifurcation. (b) η = −0.670: the saddle branch of the
isola “explodes” in period, creating two homoclinic bifurcations to C. (c) η = −0.725: the resonant branch of q = 3 periodic
orbits merge with the L branch. Merging of the q = 4 resonance is also observed in (a). Solid line: stable orbit, dotted
line: unstable orbit, dashed line: saddle orbit, �: saddle-node bifurcations of periodic orbits, ♦: hopf bifurcations of periodic
orbits.

a number of saddle-node and Hopf bifurcations as
β increases, and finally its period diverges as it ap-
proaches β ≈ 0.60 the saddle-node infinite-period
(Andronov) bifurcation.

In Fig. 8(a), close to the Hopf bifurcation of
T , a saddle and unstable periodic orbits are born
in a saddle-node bifurcation and collide at a higher
β in a reverse saddle-node bifurcation. Both bi-
furcations correspond to the resonance boundaries
shown in Fig. 7. For a slightly lower constant-η cut

[Fig. 8(b)], we find that the unstable branch of the
resonant periodic orbits “explodes” in period and
two homoclinic bifurcations to C originate. These
global bifurcations correspond to the isola of homo-
clinics to C observed in Fig. 7. Finally, in a cut
further away from the q = 3 resonances of the Hopf
of T [Fig. 8(c)], the homoclinics to C disappear and
with the aid of another saddle-node bifurcation, the
resonant periodic orbits “merge” with the L peri-
odic orbit. Notice in Fig. 8(a) that resonance q = 4
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Fig. 9. Phase portraits of resonance orbits, together with T and L. Each row shows a continuation of a transversal 1/q
resonance on the right column, ending in a longitudinal 1/q′ orbit on the right column. For a clear visualization only the first
row displays the whole resonance orbit, while only its intersections with W = 0 are shown in the subsequent rows. Resonance
1/2 (η, β): (a1) (−0.77, 0.32), (b1) (−0.83, 0.40), (c1) (−1, 0.41). Resonance 1/3: (a2) (−0.66, 0.32), (b2) (−0.70, 0.38),
(c2) (−0.75, 0.44). Resonance 1/3: (a3) (−0.565, 0.32), (b3) (−0.60, 0.38), (c3) (4,−0.64, 0.43). Solid lines: stable orbits, dot
lines: unstable trajectories. Saddle orbits are not represented.

already merged to L. The above merging process
of transversal resonances into the longitudinal pe-
riodic solution is observed for all resonances3 1/q,
q > 2.

One may wonder if there is a topological re-
striction for the merging process, as the transversal
orbit (and its associated resonances) are linked in
phase space to the longitudinal orbit L, as shown
in Fig. 3. For this, in Figs. 9(a)–9(c) we illustrate

a continuation of L, T and a resonant orbit in or-
der to show how the linking of the transversal orbit
remains as it merges to a longitudinal orbit.

In fact, close to the merging process, the
longitudinal orbits L also bifurcates in a secondary
Hopf bifurcation. Figure 10(a) illustrates the un-
stable L longitudinal orbit born at the Andronov
bifurcation, bifurcating in a secondary Hopf bifurca-
tion and creating a new unstable longitudinal torus

3Cases q = 1, 2 are more complicated involving a period-doubling bifurcation.
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(a) (b)

Fig. 10. Projections in the plane (Er, Ei) of the orbits that exist on each side of the Hopf bifurcation of L periodic orbits.
Solid lines: stable orbits, dot lines: unstable trajectories. η = −0.8. (a) β = 0.485, (b) β = 0.477. The torus created is
unstable.

Fig. 11. Intensity versus time for the torus created at the
Hopf bifurcation of L periodic orbits. η = −0.8, β = 0.477.

around L [Fig. 10(b)]. Notice also that the elec-
tric field intensity time series Fig. 11 is also quite
different of that of Fig. 4.

The remarkable feature is the organization in
parameter space of the above bifurcations. We have
found that all 1/q transversal resonances, end up
in a cusp bifurcation with another saddle-node bi-
furcation. The latter bifurcation is responsable for
the merging described above, and on this branch

a 1/q′ = 1/1 secondary Hopf bifurcation occurs
on L. Continuation of the new Hopf bifurcation
reveals that it suffers a 1/2 resonance (with a
period-doubling isola), before it ends at another
1/q′ = 1/1 resonance, corresponding to a transver-
sal tongue 1/(q−1). This sequence of bifurcations is
seen to occur for all the transversal 1/q resonances
found.

The complete structure of the phase diagram
of Fig. 5 has now been described and reveals a high
organization which repeats as we approach to the
HSN point. Several bifurcations not present in the
local description of HSN take part in the dynamics:
(a) we have the Arnold tongues which for increasing
q accumulate to the Andronov bifurcation, (b) the
secondary longitudinal Hopf bifurcation connecting
subsequent transversal resonances, and (c) the ho-
moclinic bifurcations to C (the off-state). The lat-
ter global bifurcations have a winding number in
correspondence with the resonance it belongs. Thus
in the limit close to HSN one expects an accumula-
tion of homoclinic orbits to C of diverging winding
number. Furthermore, most turns would follow the
smaller loop T , as we approach HSN. This argument
points to the possibility that another global con-
nection between the HSN fixed point and the laser
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off-state C exists. This has not been explored in
detail and deserves further study (see Sec. 4 below).

3.4. Homoclinics to periodic orbits

As mentioned above, all strong resonances are
known to possess more bifurcation structure than
what we have pointed out. In particular, it is
well known that unlike what happens in weak reso-
nances, the saddle-node bifurcations of the tongues
do not occur on the torus. Instead the invariant
torus may grow as parameters change and eventu-
ally collide with one of the resonant periodic orbits.
This would correspond to a homoclinic bifurcation
to a periodic orbit, with the final destruction of the
torus.

One example may be found in the intersec-
tion point of all 1/1 resonance points with the
saddle-node bifurcation of periodic orbits. At this
point one may expect a Takens–Bogdanov singu-
larity [Kuznetsov, 1997] which is well known to
have such a global bifurcation. Figure 12 shows
an enlargement of the 1/1 resonance of the trans-
versal T and longitudinal L orbits, where

the diamonds indicate the approximate values
where a homoclinic tangency was observed by direct
numeric computation.

A closed loop around the TB point in Fig. 12
describes the main features. Moving from region
B to F two periodic orbits are created, one sad-
dle and one unstable. From F to G the secondary
Hopf bifurcation creates an unstable torus, and the
unstable periodic orbit becomes stable. In region
G the radius of the torus grows as one approaches
region H, and finally collides in a homoclinic bifur-
cation to the saddle periodic orbit. In Fig. 13 we
illustrate a numeric computation of the stable and
unstable manifolds of the periodic orbit T , showing
clearly a homoclinic bifurcation. Notice that one
expects homoclinic tangencies as one departs from
the TB point. Finally, moving from H to B, the re-
maining periodic orbits disappear in a saddle-node
bifurcation.

An analogous scenario holds for the TB point
on the longitudinal orbits seen in Fig. 12, denoted
homoclinic to L. In general, we also find TB bi-
furcation points in all 1/q′ = 1/1 resonances of
L described above. We emphasize that this is

Fig. 12. Blowup of 1/1 resonance of transversal T and longitudinal L orbits. “♦” show the locus of homoclinic tangencies to
T and L orbits.
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Fig. 13. Phase portraits of the Poincaré section W = 0 for the homoclinic bifurcation of the 1/1 transversal resonance, in the
neighborhood of the homoclinic tangency. The saddle periodic orbit is at “�”, and next we computed the stable and unstable
manifolds (η = −1.20).

Fig. 14. Homoclinic bifurcation in 1/3 resonance. “♦” account for the homoclinic to the saddle T periodic orbit.

only an approximate view since at the TB point
many other bifurcations originate (see [Hirschberg
& Laing, 1995]).

A different homoclinic bifurcation to a peri-
odic orbit is the one encountered inside the 1/3
resonance, see Fig. 14. This is a well established
result from the normal form analysis of this bifur-
cation [Arnold, 1983; Kuznetsov, 1997]. The torus
is found between the secondary Hopf and the homo-
clinic tangency. In this case, the torus grows and

collides to a saddle period q = 3 orbit, which exists
in an neighborhood of the T resonance point.

3.5. Full resonance structure

In general one expects a countable number of res-
onances for the breakup of quasiperiodic motion,
one for each rational p/q. These may be organized
following the Farey sequence [Aronson et al., 1982],
where between resonances p/q and p′/q′ one always
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Fig. 15. Higher order resonance structure between 1/2 and 1/3 transversal resonances. Transversal resonance 2/3 becomes
1/2 resonant to orbit L, while transversal 5/8 resonance becomes a weak resonance to L.

(a) (b) (c)

Fig. 16. One-parameter unfolding of Andronov bifurcation. Note that the stable manifold of the fixed points in (b) and
(c) are two-dimensional in LIS.

finds resonance (p + p′)/(q + q′). A full classifica-
tion of all these resonances is quite complicated so
we show the locus of two resonances with p > 1. In
Fig. 15 we display two resonances in between the
strong 1/1 and 1/2 of the transversal torus. They
show basically the same structure, including the
isola of homoclinic bifurcations to C and homoclinic
bifurcations to T . One of them, the transversal 5/8
resonance, becomes a weak resonance in the neigh-
borhood of the L torus. The other, a transversal
2/3 resonance becomes a strong 1/2 resonance in

the neighborhood of the L torus. Notice also the
homoclinic bifurcations to L and T periodic orbits
found in this resonance.

4. Andronov Bifurcation

We now describe with some more detail the An-
dronov bifurcation found in LIS. In Fig. 16 we
illustrate the phase portraits of the unfolding of
this bifurcation in a one parameter cut. They
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Fig. 17. Locus of homoclinic bifurcation to C fixed point, T -point, and Andronov bifurcation at the saddle-node of fixed
points.

correspond to the Andronov–Lentovich4

[Kuznetsov, 1997] bifurcation: a periodic orbit in
the region of no fixed point collides in a homoclinic
orbit with the saddle-node (SN) fixed point. At
the bifurcation point, there exists an orbit leaving
the central manifold, and returning after some fi-
nite time through the other central manifold of the
saddle-node fixed point.

This bifurcation is quite representative in
LIS and has been confirmed in several parame-
ter regimes. The standard Adlers equation [van
Tartwijik & Lenstra, 1995] is a one-dimensional ex-
ample displaying this bifurcation. Also the two-
dimensional averaged model of [Solari & Oppo,
1994], displays this bifurcation at the SN bifurca-
tion of fixed points. This in fact motivated pre-
vious studies in global bifurcations, for in generic
three-dimensional systems one expects that the
global connection connecting the saddle-node to it-
self should break.

Results for Type III in [Zimmermann et al.,
1997] show that the Andronov global bifurcation
exists for sufficiently small (β, η), but become de-
generate at a point close to the HSN singular-
ity, where a new codimension-2 bifurcation known
as Shilnikov-saddle-node, occurs. At the bifurca-
tion, the homoclinic orbit leaves through the central
manifold the neighborhood of the saddle-node fixed
point, but now returns through the stable manifold
of the degenerate fixed point. Results for Type I
(1 < θ <

√
3) show that the Andronov bifurcation

exists for the whole interval between (β, η) = (0, 0)
up to the HSN point. However on the other side
of the codimension-2 point, homoclinic tangencies
to T occur near the SN bifurcation of fixed points
[Zimmermann et al., 2001].

For Type II we display in Fig. 17 a continua-
tion in parameter space of the Andronov bifurca-
tion, approximated by continuation of a very high
period L orbit. The locus of this global bifurcation

4In fact this bifurcation was studied by Andronov in 2-dimensions, while the n-dimensional case was solved by [S̆hil’nikov,
1966]. However we keep the term Andronov bifurcation to the generic case.
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starts at (β, η) = (0, 0) and extends past the HSN
point. The stability of the periodic orbit depends
on the stable or unstable direction of the degenerate
fixed point at the SN bifurcation. Therefore for |η|
small the stability of L is stable (region 3 in Fig. 1),
while for values on the other side of the HSN point,
L becomes unstable (region 3′ in Fig. 1). In phase
space, orbits born at this global bifurcation display
a number of transversal oscillations (“bumps”) in
the region of phase space where the saddle-node
fixed point (SN) disappeared. The number of these
oscillations diverge as we approach from below the
HSN bifurcation point, for in the neighborhood of
this singular point there are two directions with
extremely slow dynamics. Moving away from the
saddle-node bifurcation, the transversal oscillations
are observed to grow in phase space. We have
shown in Sec. 3.3 how this periodic orbit is found
in general to suffer saddle-node bifurcations corre-
sponding to the resonance boundaries of the Arnold
tongues, or a secondary Hopf bifurcation. This clar-
ifies the integral role of the Andronov bifurcation in
the complete bifurcation structure close to the HSN
bifurcation point.

A new global bifurcation was found involving
the Andronov bifurcation. For sufficiently negative
η, the homoclinic orbit makes a global excursion
which approaches the C fixed point. In parameter

Fig. 18. T -point bifurcation: phase portrait of heteroclinic
cycle between fixed point C and saddle-node fixed point (SN)
at (β, η) = (−1.117, 0.91595). The stable manifold W s(C) is
one-dimensional while the unstable manifold W u(C) is two-
dimensional. W c(SN) denotes the central manifold of the
SN fixed point.

space, we find that the Andronov bifurcation
collides at a point with the branch of homoclinic
bifurcations to C. At the collision point a hete-
roclinic cycle between the saddle-node (SN) and
C fixed point was found. That is, there is a
heteroclinic connection leaving through the central
manifold of SN and enters C through the stable
one-dimensional manifold, and another connection
which leaves through the two-dimensional unsta-
ble manifold of C, and enters back to SN through
its two-dimensional stable(-center) manifold (see
Fig. 18). This cycle is reminiscent to the T -point bi-
furcations found for two nondegenerate fixed points
[Glendinning & Sparrow, 1986; Bykov, 1993; Zim-
merman & Natiello, 1998]. So far, this degenerate
heteroclinic system has not been studied in detail.

5. Conclusions and Outlooks

In this work a detailed study of the partial bifur-
cation set around the Type II regime of the Hopf-
saddle-node singularity in a laser with an injected
signal has been performed. Secondary Hopf bifur-
cations to a transversal and longitudinal (to the
W = 0 plane) periodic orbit dominate the peri-
odic motion in a region of parameter space where
no locking solutions exists. The former periodic or-
bit is well described by the unfolding of the HSN bi-
furcation, and corresponds to undamped relaxation
oscillations, while the latter arises as a saddle-node
infinite-period (Andronov) global bifurcation. Our
results show how the Arnold tongues arising from
the transversal torus are “truncated” in parameter
space by resonances of the longitudinal torus. Thus
in phase space the periodic orbits are observed to
deform continuously from transversal into longitu-
dinal orbits. A partial bifurcation set displaying our
main result is shown in Fig. 19.

Our work also extends [Solari & Oppo, 1994]
results on the averaged LIS equations. The aver-
aged system displays: (a) an Andronov bifurcation
creating a longitudinal orbit, (b) a secondary longi-
tudinal Hopf bifurcation on this orbit, which origi-
nates from the HSN point in parameter space, and
(c) the characteristic transversal secondary Hopf bi-
furcation of the Type II HSN singularity. How-
ever, Solari and Oppo observed singular behavior
(orbits going to infinity) as well when continuing
the resulting tori in parameter space. The rea-
son for this is the topological restriction to the de-
formation of transversal into longitudinal tori in a
two-dimensional phase space.
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Fig. 19. Partial numerical bifurcation set for Type II HSN in LIS.

In the three-dimensional setting of LIS equa-
tions we have found instead a family of homoclinic
orbits to the off-state fixed point, arranged in iso-
las in parameter space inside each Arnold tongue of
the corresponding transversal torus. The off-state
fixed point appears to be at infinity in the aver-
aged equations (due to the change of coordinates),
and hence we can conjecture that the singular be-
havior observed in the average model results from
“bifurcations with infinity” [Sparrow & Swinnerton-
Dyer, 1995], as we move between both tori. A more
detailed study of the averaged equations would be
desirable to test this conjecture.

Our present work is also related to a recent
work on solid-state lasers with optical injection
[Yeung & Strogatz, 1998], where a complicated
bifurcation diagram close to the saddle-node bi-
furcation was found. The rate equations studied
may be shown to be rescaled to LIS equations (1)
with θ = 0 (provided that g 6= 0). This partic-
ular detuning was shown by Solari and Oppo to
be somewhat more delicate, but Type II HSN was
preserved. Yeung and Strogatz studied the attrac-
tors in a parameter cut with constant detuning

η, and increasing β approaching the saddle-node
bifurcation. Their diagrams showed periodic win-
dows, interspeded by orbits with a large intensity,
reminiscent of the homoclinic orbit to the off-state
found in our work. The most remarkable difference,
is that the self-similar structure of periodic win-
dows is reported to accumulate at the saddle-node
of fixed points. Instead our work shows that (at
least for θ = 0.5 > 0), a finite number of resonances
are crossed by constant-η cuts in the bifurcation
diagram while approaching the saddle-node bifur-
cation. Nevertheless, it appears that the number
of crossed resonances diverge as η approaches the
codimension-2 value. Further work should confirm
how the secondary Hopf bifurcation we found moves
in parameter space as θ → 0.

Despite the complicated bifurcation set pre-
sented, we emphasize that most of this structure
remains out of bound of standard experimental se-
tups. Nevertheless we would like to point out that
a partial confirmation of this bifurcation set should
be possible, by following the stable cw solution in
parameter space, and looking for stable undamped
relaxation oscillations. The region of existence of
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these two stable invariant sets is bounded by the
secondary Hopf bifurcation, and by locating the
locking region, this may validate the basic features
of the Type II HSN scenario.

Finally, we would like to emphasize the pos-
sible implications of the homoclinic bifurcations to
the laser off-state found above. Although this bifur-
cation was also observed in the previous analysis for
Types of HSN, it appears that in the Type II regime
this bifurcation has been singled out. The sequence
of homoclinic bifurcations for each of the infinite
number of resonances accumulating towards the
HSN singularity is a remarkable result which needs
further detailed study. This phenomenon suggests
that the Hopf-saddle-node singularity may have, on
top of the saddle-node infinite-period global bifurca-
tion, another pair of heteroclinic orbits to the HSN
fixed point, forming a cycle. So far, we are no longer
surprised by the bizarre global bifurcations found in
this laser, which provide stimulating motivation for
further research.
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