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Diffusive feed of reactants and Hopf bifurcations in an oscillatory
reaction-diffusion model
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We study an oscillatory chemical model~the ‘‘Brusselator’’! with the aim of analyzing the effect of
a controlled diffusive feed of reactants in the appearance of chemical oscillations. The reflectivities
of the boundary, which adjust the external fluxes, act as control parameters capable to alter the
attractive basin of the thermodynamic branch, leading to oscillatory behavior. ©1998 American
Institute of Physics.@S0021-9606~98!51247-0#
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I. INTRODUCTION

The formation of spatial and temporal structures in e
tended dissipative systems has become a very active fie
research, both from the experimental and from theoret
points of view.1–5 The large variety of nonequilibrium sys
tems that one can consider calls for different frameworks
which these phenomena can be analyzed. In particular,
description of dissipative structures in terms of reactio
diffusion ~RD! equations has shown to be a very fecu
source of tractable models in physics, chemistry, a
biology.5–7 Typical examples are the conduction of signa
by nerve fibers,8 laser systems,9 the Gunn effect,10 the ballast
resistor,11 and even some genetic and ecologic
phenomena.12,13 The autocatalytic chemical reactions~mod-
eled up by nonlinear RD equations! provide some of the
most studied examples.14–17 It is well known that chemical
systems which are locally in thermodynamic equilibrium, b
hold far from chemical equilibrium, can undergo phase tr
sitions toward new stable states which show striking beh
iors such as chemical clocks, Turing structures, or even t
eling waves. A classical example—and the best kno
realistic excitable system—is theBelousov–Zhabotinskii
~BZ! reaction.18 The overall reaction is the catalytic oxida
tion of malonic acid in an acidic bromate solution. Lim
cycle oscillations are common features of chemically rea
ing systems like the BZ reaction and glycolysis.19–21

The boundary conditions~BCs! rule over the merging
and the stability of nonequilibrium structures in extend
dissipative systems. The new generation of unstirred o
chemical reactors, based on gel strips, has opened the p
bility of controlling the flux of reactants from the
boundaries.22 There is already experimental evidence that
BCs play a significant role on the pattern formation: The fi
unambiguous observation of a genuine Turing structure
been reported in experiments on the chlorite-iodide-malo
acid ~CIMA ! reaction in an open gel reactor.23 Moreover,
there are reports on the influence of the borders on the se
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tion and orientation of dissipative structures in R
systems.11,24–26

Of particular interest are thepartially reflecting bound-
ary conditions~‘‘albedo BCs’’!, that at the boundaryG relate
the normal derivative of the concentrations with its value

n̂¹ruG52k~r2r0!uG , ~1!

wherek(.0) is thealbedoparameter,r is the concentration
of the chemical species, andr0 is some reference concentra
tion of the reservoir that usually lies on the thermodynam
branch. These type of BCs~the most general homogeneou
ones! assume that the boundary acts as a partially absor
or reflecting medium,4 which feeds the reaction by diffusion
They have Neumann’s BC~totally reflecting, i.e.,k→0) and
Dirichlet’s BC ~totally absorbing of any deviation fromr0,
i.e., k→`) as limits. Since these BCs are closely related
diffusion processes, it is our hope that they could be reali
in experiments conducted in the new unstirred open reac
~e.g., in a gel ribbon or annulus!.27 These BCs have recentl
been shown to play a relevant role in the appearance
stability ~both linear and nonlinear! of stationary patterns in
bistable RD systems like the Schlo¨gl model,24,25,28–31 the
FitzHugh–Nagumo equations,32,33excitable reactions and bi
molecular isomerization process.34–36

In recent papers we have been concerned with the rol
partially reflecting BCs in pattern selection, and more p
ticularly with the stability properties of the resulting non
equilibrium structures.28,30–36Here we want to analyze for a
oscillatory chemical reaction how the controlled fluxes
chemical reagents alter the stability of the homogeneous
lution that lies in the thermodynamic branch and produ
temporal organization through a Hopf bifurcation. For sim
plicity, the response of chemical limit cycle oscillations
the diffusive feed in unstirred open reactors will be analyz
for a one-dimensional, two-component RD system.

II. THE BRUSSELATOR

A classical simplified theoretical model used to sho
cooperative phenomena in chemically reacting systems
trimolecular reaction model~proposed by Prigogine an
Lefever! known as the ‘‘Brusselator.’’ 1,14 It is the simplest
© 1999 American Institute of Physics
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model which exhibits instabilities and transitions to chemi
oscillations.1 The influence of the borders on the selecti
and orientation ofstatic structures in the Brusselator wa
reported in Refs. 26 and 34.

This chemical reaction takes place in four steps and
held far from equilibrium by allowing the reactions to a
vance only in one direction. The calculations presented
this paper are carried out for the following dimensionless
equations for the two speciesX andY:

]X

]t
5D1¹ r

2X1A2~B11!X1X2Y,

~2!
]Y

]t
5D2¹ r

2Y1BX2X2Y,

which model the reaction in an unstirred extended syst
D1 andD2 are diffusion coefficients, and we assume thaA
andB ~which arise from the kinetics! are in large excess, s
that their concentrations are time independent and unif
over the system~pool chemical aproximation!.22 Although
rather unrealistic, this approximation lies at the basis of m
theoretical developments for the sake of mathematical t
tableness. However, experimental setups may fit into
approximation; for example, the well-stirred membra
reactor37 and heterogeneous catalytical reactions over w
defined crystalline planes where the feed comes from the
and induce spatio-temporal symmetry breaking phenom
on the surface.38–40

Equations~2! have a uniform steady-state solution th
lies on the thermodynamic branch:

X05A,Y05B/A. ~3!

Hereafter, we consider the one-dimensional version of E
~2! in the interval2L<z<L with the following BCs:

S ]X

]z
6kX~X2X0! D U

z56L

50.

~4!S ]Y

]z
6kY~Y2Y0! D U

z56L

50.

Albedo BCs @Eqs. ~4!# can be maintained in time b
controlling the diffusive flow ofX andY through the bound-
aries. For these BCs (X0 ,Y0) remain as the homogeneou
steady state for 0<kX<` and 0<kY<`.

III. STABILITY ANALYSIS OF THE THERMODYNAMIC
BRANCH

We wish to investigate the conditions under which t
thermodynamic branch becomes unstable and anonequilib-
rium phase transitionoccurs to an oscillatory state~temporal
organization!. B, kX , andkY are chosen as control param
eters. We look for instabilities in the homogeneous stea
state solution using the linear stability theory. As usual,
propose forX andY the perturbed forms:

X~z,t !5X01a~z,t !,
~5!

Y~z,t !5Y01b~z,t !.
l
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This leads to the following linear system for the small spa
and time-dependent perturbationsa andb:

]

]tS a

b D 5F B211D1

]2

]z2
A2

2B 2A21D2

]2

]z2

G S a

b D . ~6!

By linearity, the BCs to be fulfilled by the perturbations
the boundaries are:

]a

]z
uz56L57kXauz56L ,

~7!
]b

]z
uz56L57kYbuz56L .

Equation ~6! constitutes a set of linear homogeneo
equations of first order in time with constant coefficien
They therefore admit solutions of the form:

S a~z,t !

b~z,t ! D 5exp~vt !S ã~z!

b̃~z!
D . ~8!

As the Laplacian is the only operator acting on space co
dinates, we choose its eigenfunctions in order to investig
the stability of the thermodynamic branch:22

d2

dz2
ãn~z!52kn

2ãn~z!,

~9!
d2

dz2
b̃m~z!52qm

2 b̃m~z!,

wheren andm are sets of indices labeling the infinite sets
eigenfunctions and the minus signs in front ofkn and qm

accounts thatd2/dz2 is a dissipative operator having non
positive eigenvalues. Thekn andqm are functions ofL, kX,
andkY , respectively. The applied BCs originate the follow
ing equations for the wave vectors:

tan~knL !2
kX

kn
50, for n50,2,4, . . . ,

~10!

cot~knL !1
kX

kn
50, for n51,3,5, . . . ,

and

tan~qmL !2
kY

qm
50, for m50,2,4, . . . ,

~11!

cot~qmL !1
kY

qm
50, for m51,3,5, . . . ,

respectively. In order to obtainkn(kX) and qm(kY) these
equations must be solved numerically. By replacing Eqs.~8!
and ~9! into Eq. ~6!, we obtain:

Fc1
~n! A2

2B 2c2
~m!G S ãn

b̃m
D 5v~kn ,qm!S ãn

b̃m
D , ~12!

where
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c1
~n!5B212kn

2D1 ,
~13!

c2
~m!5A21qm

2 D2 .

This system admits nontrivial solutions provided that the f
lowing equation is satisfied:

v2~kn ,qm!1~c2
~m!2c1

~n!!v~kn ,qm!1A2B2c1
~n!c2

~m!50.
~14!

The two solutions of Eq.~14!:

v6~kn ,qm!5 1
2 @c1

~n!2c2
~m!6A~c1

~n!1c2
~m!!224A2B# ~15!

are physically interesting. Depending on the variablesD1,
D2, A, B , kX and kY , the frequency can be either real
complex, leading in some particular cases to bifurcation
frequently observed phenomenon in oscillatory chem
systems out of equilibrium. Hereafter we consider those s
ations which lead to chemical oscillations~i.e., v complex!.

IV. HOPF BIFURCATION OF THE THERMODYNAMIC
BRANCH

The thermodynamic branch is stable if the real part ov
is negative and undergoes a Hopf bifurcation to oscillat
states~limit cycles! when becomes positive.22 v(kn ,qm) will
be complex if c1

(n)c2
(m)2A2B,0, and the condition tha

v(kn ,qm) has a positive real part is:

B.Bnm5A2111kn
2D11qm

2 D2 , ~16!

whereBnm is the boundary~in the space of the parameter!
between the regions where the steady state (X0 ,Y0) is stable
(B,Bnm) or unstable (B.Bnm). It represents a critical sur
face in the (B,kX ,kY)-space. Its absolute minimum isB00

5A211, which corresponds to zero-flux BC (kX5kY50)
and represents the onset of oscillatory instability in the s
tially uniform Brusselator (D15D250).

The full symmetric cases:kX5kY50 ~Neumann BC!
and kX5kY5` ~Dirichlet BC! were considered in Refs.
and 14. The asymmetric cases,kX5kY5k at the right end
and Dirichlet or Neumann BCs at the left end, were cons
ered in Ref. 34.

We consider here the Brusselator subject to nonflux
and we explore the effect of changing both albedo para
eters. In Fig. 1 we show, for the BCs indicated in Eqs.~4!,
the behavior ofDB005B00(kX ,kY)2B00(0,0) as a function
of kX and kY . The minimum corresponds tokX5kY50,
indicating which in ausence of external fluxes the basin
the thermodynamic branch has its lower extension. The c
cal value of the control parameter has a monotonous incr
with kX andkY , and tends asymptotically to its maximum
the nearness of Dirichlet BCs~i.e., kX ,kY*20).

In the particular casekX50, kY5`, the wave vectors
satisfy

kn5np/L, for n50,1, . . . ,
~17!

qm5~m11!p/L, for m50,1, . . . ,

and the first bifurcation ocurrs forB005A2111(p/L)2D2.
For kX5`, kY50, the first bifurcation occurs fork05p/L,
q050, atB005A2111(p/L)2D1.

Figure 2 showsDB10 as a function ofkX andkY . The
-
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behavior is qualitatively similar to the shown in Fig. 1, an
the same occurs for the other values ofn andm. Therefore, if
we increase the albedo parameterskX and kY , the critical
value of the bifurcation parameterB increases, and the regio
where the thermodynamic branch results stable is enhan
The first ~Hopf! bifurcation occurs forn5m50. A similar
behavior was obtained for the Brusselator, subject to n
symmetric BCs—but with the same reflectivity for bo
components—in Ref. 34.

FIG. 1. Plot ofDB00 as a function ofkX and kY . The surface limits the
region where the steady state is stable~below the surface! and unstable
~above the surface!. The existence of a maximum allowed value ofB00 can
be appreciated for Dirichlet BC. HereL51, A50.5, D150.008, andD2

50.004.

FIG. 2. Plot ofDB10 as a function ofkX andkY . The values of the param
eters areL51, A50.5, D150.008, andD250.004.
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The frequency of temporal oscillation for the elementa

solutions are vnm5A(qm
2 D2)21A2@(qm

2 D22kn
2D1)21#

and can be altered by adjusting the BCs. In Fig. 3
show v00 as a function ofkX and kY . The maximum
value allowed for that frequency corresponds

kX5` and kY50 (v00→A2A2@(p/L)2D111#), and the
minimum corresponds to kX50 and kY5` (v00

→A@(p/L)2D2#21A2@(p/L)2D221#). For closed reactors
~i.e., Neumann BC! v005A2A2, and for Dirichlet BC
(kX ,kY5`), the frequency tends to the asymptotic val

v005A@(p/L)2D2#21A2@(p/L)2(D22D1)21#. Dirichlet
BCs can be practically implemented in our system with
bedo parameterskX ,kY*20. That circumstance explains th
plateaus in the Figs. 1–3.

V. CONCLUSION

We have studied a prototypical oscillatory reactio
diffusion model~the ‘‘Brusselator’’! with the aim of identi-
fying the effects of the diffusive feed of reactants on t
self-organization processes which occur in autocatal
chemical reactions, in particular the appearance of temp
patterns. Although the Brusselator does not represents a
chemical reaction, nevertheless it is the best studied
most widely known theoretical model of chemical instabil
phenomena, and allows a simple numerical treatment of
subject. The BCs considered correspond to adjusting the
dients of the concentrations of the reagents at the bound
in proportion to the values of the concentrations: the alb
parameters (kX ,kY) represent these ratio for both reagen

We have investigated the stability of the thermodynam
branch—in the full space of the reflectivities—for those v
ues of the parameters that allow Hopf bifurcations. The
bedo parameters act as control variables capable of enh
ing or weakening the self-organization processes with
altering the nonlinear dynamics of the system. The basin
the thermodynamic branch in the (B,kX ,kY)-space—which

FIG. 3. Plot of the frequencyw00 as a function ofvX andkY . HereL51,
A50.5, D150.008, andD250.004.
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is limited by a critical surface—can be altered by adjusti
kX andkY . Tuning the boundary reflectivities resulted to b
a natural way of inducing pattern formation by bifurcatio
processes.

We have found that the frequency of the chemical os
lations depend on the diffusive regime of the feed, in p
ticular, the frequency of the resulting limit cycle can be a
justed by altering the diffusive fluxes. Only for zero-flu
conditions the system is a spatially uniform chemical clo
in other case it is a chemical clock with spatial organizatio

We want to remark that albedo BCs have a very imp
tant influence on the formation of dissipative structures
RD systems, which has been overlooked recently. Consi
ing the new generation of unstirred open reactors fed
diffusion from the boundaries, the possibility of controllin
some aspects of the self-organization processes by adju
the diffusive feed seems to be feasible. As the dependenc
the frequency of the limit cycle oscillations with the refle
tivities is essentially determined by the linearized dynam
around the thermodynamic branch and the magnitude of
diffusive feed of reactants, we expect that this phenome
can be observed in some real extended oscillatory chem
systems. As a first approach, we have restricted our calc
tions to the Brusselator, but we expect that our results can
qualitatively applied to others chemical oscillators a
should open up new experimental possibilities for the stu
of temporal organization in unstirred nonlinear chemical
actions. The extension of the present analysis to realistic
actions is under way, and will be the subject of forthcomi
papers.
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