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Diffusive feed of reactants and Hopf bifurcations in an oscillatory
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We study an oscillatory chemical modghe “Brusselator’) with the aim of analyzing the effect of

a controlled diffusive feed of reactants in the appearance of chemical oscillations. The reflectivities
of the boundary, which adjust the external fluxes, act as control parameters capable to alter the
attractive basin of the thermodynamic branch, leading to oscillatory behaviod9%8 American
Institute of Physicg.S0021-960808)51247-(

I. INTRODUCTION tion and orientation of dissipative structures in RD
systemg1:24-26

The formation of spatial and temporal structures in ex-  Of particular interest are thgartially reflecting bound-
tended dissipative systems has become a very active field afry conditions(*‘albedo BCs”), that at the boundar relate
research, both from the experimental and from theoreticathe normal derivative of the concentrations with its value:
points of view'™ The large variety of nonequilibrium sys- .
tems that one can consider calls for different frameworks in "V Plr="—x(p=po)lr, @
which these phenomena can be analyzed. In particular, th@herex(>0) is thealbedoparameterp is the concentration
description of dissipative structures in terms of reaction-of the chemical species, apg is some reference concentra-
diffusion (RD) equations has shown to be a very fecundtion of the reservoir that usually lies on the thermodynamic
source of tractable models in physics, chemistry, andranch. These type of BQshe most general homogeneous
biology >~’ Typical examples are the conduction of signalsones assume that the boundary acts as a partially absorbing
by nerve fiberd laser system&the Gunn effect®the ballast ~ or reflecting mediunt,which feeds the reaction by diffusion.
resistor! and even some genetic and ecologicalThey have Neumann’'s BQotally reflecting, i.e.x—0) and
phenomena?!3 The autocatalytic chemical reactiofmod-  Dirichlet's BC (totally absorbing of any deviation fromy,
eled up by nonlinear RD equationprovide some of the i.e., k—) as limits. Since these BCs are closely related to
most studied exampléé-'" It is well known that chemical diffusion processes, it is our hope that they could be realized
Systems which are |0ca||y in thermodynamic equi“brium, butin eXperimentS conducted in the new unstirred open reactors
hold far from chemical equilibrium, can undergo phase tran{€-g-, in @ gel ribbon or annulué’ These BCs have recently
sitions toward new stable states which show striking behayP&en shown to play a relevant role in the appearance and
iors such as chemical clocks, Turing structures, or even tray3tability (both linear and nonlineaof stationary patterns in
eling waves. A classical example—and the best knowrPiStable RD systems like th%3scglom°del' T the
realistic excitable system—is th@elousow-Zhabotinskii ~FitzHugh—Nagumo equatioris;* excitable reactions and bi-

; At —36
(BZ) reaction'® The overall reaction is the catalytic oxida- Molecular isomerization rf)roce%. h the role of
tion of malonic acid in an acidic bromate solution. Limit In recent papers we have been concerned with the role o

cycle oscillations are common features of chemically reactp."’lrt""‘"y reﬂectmg BC?,'” pattern' selection, and more par-
ing systems like the BZ reaction and glycoly&is?! ticularly with the stability properties of the resulting non-
The boundary conditionéBCs) rule over the merging equilibrium structure$®3°—*¢Here we want to analyze for an

. S . oscillatory chemical reaction how the controlled fluxes of
and the stability of nonequilibrium structures in extended : .
N . . chemical reagents alter the stability of the homogeneous so-
dissipative systems. The new generation of unstirred ope

Rﬂion that lies in the thermodynamic branch and produces
?emporal organization through a Hopf bifurcation. For sim-

bility of controlling the flux of reactants from the licity, the response of chemical limit cycle oscillations to

boundaries? There is already experimental evidence that th he diffusive feed in unstirred open reactors will be analyzed

BCs plgy a significant rgle on the patt-ern formatlon: The flrstror a one-dimensional, two-component RD system.
unambiguous observation of a genuine Turing structure has

been reported in experiments on the chlorite-iodide-malonic

acid (CIMA) reaction in an open gel reactor Moreover, Il. THE BRUSSELATOR

there are reports on the influence of the borders on the selec- A classical simplified theoretical model used to show
cooperative phenomena in chemically reacting systems is a
3Electronic mail:bvhuefte@mdp.edu.ar trimolecular reaction mode(proposed by Prigogine and
YCorresponding author:electronic mail;izus@mdp.edu.ar Lefevep known as the Brusselator’ *# It is the simplest
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model which exhibits instabilities and transitions to chemicalThis leads to the following linear system for the small space
oscillations' The influence of the borders on the selectionand time-dependent perturbatiomsand 3:
and orientation ofstatic structures in the Brusselator was )
reported in Refs. 26 and 34. B—1+Dla— A2
This chemical reaction takes place in four steps and is g/« 972 a
held far from equilibrium by allowing the reactions to ad- _t(,B) = 7 (3) (6)
vance only in one direction. The calculations presented in -B —AZ4D,—
this paper are carried out for the following dimensionless RD 2

equations for the two speciééand. By linearity, the BCs to be fulfilled by the perturbations at

IX ) the boundaries are:
— =D, VIX+A—(B+1)X+X2Y,

at da B

aY , , 2 Elz:iL:"‘Kxalz:iL-

—=D,VIY+BX— XY,

gt A B @)

which model the reaction in an unstirred extended system. EIZ:iL: T RYBla-s -

D, andD, are diffusion coefficients, and we assume tRat
andB (which arise from the kinetigsare in large excess, so
that their concentrations are time independent and unifor
over the systenipool chemical aproximatiorf? Although
rather unrealistic, this approximation lies at the basis of most a(z,1)
theoretical developments for the sake of mathematical trac- ( B(z,t)
tableness. However, experimental setups may fit into this '
approximation; for example, the well-stired membraneAs the Laplacian is the only operator acting on space coor-
reactof’ and heterogeneous catalytical reactions over welblinates, we choose its eigenfunctions in order to investigate
defined crystalline planes where the feed comes from the gake stability of the thermodynamic branth:
and induce spatio-temporal symmetry breaking phenomena
on the surfacé®%° & ()= —KZa(2)

Equations(2) have a uniform steady-state solution that dZZa" — 7 Snnls)

Equation (6) constitutes a set of linear homogeneous
equations of first order in time with constant coefficients.
nCI‘hey therefore admit solutions of the form:

ol
=explwt)| - .

B(z)

)

lies on the thermodynamic branch: , (9)
Xo=A.Yo=B/A. ®) ;—Zzﬁmu) = —0nBn(2),
Hereafter, we consider the one-dimensional version of Egs.
(2) in the interval— L<z=<L with the following BCs: wheren andm are sets of indices labeling the infinite sets of
eigenfunctions and the minus signs in frontlgf and q,,
(%ik (X—X )) =0. accounts thatl®/dz? is a dissipative operator having non-
Iz X 0 — positive eigenvalues. Thie, andq,, are functions oL, x,
(4) and «y, respectively. The applied BCs originate the follow-
(ﬁ + KY(Y_YO)) =0. ing equations for the wave vectors:
9z z=*L K
Albedo BCs[Egs. (4)] can be maintained in time by tar(knL)—k—:=0, for n=024...,
controlling the diffusive flow ofX andY through the bound- (10)

aries. For these BCsXg,Y) remain as the homogeneous

Kx
steady state for € ky=<o and 0< ky<o. cottkal) + 1 ~=0, for n=135...,

n

and

l1l. STABILITY ANALYSIS OF THE THERMODYNAMIC tan(q,L)— ﬂzo, for m=0.24 ...,
BRANCH Um
We wish to i [ h diti d hich th K v
e wish to investigate the conditions under which the Y_ -
: o cot(qulL)+ —=0, for m=135...,
thermodynamic branch becomes unstable ambrequilib- QL) Om 3

rium phase transitioroccurs to an oscillatory stateemporal respectively. In order to obtaik,(ky) and q(xy) these

organization. B, kx, and xy are chosen as control param- equations must be solved numerically. By replacing Egs.
eters. We look for instabilities in the homogeneous steady(;de (9) into Eq. (6), we obtain:

state solution using the linear stability theory. As usual, we
propose forX andY the perturbed forms: a, a,
~ = ‘U(kn an) ~ ) (12)
Bm Bm

X(z,t)=Xp+ a(z,t),

Cg-n) AZ

Y(z,t)=Yo+ B(z,1). ®) where
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cV=B-1-k2D,,

This system admits nontrivial solutions provided that the fol-
lowing equation is satisfied:

0?(Kn Q) + (5" = ™) 0Ky , Q) + AZB— ¢ ci™ =0,
(14

The two solutions of Eq(14):

o= (Kn,dm) =3[V —ci = \(c{V+ciM)2—4A%B] (15

are physically interesting. Depending on the varialiss

D,, A B, kx and ky, the frequency can be either real or
complex, leading in some particular cases to bifurcations, ¢
frequently observed phenomenon in oscillatory chemical
systems out of equilibrium. Hereafter we consider those situ-
ations which lead to chemical oscillatiofise., ® complex.

IV. HOPF BIFURCATION OF THE THERMODYNAMIC
BRANCH FIG. 1. Plot of ABy, as a function ofky and xy . The surface limits the

. . . region where the steady state is statibelow the surfaceand unstable
. The _thermOdynam'C branch is Sta_ble if t_he real pa_r‘t’Of (above the surfageThe existence of a maximum allowed valueBy;, can
is negative and undergoes a Hopf bifurcation to oscillatoryhe appreciated for Dirichlet BC. Hefe=1, A=0.5, D,=0.008, andD,
stateg(limit cycles) when becomes positiv.w(k, ,qy,) will =0.004.
be complex if c{"c{™—A?B<0, and the condition that

w(k,,q,) has a positive real part is:

B>B,n=A%+1+k2D;+03D>, (16)  behavior is qualitatively similar to the shown in Fig. 1, and
the same occurs for the other valuesx@ndm. Therefore, if
we increase the albedo parametess and kv, the critical
(B<B..) or unstable B>B,). It represents a critical sur- value of the bifurcation pgrametBrincreases, and t_he region

n nm’ o where the thermodynamic branch results stable is enhanced.
face in the B,xx,xy)-space. Its absolute minimum By The first (Hopf) bifurcation occurs fon=m=0. A similar

— A2 H — —
=A”+1, which corresponds to .zero-flu'x BO‘?(._ K.Y_O) behavior was obtained for the Brusselator, subject to non-
and represents the onset of oscillatory instability in the spa-

. . symmetric BCs—but with the same reflectivity for both
tially uniform BrusselatorD;=D,=0). :
. components—in Ref. 34.

The full symmetric casesky=ky=0 (Neumann B¢
and kx= ky=0 (Dirichlet BC) were considered in Refs. 1
and 14. The asymmetric casesq= ky= k at the right end
and Dirichlet or Neumann BCs at the left end, were consid- AB
ered in Ref. 34. 10

We consider here the Brusselator subject to nonflux BC
and we explore the effect of changing both albedo param-
eters. In Fig. 1 we show, for the BCs indicated in E@b,
the behavior ofAByy=Bgo( kx , kv) —Bgo(0,0) as a function
of kx and ky. The minimum corresponds tey=«y=0,
indicating which in ausence of external fluxes the basin of
the thermodynamic branch has its lower extension. The criti-
cal value of the control parameter has a monotonous increas
with kx andky, and tends asymptotically to its maximum in
the nearness of Dirichlet BAge., «y,xy=20).

In the particular cas&yx=0, ky=, the wave vectors
satisfy

k,=nw/L, for n=0,1, ...,

whereB,,, is the boundaryin the space of the parameters
between the regions where the steady stAig Y) is stable

dn=(m+21)x/L, for m=0,1,..., (a7
and the first bifurcation ocurrs f@,=A?+1+ (7/L)?D,.
For kx=o, ky=0, the first bifurcation occurs fdgy= /L,

- — A2 2
do= 0 atBop=A+1+ (77”-) D;. ) FIG. 2. Plot ofAB,q as a function ofkcx andky . The values of the param-
Figure 2 showsAB,y as a function ofxy and xy. The  eters are.=1, A=0.5,D,=0.008, andD,=0.004.
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is limited by a critical surface—can be altered by adjusting
kx andky . Tuning the boundary reflectivities resulted to be
a natural way of inducing pattern formation by bifurcation

0.504 processes.

900 We have found that the frequency of the chemical oscil-

lations depend on the diffusive regime of the feed, in par-

0.502 ticular, the frequency of the resulting limit cycle can be ad-
justed by altering the diffusive fluxes. Only for zero-flux

conditions the system is a spatially uniform chemical clock;

0.500 in other case it is a chemical clock with spatial organization.

We want to remark that albedo BCs have a very impor-

0.408 tant influence on the formation of dissipative structures in

RD systems, which has been overlooked recently. Consider-
ing the new generation of unstirred open reactors fed by
diffusion from the boundaries, the possibility of controlling
some aspects of the self-organization processes by adjusting
the diffusive feed seems to be feasible. As the dependence of
the frequency of the limit cycle oscillations with the reflec-
FIG. 3. Plot of the frequencwqo as a function oy and«y . HereL=1, tivities is essentially determined by the linearized dynamics
A=0.5,0,=0.008, andD,=0.004. around the thermodynamic branch and the magnitude of the
diffusive feed of reactants, we expect that this phenomenon
can be observed in some real extended oscillatory chemical
] - PRI > systems. As a first approach, we have restricted our calcula-
solutions  are wpm= \/(quz) +AT(amD2—kiD1) —1]  tions to the Brusselator, but we expect that our results can be
and can be altered by adjusting the BCs. In Fig. 3 weyyalitatively applied to others chemical oscillators and
show wq as a function ofxyx and xy. The maximum  ghoyld open up new experimental possibilities for the study
value allowed for that frequency corresponds t0of temporal organization in unstirred nonlinear chemical re-
k= and ky=0 (wgy— Y —AZ[(m/L)2D,+1]), and the actions. The extension of the present analysis to realistic re-
minimum corresponds toxy=0 and ky=% (wgy actions is under way, and will be the subject of forthcoming

—\[(7/L)2D,]?+ A (w/L)2D,—1]). For closed reactors Papers.
(i.e., Neumann BC wgy=+\—A? and for Dirichlet BC
(kx,ky=), the frequency tends to the asymptotic valueACKNOWLEDGMENTS
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